
MATH 471 EXAM I

This exam is worth 100 points, with each problem worth 20 points. Please complete
Problem 1 and then any four of the remaining problems. There are problems on both sides.
Unless indicated, you must justify your answer to receive credit for a solution.

When submitting your exam, please indicate which problems you want graded by writing
them in the upper right corner on the cover of your exam booklet. You must select exactly
four problems; any unselected problems will not be graded, and if you select more than four
only the first four (in numerical order) will be graded.

(1) Please classify the following statements as True or False. Write out the word com-
pletely; do not simply write T or F. There is no partial credit for this problem, and
it is not necessary to show your work for this problem.

Note that for a statement to be True, it must be true exactly as written and for all

cases. To be False, there needs to be only one example showing that the statement
is false. A statement that is “true most of the time, except sometimes” is false in
mathematics.
(a) If an integer n has no positive divisor d 6= 1 such that d ≤ √

n, then n is prime.
Answer: True. This is one way to streamline the trial division factorization
algorithm. Actually I took either True or False for this since I forgot to say
that n > 0.

(b) According to the division algorithm, given any integers a, b we can find a unique
pair of integers q, r with 0 ≤ r < a and b = qa + r. Answer: False. This is
almost the statement of the division algorithm (Theorem 1.10 in the text), but
we need a > 0 for it to be true.

(c) A function f defined on the integers is called multiplicative if f(mn) = f(m)f(n)
for all integers m, n. Answer: False. The integers m, n need to be relatively
prime. This is the definition of strictly or fully multiplicative.

(d) Any two primes are relatively prime to each other. Answer: False. The primes
must be distinct!

(e) The least common multiple of two integers cannot be computed without first
computing their prime factorizations. Answer: False. One can use the Eu-
clidean algorithm to compute (a, b), then [a, b] = (a, b)/ab.

(2) (a) Compute the prime factorization of 13461525 (you may use any algorithm you
like). Answer: By inspection we see that 52 divides the number. After dividing
we see that 3 divides, and in fact 33 divides (a number is divisible by 3 iff the
sum of its digits is divisible by 3, or just use trial division). This gets us to
19943. Trial division then finds the remaining prime divisors, 7, 11, 37. The
final answer is 33 · 52 · 72 · 11 · 37.

(b) Use Fermat factorization to find a nontrivial divisor of 1907893 (you don’t need
to find the full factorization). Answer: We have ⌊

√
1907893⌋ = 1381, so start
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computing 13822−1907893, 13832−1907893, . . . until you hit a perfect square.
We hit it right away: 13872 − 1907893 = 1262. Thus both 1387 − 126 = 1261
and 1387 + 126 = 1513 divide our number. Note that these divisors aren’t
prime. Factoring either one of them with Fermat actually takes a while . . .

(3) (a) Compute (65, 221). Answer: Pulverize to find 13.
(b) Compute (65, 221, 93). Answer: Use (α, β, γ) = ((α, β), γ), the output of

the first part, and the Pulverizer (or trying to divide 13 into 93) to find
(65, 221, 93) = (13, 93) = 1.

(c) Find integers a, b such that 65a+221b = (65, 221). Answer: Use the Extended
Euclidean algorithm to get a = 7, b = −2. Other answers are possible.

(d) Find integers A, B, C such that 65A + 221B + 93C = (65, 221, 93).Answer:

First use EEA to compute −6·93+43·13 = 1. Now substitute 7·65+−2·221 = 13
in for the 13 to get −6 ·93+301 ·65+−86 ·221 = 1. Other answers are possible.

(4) For each linear equation, either find all integer solutions, or explain why there are
no integer solutions.
(a) x + y = 1. Answer: Easy by inspection: x = 1 + k, y = −k, k ∈ Z.
(b) 15x + 12y = 8. Answer: The GCD (15, 12) = 3, and 3 ∤ 8, so no solutions.
(c) 3x + 5y = 10. Answer: The GCD is 1, which divides 10, so infinitely many

solutions. A particular solution is (x, y) = (0, 2). Thus all answers are given
by x = 5k, y = 2 − 3k, k ∈ Z. Note that your answer may look different and
still be correct.



