MATH 233 PRACTICE MT\#2, VERSION \#1

DISCLAIMER: This practice exam is intended to give you an idea about what a twohour midterm is like. It is not possible for any one exam to cover every topic, and the content, coverage and format of your actual exam could be different from this practice exam.

You can leave answers in terms of fractions and square roots.
To earn full credit you must show your work.
$\# 1$. Find the volume of the solid obtained by intersecting the graph of $z=\sqrt{x^{2}+y^{2}}$ and the graph of $z=1-\sqrt{x^{2}+y^{2}}$.
\#2. Find the center of mass of the shaded region shown on the right, where the radius of the wedge is 1 , and the density at the point (x, y) is $\rho(x, y)=y$.

\#3. Find the maximum and minumum value of $f(x, y)=x^{3}+y$ along the ellipse $x^{2}+2 y^{2}=1$.
\#4. (a) Sketch the solid whose volume is given by the iterated integral

$$
\int_{0}^{2} \int_{0}^{2-z} \int_{0}^{4-y^{2}} d x d y d z
$$

Do not evaluate this integral.
(b) Rewrite this integral in the order $d y d z d x$. Do not evaluate this integral.
\#5. Compute the double integral $\iint_{R} x d A$ using the change of variables $x=\frac{1}{3}(v+u), y=$ $\frac{1}{3}(2 v-u)$, where R is the region bounded by the lines $2 x-y=0,2 x-y=4, x+y=0$, and $x+y=3$.
$\# 6$. Find the area of the part of the sphere $x^{2}+y^{2}+z^{2}=2$ that lies above the plane $z=1$.
\#7. Evaluate the triple integral $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{2-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)^{3 / 2} d z d y d x$.

