DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS

MATH 233
EXAM 1
Spring 2017

YOUR NAME: \qquad
Check the box next to your section:1, Andrew Havens, 9:05-9:55, MWF7, Luca Shaffler, 1:00-2:15, TuTh

2, Maria Nikolaou, 11:15-12:05, MWF8, Luca Shaffler, 2:30-3:45, TuTh3, Noriyuki Hamada, 12:20-1:10, MWF4, Noriyuki Hamada, 1:25-2:15, MWF5, Dinakar Muthiah, 10:00-11:15, TuTh9, William Meeks, 8:30-9:45, TuTh10, Sean Hart 2:30-3:45, MW6, Dinakar Muthiah, 11:30-12:45, TuTh11, Maria Nikolaou 10:10-11:00, MWF

In problems that require reasoning or algebraic calculation, it is not sufficient just to write the answers. You must explain how you arrived at your answers, and show your algebraic calculations.

You can leave answers in terms of fractions and square roots.
$\langle x, y, z\rangle,[x, y, z],\left(\begin{array}{l}x \\ y \\ z\end{array}\right),\left[\begin{array}{l}x \\ y \\ z\end{array}\right] ;$ are all permissible notations for the vector $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

1. (15) \qquad
2. (15) \qquad
3. (15) \qquad
4. (15) \qquad
5. (15) \qquad
6 . (15) \qquad
6. (10) \qquad
Total \qquad

Perfect Paper $\longrightarrow 100$ Points.

There are 9 pages, including this one and a blank one at the end, in this exam and 7 problems. Make sure you have them all before you begin!

1. In parts a) and b) of this problem consider the points $A=(-1,1,3), B=(2,5,2)$ and $C=(1,2,6)$.
a) (5 points) Let L_{1} be the line which passes through the points A and B. Find the parametric equations for L_{1}.
b) (5 points) A, B and C are three of the four vertices of a parallelogram, while $A B$ and $B C$ are two of its four edges. Find the fourth vertex D of the parallelogram.
c) (5 points) Determine parametric equations for the line L_{2} tangent to the space curve given by $r(t)=\left\langle t, 2 t^{2}, 2 t\right\rangle$ at the point $(1,2,2)$.
2. Consider the points $P=(3,1,1), Q=(4,1,2), R=(4,4,1)$ in \mathbb{R}^{3}.
a) (10 points) Find an equation for the plane containing P, Q and R.
b) (5 points) Find the area of the triangle with vertices P, Q, R.
3. a) (10 points) Find the parametric equations for the line L_{1} of intersection of the planes $x-2 y+z=6$ and $x+y-z=0$:
b) (5 points) Find the cosine of the angle θ between the planes $x-2 y+z=6$ and $x+y-z=0$.
4. a) (10 points) Find the equation of the sphere S with center $(-1,2,5)$ and containing the point $(1,0,1)$.
b) (5 points) Find the center and radius of the sphere

$$
x^{2}-8 x+y^{2}+10 y+z^{2}=8 .
$$

5. a) (5 points) Make a sketch of the surface in \mathbb{R}^{3} described by equation $z=x^{2}$. In your sketch of this surface, include the labeled coordinate axes and draw and label the trace curves on the surface for the planes $y=0$ and $y=3$.
b) (10 points) Find the volume \mathbf{V} of the parallelepiped such that the following four points $A=(2,1,2), B=(3,1,-2), C=(3,3,3), D=(2,0,-1)$ are vertices and the vertices B, C, D are all adjacent to the vertex A. (Hint: Use the scalar triple product or determinants to make this calculation.)
6. a) (10 points) Consider the points $A=(1,1,1), B=(3,3,2)$ and $C=(3,5,16)$. Suppose $\mathbf{a}=\overrightarrow{A B}$ and $\mathbf{b}=\overrightarrow{A C}$. Find the vector projection, call it \mathbf{c}, of \mathbf{b} onto the vector a.
b) (5 points) Calculate the vector $\mathbf{b}-\mathbf{c}$ and then show that this new vector is orthogonal to a.
7. a) (5 points) Suppose that a vector \vec{v} can be written as $\langle 1,3, k\rangle$, where k is unknown. If \vec{v} is orthogonal to the vector $\langle 15,-12,-7\rangle$, then what is the value of k ?
b) (5 points) Write down the parametric equations of the line L containing the point $A=(1,2,3)$ and orthogonal (perpendicular) to the plane P defined by

$$
x-2 y+z=6
$$

