
Homework 7, Honors Calculus II
10/25/2018

This home work discusses some of the basics of the “partial fraction decomposi-
tion”. The intent is not to derive the most general formula (which can be looked
up), but to understand the principle behind it.

The problem to be solved is the following: how can we integrate a rational func-

tion f(x) = P (x)
Q(x) where P (x) and Q(x) are polynomials. Recall that a polynomial

is a function of the form P (x) = anx
n + · · ·+ a1x + a0 with ak ∈ R real constants,

the coefficients of the polynomial P (x). Provided that the leading coefficient an 6= 0
(which we always assume when we write down a polynomial), the degree of the poly-
nomial degP = n. So a degree 1 (or linear) polynomial is of the form P (x) = ax+b,
a degree 2 (or quadratic) polynomial is of the form P (x) = ax2 + bx + c and so
on. Important to keep in mind is, that a degree n polynomial has (n + 1)-many
coefficients! Thus, to determine a degree n polynomial, one needs to prescribe
(n+ 1)-many points its graph goes through, which will lead to (n+ 1)-many linear
equations for the coefficients ak, which generally can be solved.

Problem 1. Find the quadratic polynomial whose graph contains the points (0, 0),
(1, 1) and (−1, 4). Notice that there is no linear polynomial containing those three
points (after all, a line is determined by two points). And there will be many cubic
(degree 3) polynomials containing those three points (find at least two different
such cubic polynomials). The reason is, that a cubic polynomial has 4 coefficients,
and the given 3 points only give 3 linear equations, not enough to pin down all 4
coefficients.

Let’s continue with our problem of integrating rational functions P (x)
Q(x) . If degP ≥

degQ (numerator degree greater or equal than denominator degree), we perform
long division and arrive at

P (x)

Q(x)
= R(x) +

P̃ (x)

Q(x)

with R(x) a polynomial of degree degR = degP −degQ ≥ 0 and a remainder term
P̃ (x)
Q(x) where now deg P̃ < degQ. Since we can integrate a polynomial, this means

we only have to understand how to integrate rational functions whose numerator
degree is strictly smaller than its denominator degree.

Problem 2. Carry out the long division for the rational functions

f(x) =
3x4 + 2x2 − 5x + 1

x2 + x + 1
and g(x) =

3x4 + 2x2 − 5x + 1

x4 + 1

and identify the polynomial R(x) and P̃ (x) in both cases and check if the degrees
are as stated above.

Next we have to remind ourselves of the Fundamental Theorem of Algebra (whose
proof, ironically, uses Analysis and Topology; there is no known proof using only
Algebra, and perhaps there never will be). This theorem states that any polynomial
with real coefficients can be written as

P (x) = a(x− x1)n1(x− x2)n2 · · · (x− xr)nr (x2 + b1x + c1)m1 · · · (x2 + blx + cl)
ml

where a, bi, ci ∈ R are some real constants, x1, . . . xr are distinct real numbers, the
zeros of the polynomial P (x), and n1, . . . , nr are positive integers, the corresponding
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multiplicities of the zeros. The quadratic factors x2 + b1x + c1 and so on have no
real zeros, and m1, . . . ,ml are positive integers. This is quite ugly and if we had
complex numbers at our disposal, all of this would boil down to the statement that
a degree n polynomial has exactly n-many zeros (counted with multiplicities) over
the complex numbers. Those quadratic terms in our formula cannot be further
written as products of linear factors, since they have no real zeros. Using this
knowledge, we get the relation n = n1 + · · ·+ nr + 2m1 + · · ·+ 2ml.

Problem 3. Find the above decomposition for the following polynomials (basic
idea here is to guess a zero and etc.) and compare to the general formula, identify
the constants a, bi, ci, the integers ni and mi, and the zeros xi:

(i) P (x) = 4x4 − 3x2 − 1
(ii) P (x) = x3 + 1
(iii) P (x) = x4 − 1

Let’s use this to get a feel how we can integrate rational functions P (x)
Q(x) with

degP < degQ: we start with the simple case when there are none of the quadratic
terms in the denominator, that is, when the denominator polynomial Q(x) = (x−
x1)n1(x−x2)n2 · · · (x−xr)nr factors into linear terms over the reals, in other words,
when all its zeros are real, possibly repeating. Then we have degQ = n1+· · ·+nr >
degP and we make the following Ansatz:

P (x)

Q(x)
=

A1

x− x1
+

A2

(x− x1)2
+· · ·+ An1

(x− x1)n1
+ same for the other linear factors in Q(x)

Multiplying by Q(x) yields and identity

P (x) = R(x)

where R(x) is a polynomial of degree at most degQ − 1 (check this, why?), and
since degP < degQ, both sides are polynomials of degree at most degQ− 1. Since
such a polynomial is determined by degQ many conditions, and we have exactly
that many unknowns A1, A2...., we can solve for those Ai.

Problem 4. Integrate the following rational functions:

(i) f(x) = x3

(x−1)(x+1)3

(ii) f(x) = x
(x+2)2(x+1)2

(iii) f(x) = 1
x2(x+5)(x−2)

(iv) f(x) = x3+2x+1
(x+1)2

(v) f(x) = x4+1
x+1


