
MATH 471 EXAM II ANSWERS

This exam is worth 100 points, with each problem worth 20 points. Please complete
Problem 1 and then any four of the remaining problems. There are problems on both sides.
Unless indicated, you must justify your answer to receive credit for a solution.

When submitting your exam, please indicate which problems you want graded by writing
them in the upper right corner on the cover of your exam booklet. You must select exactly
four problems; any unselected problems will not be graded, and if you select more than four
only the first four (in numerical order) will be graded.

(1) Please classify the following statements as True or False. Write out the word com-
pletely; do not simply write T or F. There is no partial credit for this problem, and
it is not necessary to show your work for this problem.

Note that for a statement to be True, it must be true exactly as written and for all
cases. To be False, there needs to be only one example showing that the statement
is false. A statement that is “true most of the time, except sometimes” is false in
mathematics.
(a) If 2x ≡ 4 mod 8, then x ≡ 2, 6 mod 8. Answer: True.
(b) Given an integer N > 1, using the Pollard ρ-method one can always find a

divisor d | N with 1 < d < N . Answer: False, what if N is prime?
(c) A two-by-two linear system modulo N either has a unique solution, or N dis-

tinct solutions. Answer: False, the system can also have no solutions.
(d) Let m > 1 be an integer. Let m = pe1

1 · · · pek
k be the prime factorization of

m into distinct prime powers. Fix integers ai for i = 1, . . . , k. Then there is
a unique positive integer N such that N ≡ ai mod pei

i . Answer: False, N
exists but it is not uniquely determined. Given such an N , we can modify it
by adding any multiple of m without changing the congruences mod pei

i .
(e) Suppose f(α) ≡ 0 mod p, where p is a prime and f(x) is a polynomial with

integer coefficients. Suppose also that α is the only root of f modulo p. Then
there are at most pr−1 roots of f modulo pr. Answer: True. Think about
what can happen when applying Hensel’s lemma. When going from any pr−1

to pr, a given root either lifts to a unique root, or to no root, or to p distinct
roots. So if there’s only one root mod p, there must be at most pr−1 roots when
we get to pr. For an example, f(x) = x2r−1 − 1 has 2r−1 roots mod 2r.

(2) Let N = 2573. Use Pollard’s ρ method to find a nontrivial divisor of N , using
the initial seed x0 = 2 and the function f(x) = x2 + 1. Answer: We find that
the sequence {xi}i≥0 mod N is 2, 5, 26, 677, 336, 2258, 1452, . . . . The GCDs are
(x2 − x1, N) = (x4 − x2, N) = 1 and (x6 − x3, N) = 31. And 31 | N .

(3) Compute the following modular exponentials. Answer: In all these we use the
algorithm described in class, which begins by computing the binary expansion of the
exponents. Here we just give the answer and the binary expansion of the exponent.
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(a) 315 mod 10. Answer: 15 = 11112, and we get 7.
(b) 3512 mod 10. Answer: 512 = 10000000002, and we get 1.
(c) 3609 mod 10. Answer: 609 = 10011000012, and we get 3.

(4) Solve for x:
(a) 2x + 7 ≡ 4 mod 17. Answer: x ≡ −2−1 · 3 ≡ 7 mod 17.
(b) 5x + 10 ≡ 11 mod 25. Answer: Since 5 - 11 there are no solutions.
(c) 12x + 4 ≡ 8 mod 16. Answer: Divide by 4 to get the conguence 3x + 1 ≡

2 mod 4. This means x ≡ 3 mod 4. Going back to modulo 16 we get x ≡
3, 7, 11, 15 mod 16.

(5) Use Hensel’s lemma to find the roots of the polynomial f(x) = x4 + x3 + x2 + 1
modulo 2, 22, 23, 24, 25. Answer: The only root mod 2 is x = 1, so we lift this. Note
that f ′(x) = 4x3 + 3x2 + 2x ≡ x2 mod 2, and f ′(1) ≡ 1 mod 2. This is nonzero, so
we always lift to a unique root at each level. We have −f ′(1)−1 ≡ 1 mod 2, so we
really only have to compute t ≡ (f(α)/2e) mod 2 where α is the root mod 2e, and
then the root β mod 2e+1 is β = α + 2et. Using this we find the sequence of roots
1 mod 2, 1 mod 4, 5 mod 8, 13 mod 16, 29 mod 32.

(6) Solve the following systems of linear equations:
(a)

2x + 3y ≡ 7 mod 10
3x + 4y ≡ 3 mod 10

Answer: The determinant is −1 mod 10, so there is a unique solution. If we
use Cramer’s rule, for instance, we find that x ≡ (28−9)/(−1) ≡ 1 mod 10 and
y ≡ (6− 21)/(−1) ≡ 5 mod 10.

(b)

3x + 5y ≡ 0 mod 7
x + 4y ≡ 0 mod 7

Answer: In this one the determinant vanishes mod 7. There is at least one
solution, namely (0, 0), so there are actually 7 solutions. If we use the second
equation to write x ≡ 3y mod 7, we get the solutions

(0, 0), (3, 1), (6, 2), (2, 3), (5, 4), (1, 5), (4, 6).

(7) Gus the grocer has many apples. He knows that he has an odd number of apples.
When he makes piles of five he has two left over, and when he makes piles of seven he
has four left over. He also knows that he has less than 200 apples but more than 100.
How many does he have? Answer: Use the CRT with the system x ≡ 1 mod 2,
x ≡ 2 mod 5, x ≡ 4 mod 7. The first two give x ≡ 7 mod 10. Then with the third
we get x ≡ 67 mod 70. Since 100 < x < 200, we have x = 67 + 70 = 137.

(8) The set SL2(m) is the set of all 2 × 2 matrices modulo m that have determinant
1 mod m.
(a) Find all elements of SL2(2). (Hint: for SL2(p) where p is prime there are

(p2 − 1)(p − 1) elements.) Answer: There are six elements. The possible top



rows are x = (1, 0), y = (0, 1), and z = (1, 1). For each of these, there are only
two choices of bottom row that work, giving 6 total. If we write the choice of
two rows as an ordered pair (to save space), we get xy, xz, yx, yz, zx, zy.

(b) How many elements are there in SL2(m), where m = 30? (Hint: CRT) An-
swer: We have m = 2 ·3 ·5. Any element of SL2(30) determines one in each of
SL2(2), SL2(3), SL2(5). Conversely, given any element from each of these, we
can find a unique one in SL2(30) using the CRT. So there are 6·24·120 = 17280
elements in SL2(30).

(9) Let f(x) = x2 − 1. Classify all the positive integers m such that f(x) ≡ 0 mod m
has exactly two distinct solutions. Answer: First we consider m a prime power.
From class we know that if m = pk where p is odd, then there are two distinct
solutions. Similarly if m = 2 there is one solution, if m = 22 there are two distinct
solutions, and if m = 2k, k ≥ 3 there are four distinct solutions. So if m is a prime
power we must have m = 4 or m = pk where p is odd. Now consider more general
m and apply the CRT. Write m = 2apk1

1 · · · pkr
r where all the primes are distinct. If

m is odd then it must be a prime power (otherwise if there are more than two odd
primes dividing m we’ll have at least 4 distinct solutions). If m is even then it must
be of the form 2pk or 22. Any other even integers will have at least 4 solutions mod
m.


