
Homework 8, Honors Calculus II
11/1/2018

This home work continues the discussion of integration of rational functions (see
HW 7). After long division and decomposition of the denominator polynomial into
linear an quadratic factors (which in most cases one cannot to explicitly), we may
assume that our function has the form

f(x) =
P (x)

(x− x1)n1(x− x2)n2 · · · (x− xr)nr (x2 + b1x+ c1)m1 · · · (x2 + blx+ cl)ml

where P (x) is a polynomial whose degree is strictly less than the degree of the
denominator polynomial, which we read off to be n = n1+· · ·+nr+2m1+· · ·+2ml.
We already dealt with the case when there are none of the quadratic terms.

The next problems guide you to deal with the quadratic terms in the denomina-
tor. The general case is then just a combination of the techniques from HW 7 and
what follows. The partial fraction decomposition for the quadratic denominator
case works similar—with a slight variation in the numerator terms—as follows:

P (x)

(x2 + b1x+ c1)m1 · · · (x2 + blx+ cl)ml
=

=
A1x+B1

x2 + b1x+ c1
+

A2x+B2

(x2 + b1x+ c1)2
+ · · ·+ An1

x+Bn1

(x2 + b1x+ c1)n1
+ same for the other quadratic factors

Notice the linear terms in the numerator when compared to the decomposition
given in HW 7.

Problem 1. Find the partial fraction decomposition of 1
x4+1 . Hint: x4 + 1 =

(x2 + ax+ 1)(x2 + bx+ 1) for some (which?) a, b ∈ R.

Using the partial fraction decomposition, we only need to calculate integrals of
the form ∫

Ax+B

(x2 + ax+ b)k
dx

Problem 2. Show that by completing the square followed by a substitution the
integral ∫

Ax+B

(x2 + ax+ b)k
dx

can be written as ∫
Au+B

(u2 + a2)k
du

where A,B, a stand for new constants to be computed form the old A,B, a, b. Notice
the term a2 > 0, which is positive (!), a fact we will use later.

If you have difficulty doing this in the abstract, do it first for the example∫
x+ 2

(x2 + 2x+ 3)k
dx

Problem 3. Show that the integral
∫

Ax+B
(x2+a2)k

dx can be decomposed into a sum

(with some coefficients) of two terms of the form∫
2x

(x2 + a2)k
dx = I1

1



2

and ∫
1

(x2 + a2)k
dx = I2

Calculate the integral I1.
Use the technology so far to calculate∫

1

x4 + 1
dx =?

To finish our discussion (which at this stage became the complete theory of
integration of rational functions), we need to calculate the integral I2.

Problem 4. First show that it suffices to calculate I2 when a = 1 (why?). Let’s
assume this and rename I2 to indicate its dependence on k by

Jk =

∫
1

(x2 + 1)k
dx

Verify the following recursion formula:

Jk+1 =
1

2k

x

(1 + x2)k
+

2k − 1

2k
Jk

Hint: integration by parts first and then the often used “complification” to express
zero as a difference of two equal numbers, in our case 0 = 2 − 2. Calculate J1, J2
and J3.

Problem 5. Calculate the integral of the rational function

2x6 − 3x5 − 9x4 + 23x3 + x2 − 44x+ 39

x5 + x4 − 5x3 − x2 + 8x− 4

Hint: the denominator polynomial has x = 1 and x = −2 as its zeros.

We now switch over to the new material of infinite sums etc.

Problem 6. Use the FPofR to show that the infinite sum
∞∑
k=1

1

k2

has a limit. Hint: 1
k2 ≤

1
k(k−1) =?, think of partial fractions, and then of telescoping

series...

Problem 7. Investigate the series

∞∑
k=1

1

kα

for their convergency depending on the value of the real parameter α ∈ R, that is,
show:

(i) If α > 1 the series converges. Hint: Riemann sum for which function (draw
a picture)? An older HW combined with the FPofR.

(ii) If α ≤ 1 the series does not converge, that is, the sequence of partial sums
is unbounded. Hint: Riemann sum for which function (draw a picture)?
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Problem 8. Provide a value (preferably small of course) for n ∈ N, so that the
finite sum

∑n
k=0

1
k! agrees with the value of e =

∑∞
k=0

1
k! to five decimals. At this

stage we don’t know the exact value of e of course, and the question is how we can
find the value of e up to any prescribed accuracy, in this case 10−5. As check of
your answer carry out the finite sum (up to your predicted lenghth n) using your
calculator to see if this number agrees with e (which you read off your calculator)
up to five decimals.

Problem 9. Use the Newton method to find zeros to construct a sequence {sn}
which converges to

√
2:

(i) Let f(x) = x2−2 for x ≥ 0, so its zero satisfies x2 = 2. Choose some x0 >
0. Find the intersection point x1 of the tangent line through (x0, f(x0))
with the x-axis. Repeating this construction, one obtains a sequence {xn}
via the prescription that xn+1 is the intersection with the x-axis of the
tangent line through the point (xn, f(xn)) (draw a picture). You should
find the formula for xn+1 = g(xn) expressing xn+1 in terms of xn.

(ii) Starting at x0 = 2, show that the sequence {xn} is decreasing and bounded
from below by M = 0. Apply the FPofR (in the version of a decreasing,
bounded from below sequence) to deduce that this sequence has a limit L.

(iii) Use your recursion formula xn+1 = g(xn) and take n→∞ on both sides,

keeping in mind that xn → L, to find out what L is (it should be
√

2.
(iv) Calculate the first six sequence elements x0, . . . , x5 and compare x5 to the

value of
√

2. How good/bad is the approximation?


