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Sampling Hard-to-Reach Populations

e Motivation: UNAIDS

— Requires HIV prevalence estimates for all countries
— Most countries: concentrated in high-risk populations:
Injecting drug users, men who have sex with men, and sex workers
— Hard-to-reach networked populations.
e Other applications: Unregulated workers, jazz musicians

Traditional Survey Sampling:

e Probability sample (e.g. simple random sampling, stratified random sampling)
e Analyze data using sampling weights

Hidden populations: No practical conventional sampling frame.
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Link-Tracing Sampling

Suppose:

e Each population joined by informal social network of relationships.
e Researchers can access some members of the population.

Then:

e Begin with a reachable convenience sample (the seeds)
e Expand sample by following social network ties

This is Link-tracing Network Sampling
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Respondent-Driven Sampling - Link-tracing variant:

e Seed Dependence: Follow only a few links from each sampled

e Confidentiality: Respondents distribute uniquely identified coupons. No names.
(respondent-driven)

e Estimation based on Network positions: Several approaches

e Effective at obtaining large varied samples in many populations.
e Widely used: over 100 studies, in over 30 countries. Often HIV-risk populations.

Heckathorn, D.D., “Respondent-driven sampling: A new approach to the study of hidden populations.”
Social Problems, 1997.

Salganik, M.J. and D.D. Heckathorn, “Sampling and estimation in hidden populations using respondent-
driven sampling.” Sociological Methodology, 2004.
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Stylized population
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Start with seeds . . .
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Seeds recruit the first wave. . .
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First wave recruit the second wave . . .
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RDS Inference
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RDS Inference
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degree of node ¢ = # of ties of node 4
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Link-Tracing Sampling:

e Challenges

— Sampling depends on (typically) partially-observed network data
— Convenience mechanism for initial sample leads to non-probability sample
— Unknown population size = unknown sampling frame

e Sampling designs have much in common, but no consensus on inferential
approach

Respondent-Driven Sampling subject to all of these
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Classic Design-Based Inference:

Generalized Horvitz-Thompson Estimator
e Goal: Estimate proportion “infected” :

1 N
= — Z;
>
where population labeled 1,2, ... N,

Y 1 ¢infected
vt 0 ¢ uninfected.

e Generalized Horvitz-Thompson Estimator:

Iu L Zz Szi—;
_ 1
Zi Szﬂ-i
where
| 1 <¢sampled o o
Si = { 0 4 notsampled mi = P(Si=1).

Key Point: Requires m; Vi : S; = 1
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Simulation Study
Simulate Population

e 1000, 835, 715, 625, 555, or 525 nodes
e 20% “Infected”

Simulate Social Network (from ERGM, using statnet)

e Mean degree 7

. P __ P(infected to infected tie) __
e Homophily on Infection: R = P (uninfecied to infected e — © (or other)

mean degree infected 1 (Or Other)

mean degree uninfected ~—

e Differential Activity: w =

Simulate Respondent-Driven Sample

e 500 total samples
e 10 seeds, chosen proportional to degree
e 2 coupons each

e Coupons at random to relations

e Sample without replacement

Repeat 1000 times!

Blue parameters varied in study.
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One Approach: Random walk approximation

Consider:

e Connected undirected network
e Random walk on network

e A Markov chain on nodes

e Then stationary distribution proportional to nodal degree.
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One Approach: Random walk approximation

Respondent-driven Sampling:

e Approximate link-tracing process by this Markov chain
e Assume sample can be treated as from stationary distribution
e Then sampling probabilities proportional to degree.

Salganik, M.J., and D.D. Heckathorn, “Sampling and estimation in hidden populations using
respondent-driven sampling.” Sociological Methodology, 2004.

Volz, E., and D.D. Heckathorn, “Probability Estimation Theory for Respondent Driven Sampling,”
Journal of Official Statistics, 2008.

Volz-Heckathorn Estimator (VH): inverse probability weighted by degrees

where d; = degree of node ¢z, S; sample indicator, z; quantity of interest.
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Finite Population Bias

Nodal Inclusion Probability

0 5 10 15 20
Nodal Degree
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Finite Population Correction

Consider:

e A distribution uniform over all networks with given nodal degrees
e Marginalizing over this distribution of networks, transition probabilities of random

walk proportional to degree

Furthermore, consider:

e A without-replacement random walk, over the same distribution of networks
e Then transition probabilities equivalent to successive sampling

Successive Sampling (aka PPSWOR):

e Select the first unit (node) with probability proportional to size (degree).

e Select each additional unit with probability proportional to size
from the remaining unsampled units
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Successive Sampling Mapping
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New Estimator based on Successive Sampling

Estimate sampling probabilities based on successive sampling

These probabilities:

e Depend on population size
e Depend on sizes of all units
e Are not available in closed form

Approach:

e Assume population size known (sensitivity analysis)
e Novel iterative algorithm

Gile, K.J. “Improved Inference for Respondent-Driven Sampling Data with Application to HIV
Prevalence Estimation,” Journal of the American Statistical Association, 2011.
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Successive Sampling (SS) Estimator: Algorithm

e Goal: Estimate sampling probabilities (1) by degree k.
e A function of population degree distribution N, 7 (N).