(5) Let n be a positive integer. Define the radical of n, denoted rad(n), to be the
product of the distinct primes dividing n. For example, since 360 = 23 · 32 · 5, we
have rad(n) = 2 · 3 · 5 = 30.
(a) Compute rad(121) and rad(968). Answer: 11 and 22.
(b) What integers have the property that rad(n) = n? Answer: The largest

exponent of any prime in the prime factorization must be 1. Such numbers are
called squarefree because they have no square divisor (other than 1). Prime
numbers are squarefree, but there are many numbers that are squarefree that
aren’t prime.

(c) Suppose rad(mn) = rad(m) rad(n). What can you conclude about m and n?
Answer: The sets of primes in their prime factorizations must be disjoint,
which implies (m, n) = 1.

(d) Can it happen that rad(mn) > rad(m) rad(n)? Either give an example veri-
fying this, or explain why it can’t happen. Answer: This can never happen.
Consider the prime factorizations of both sides of the inequality. Partition the
primes that appear into three sets: Sm, the primes that divide m and not n;
Sn, the primes that divide n and not m; and Sm,n, the primes that divide both
m and n. Clearly every prime that appears will appear in one of these sets, and
these sets are disjoint. Now the primes in Sm and Sn appear with exponent 1
on both sides, but the primes in Sm,n appear with exponent 1 on the left and
2 on the right. Therefore the left must always be ≤ the right.
Here is another argument. (Actually it’s basically the same argument, phrased
differently.) Consider the prime factorizations of the left and the right. On the
left all primes have exponent 1. On the right they all have exponent 1 or 2.
If the left is to be bigger than the right, there must be a prime p occuring on
the left that doesn’t occur on the right (otherwise obviously the right is ≥ the
left). But if p | mn then p | m or p | n. So in fact p must occur on the right, a
contradiction.

(6) Let H be the set of positive integers congruent to 1 modulo 4. An integer h > 1
in H is called a Hilbert prime if h cannot be factored nontrivially into two smaller
elements of H. That is, h ∈ H is a Hilbert prime if and only if for any factorization
h = ab with a, b ∈ H, we have a = h or b = h.

Note that being a Hilbert prime is not the same as being prime. The first two
Hilbert primes are 5 and 9; even though 9 = 32 is not a prime, it cannot be factored
into two Hilbert primes, since 3 6∈ H.
(a) Find all Hilbert primes < 80. Answer: List all the numbers that are 1 mod 4

up to 77 and look for the ones that have no divisor appearing earlier in the list.
There are 16 altogether: 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73,
77.

(b) Check that 693 ∈ H. Answer: 693 = 173 · 4 + 1. This is the only condition to
be in H.

(c) Show that 693 has two different factorizations into Hilbert primes. Answer:

The prime factorization is 693 = 32 · 7 · 11. So the two factorizations are 21 · 33
and 9 · 77. Incidentally, this shows that unique factorization fails for the set H.



(7) Recall from class that σk(n) is the sum of the kth powers of the divisors of n. For
instance, σ2(10) = 12 + 22 + 52 + 102 = 130.
(a) Compute σ3(30). Answer: 1+8+27+125+216+1000+3375+27000 = 31752.
(b) Let p be a prime. Compute σk(p) and σk(p

r). Answer: 1 + pk and 1 + pk +
p2k + · · · + prk.

(c) If p is a prime, the function σk satisfies the following identity:

σk(p
r+1) = σk(p)σk(p

r) − pkσk(p
r−1).

Verify the identity for k = 2, p = 2, and r = 1, 2, 3. Answer: Just compute it,
using the above formulas.

(d) Prove the identity for all p, r and for k = 0, 1. (Hint: don’t use induction, just
compute both sides.) Answer: Here is how to prove it for all p, r, k. The left

hand side is 1+pk +p2k + · · ·+prk +p(r+1)k. The first product on the right hand
side is 1+2pk+2p2k+· · ·+2prk+p(r+1)k, and −pkσk(p

r−1) = −pk−p2k−· · ·−prk.
Adding these two together we get the left hand side. Incidentally, the function
σk(m) is an example of a multiplicative function that is not fully multiplicative
(cf. Problem 1c).


