
Homework 8, Advanced Calculus
due 4/21/17

Please hand in your home work before class, have it neatly written, organized
(the grader will not decipher your notes), stapled, with your name and student ID
on top.

Problem 1. In class we considered the predator-prey model

x′ = F (x)

for x = (x1, x2) and the vector field F (x1, x2) = (ax1 − bx1x2,−cx2 + dx1x2) with
a, b, c, d > 0 positive real numbers.

(i) Find all the equilibrium points of F , i.e. all the points x̊ such that F (̊x) =
0.

(ii) Linearize the vector field at the equilibrium point x̊ = (0, 0) and write
down the corresponding linear 2-dimensional ODE.

(iii) Characterize whether (0, 0) is a stable, unstable, saddle, or spiraling (in-
ward or outward) fixed point of the linear ODE.

(iv) How would you answer the question: if the predator-prey population ini-
tially is small, what will happen? Will the population die out, or stay kind
of small, or grow?

Problem 2. A pendulum of rod length l (and pendant of a certain mass) satisfies
the 2nd order ODE

ω′′ + c ω′ + g
l sin(ω) = 0

where g is the gravitational constant, ω(t) is the elongation angle at time t (i.e. the
angle measured from the pendulums resting position) and c is a friction coefficient
(which will depend among other things on the mass). If c = 0 then there is no fric-
tion in the pendulum (e.g., pendulum in vacuum with almost friction free pivoting
devise etc.).

(i) Rewrite the 2nd order ODE as a first order ODE x′ = F (x) for x = (ω, v)
where v = ω′ (angular velocity). Write down the formula for the vector
field F (x).

(ii) Find all the equilibrium points for F , i.e. all the zeros of F . Notice that
since ω is an angle, it suffices to consider values of ω and v between −π
and π, where ω = 0 corresponds to the pendulum vertically down.

(iii) Linearize F at the equilibrium points and write down the corresponding
linear 2-dimensional ODEs x′ = Ax with A = DF (̊x).

(iv) Characterize the origin of the linear ODE at each equilibrium point as a
stable, unstable, saddle, or spiraling (inward or outward) fixed point of the
linear ODE.

(v) Specialize to the case of no dampening, i..e c = 0. Does this effect any-
thing?

(vi) Now characterize the equilibrium points x̊ of F as stable, unstable, saddle,
or spiraling (inward or outward). Does this agree with what you think
should be the case for a pendulum?

Problem 3. Let U ⊂ Rn be open and f : U → R a smooth function. Consider the
gradient vector field F = grad f : U → Rn.
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(i) If γ : I → U is an integral curve of F , that is

γ′(t) = gradγ(t) f

verify that the function f ◦ γ : I → R is increasing. In other words, the
function f increases along the integral curves of its gradient vector field.
Also check that if you “flow in the negative gradient direction”, then f
decreases. Hint : 1st derivative test for increasing/decreasing...

(ii) Show that the equilibrium points of the vector field F = grad f are the
critical points of f .

(iii) What is the linearization of F = grad f at an equilibrium point, i.e. in
the linearized ODE x′ = Ax what is A (have we encountered this object
before?) in terms of f .

(iv) Explain why the linearized ODE at each equilibrium point has real eigen-
values only, and thus the equilibrium points are either stable, unstable, or
saddles.

(v) Explain what all of this has to do with min/max theory of f . Think of the
mountain landscape the graph of f makes and then interpret the integral
curves in this picture. Draw the curves on the graph (n = 2 for that) or
on your hiking map (assume a landscape which has at least a mountain
top, a mountain hole, and a saddle)

Problem 4. Let U ⊂ Rn be open and let F : U → Rn be a vector field. For any
point x ∈ U consider the n× n Jacobi matrix DF (x).

(i) First show that any n × n matrix B can be uniquely written as a sum
B = S + A where S is symmetric (ST = S) and A is anti-symmetric
AT = −A. What are S,A in terms of B? Check that the trace of B equals
the trace of S, where the trace of a square matrix is the sum of its diagonal
entries.

(ii) Decompose DF (x) = S + A and identify the entries of S and A in terms
of the partial derivatives of F = (F1, . . . , Fn).

(iii) In the case n = 3 have a closer look at A. Do you recognize the entries of
the anti-symmetric part of DF (x) in terms of something you have seen in
Calc III? Next have a closer look at traceDF (x). Do you recognize this
expression in terms of something you have seen in Calc III?

(iv) Calculate (for general n) the anti-symmetric part of DF (x) in case F =
grad f is a gradient vector field. What is the symmetric part, i.e have you
encountered it before? And what is traceDF (x)?

Problem 5. Consider the vector fields
F (x) = x

||x||3 on Rn \ {0};
F (x) = (x2x3, x1x3, x1x2) on R3;
F (x) = (−x2, x1) on R2.

(i) Calculate DF (x) for each of the vector fields.
(ii) Calculate the symmetric and anti-symmetric parts of DF (x) for each of

the vector fields.
(iii) Calculate traceDF (x) for each of the vector fields.