1. Initial: 7, (N°) o k.
2. Fori =1...r:

(a) Estimate degree distribution N* by Generalized Horvitz-Thompson Estimator
(b) Compute 7 (N*) by simulation:

i. Simulate M SS samples from N*

.
E[Vi;N'] _ Up+1

Ni T M -NL41
where V. is the number of sample units of degree k, and U}, is the number sampled in the
M simulations.

(N') =

3. Use # = w(N") to estimate u:

>
X D Siﬁ;i

i D%,
(4
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Standard Error Estimation:

Population Bootstrap:

e Simulate Population
— Estimate z by d distribution
— Estimate infection mixing matrix by z
e Simulate without-replacement sampling
— Choose recruit z according to mixing matrix
— Choose recruit d by successive sampling
— Update available population and mixing matrix
e Compute SS Estimates
e Results:
— Performs well across differential activity (w) and sample fraction
— Performs well with homophily
— Unreliable when seeds biased.
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All Infected Seeds, varying Homophily, 50%
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All Infected Seeds, varying number of seeds, 50%
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Seed Bias

e Depends on network structure (homophily)
e Depends on branching structure (waves)
e Also, need finite population correction.

Mathematically a random walk that is:
e Branching
e Without-Replacement

e on a Non-regular graph
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Seed Bias

e Depends on network structure (homophily)
e Depends on branching structure (waves)
e Also, need finite population correction.

Mathematically a random walk that is:

e Branching
in an infinite space

e Without-Replacement
on a regular graph (lattice)

e on a Non-regular graph
with replacement, non-branching

Joint treatment analytically elusive.
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Network Model-Assisted Estimator

e Interested in sampling probabilities w; = E(.S;).
e Should reflect:

— Nodal degree d;

— Sample fraction

— Seed selection
— Homophily and Branching Structure
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Approach

Idealizations:

1. For known network y, seeds s, compute m; = E(S;|y, s).
2. For known network model, n, m; = > 5 P(y[n)E(Si|y, s)

We do not know y or n. So we estimate 7.
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Exponential Random Graph Model

Exponential-family model for network Y, conditional on infection status z and nodal
degrees d.
exp [77 ) m(y7 Z d)]
c(n)
y € %, the space # consists of all binary undirected networks consistent
with d and z, and

P(Y =y) =

c(n) = > exp[n-m(u,zd)]
ue¥
A restriction of the common exponential-family random graph model (ERGM).

Here,
m(y, z,d) = E Yijzi(1 — zj)
ird

Require:

e N (degree-infection distribution of population)
e Sufficient statistic: m(y, z, d) (number of cross-ties)
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Fitting the Model

Problem: Requires (unknown) population proportions and sufficient statistic.

Solution: Use design-based estimators

27,

N S.I(d; = k, zz—l)

m(n) = _

where x; = > . z;y;; requires the observation of x; Vi : S; = 1.
For sampling S;, degree d;, infection z;

Problem: This, in turn, requires sampling probabilities.

Solution: Novel iterative algorithm to find self-consistent solution.
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Model-Assisted Estimator: Algorithm

e Goal: Estimate sampling probabilities (7;) by degree d; and infection z;.
e A function of homophily (), and population of degrees and infection N.

e Estimate 7; proportional to degree d;.
e lterate the following steps:
— Estimate N and m(n) using 7;.

— Find corresponding model parameter n (statnet R package)
— Simulate M networks, and samples from networks. Estimate 7; by simulation.

e Use the resulting estimated probabilities, 7;, to form weighted estimator.
N

2. Siz;
A1

2. Siz;

[hpra =
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Standard Error Estimation

Population Bootstrap:

e Simulate M populations
— Estimate z by d distribution
— Estimate n
— Simulate networks according to n
e Simulate RDS samples
— Fix seed distribution
— Sample without replacement
e Compute MA estimates. Average estimates over M populations
e Results:

— Performs well across differential activity (w), sample fraction, seed bias
— Computationally expensive
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Simulation Study

Critical Questions:

e Does Model-Assisted estimator perform as well as SS estimator
for w # 1 and large sample fraction?

e Does Model-Assisted estimator correct for seed bias?
e How well does parametric bootstrap perform?
e What about unknown population size and network structure?

Comparison of Estimators:

e Mean: Naive Sample Mean

SH: Salganik-Heckathorn: based on MME of number of cross-relations
VH: Existing Volz-Heckathorn Estimator

SS: New SS Estimator

[ J
[ J
[ J
° New Network Model-Assisted Estimator
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70% Sample, w = 1.8, R = 5, Infected Seeds
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All Infected Seeds, varying number of seeds (waves)
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All Infected Seeds, varying number of seeds (waves)
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All Infected Seeds, varying number of seeds (waves)
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Parametric Bootstrap

% homoph. sample SE SE coverage coverage
sample R w bias observed bootstrap 95% 90%
50% 1 1 No 0.0140 0.0137 94.1% 88.8%
70% 1 1.8 No 0.0073 0.0075 94.9% 90.4%
50% 5 1 Initial 0.0188 0.0175 93.7% 87.9%
50% 5 1.8 Initial 0.0079 0.0080 95.0% 87.3%
50% 5 1 Referral 0.0216 0.0225 91.7% 84.7%
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Sensitivity Analysis

e Unknown Population Size
— Repeat simulations with inaccurate population estimate.

e Unknown Network Structure
— Repeat simulations with more complex network model.
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N = 1000, 50% Sample, w = 1, R = 1, Random Seeds
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N = 715, 70% Sample, w = 1.8, R = 1, Random Seeds
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N = 1000, 50% Sample, w = 1, R = 5, Infected Seeds
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N = 715, 70% Sample, w = 1.8, R = 5, Infected Seeds
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Increased Triangles (4 x edges with shared partner)
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Increased Geometric Function of Edge-Triangles (10 x)
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HIV Prevalence among MSM in a Caribbean City
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HIV Prevalence among IDU in an Eastern European City
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HIV Prevalence among IDU in an Eastern European City
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HIV Prevalence among IDU in an Eastern European City

Mean
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MA (+/- 1se)

Estimated Prevalence
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HIV Prevalence among IDU in an Eastern European City

Mean
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MA (+/- 1se)

Estimated Prevalence
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Outline of Presentation
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure
Assumptions

Sampling Assumptions

Random Walk Network size large (N >> n) Sampling with replacement
Model Single non-branching chain
Remove Seed Homophily weak enough Sufficiently many sample waves
Dependence Connected graph

To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Knoewn-network-size N No-seed-bias
Assumptions

of SS

Additional Non-random-mixing-observable Sampling-modelform
Assumptions Network-modelHorm

of MA

Assumptions of Volz-Heckathorn Estimator
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure

Sampling Assumptions

Assumptions
Random Walk || Network-size-large{N-—>>n} Sampling-with-replacement
Model Single-non-branching-chain
Remove Seed Homophily weak enough Sufficiently many sample waves
Dependence Connected graph
To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Known network size N No seed bias
Assumptions
of SS
Additional Nen-randem-mixing-observable Sampling-modelform
Assumptions Network-modelHorm
of MA

Assumptions of Successive Sampling Estimator
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Discussion: Respondent-Driven Sampling - Assumptions

Network Structure

Sampling Assumptions

Assumptions
Random Walk | Network-size-large (N-—>>n) Sampling-with-replacement
Model Single-non-branching-chain
Remove Seed Homophily-weak-enough Sufficiently-many-sample-waves
Dependence Connected graph
To Estimate All ties reciprocated Degree accurately measured
Probabilities Random referral
Additional Known network size N No-seed-bias
Assumptions
of SS
Additional Non-random mixing observable Sampling model form
Assumptions Network model form
of MA

Assumptions of Model-Assisted Estimator
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Discussion: Model-Assisted Estimator

e Sampling probabilities based on degrees, finite population effects, seeds,
homophily

e Natural framework for bootstrap standard error estimation

e Extensions:

— Measurable aspects of Network (neighborhoods, perhaps clustering)

— Measurable aspects of Sampling Process (differential recruitment, biased
referral)

— Inference for other features of simulated population
e Improved computational efficiency.
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Discussion: Hidden Population Sampling

Hidden Population Sampling

e Still many assumptions, high variance.
e Typically, RDS not advisable if alternatives available.
e RDS used in varied populations:

recent immigrants, unregulated workers, Nigerian rioters.
Network Sampling (link-tracing)
e Two main challenges: non-random seeds, unknown population size.
Social Network Analysis
e Here, network used for sampling, nuisance for estimation.

Often, it is of independent interest.
e First fitting of network model to data with initial convenience sample.
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