
Homework 4, Honors Calculus II
due Tuesday 10/8/19

Please hand in your home work before class, have it neatly written, organized
(the grader will not decipher your notes), stapled, with your name and student ID
on top. All integrals have to be computed without using symbolic calculators. You
may use a calculator only to verify a result and for numerical calculations which
you cannot to on paper or in your head.

Problem 1. Apply the d-operator to the following functions to calculate their
differentials:

(i) f(x) = ln (cos
√
x)

(ii) f(x) = tan(x)
x3

(iii) f(x) = sinh(ln(x))
x

(iv) f(x) = (sinx)e4 cos x2

(v) f(x) = 1√
1+ln x

Problem 2. Find an anti-derivative for each of the following functions:

(i) f(x) = cos(
√
x)√

x

(ii) f(x) = ln(x)
x3

(iii) f(x) = sinh(ln(x))
x

(iv) f(x) = (sinx)e4 cos x

(v) f(x) = 1√
1+x2

Problem 3. An ellipse, centered at the origin, is given by the equation

(
x

a
)2 + (

y

b
)2 = 1

where a ≥ b > 0 are the half axes length. For instance, if a = b then the ellipse be-
comes a circle of radius a. Calculate the area enclosed by the ellipse. In particular,
this gives a formula for the area enclosed by a circle.

Problem 4. Calculate the area bounded between the graphs y = sinx and y =
cosx between their first and second intersection points on the positive x-axis.
Again, draw a picture of the region first.

Problem 5. In class we defined the hyperbolic trig functions

sinh(x) = 1
2 (ex − e−x) cosh(x) = 1

2 (ex + e−x)

Draw accurate graphs of both of these functions. Why is cosh(x) ≥ 1 for all x ∈ R?
Notice, that compared to the usual trig functions, the hyperbolic trig functions
have no periodicity. Give the largest domain and codomains on which sinh and
cosh are bijective functions, and thus can be inverted. We call sinh−1 and cosh−1

the inverse hyperbolic trig functions, in other words

sinh(sinh−1(y)) = y and sinh−1(sinh(x)) = x

and likewise for cosh.
Now verify the the following formulas (and compare them to the corresponding

formulas for the trig functions):

(i) cosh2(x)− sinh2(x) = 1.
(ii) sinh′(x) = cosh(x) and cosh′(x) = sinh(x).
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(iii) sinh(2x) = 2 sinh(x) cosh(x) and cosh(2x) = 2 cosh2(x)−1 = 2 sinh2(x)+1.

(iv) Putting tanh(x) := sinh(x)
cosh(x) calculate tanh′(x) = ?.

(v) Calculate the derivative of the inverse hyperbolic trig functions

d

dx
sinh−1(x) = ?

d

dx
cosh−1(x) = ?

d

dx
tanh−1(x) = ?

Note, this gives us three more anti-derivatives to use when trying to cal-
culate integrals.

Problem 6. In class we calculated the area under the graph (of one branch) of the
hyperbola x2 − y2 = 1 over an interval [1, b] using the hyperbolic sine and cosine
functions (see previous problem) via substitution. We also started a calculation
following a student’s suggestion using integration by parts. In class we did not
pursue this further, but one can get somewhere by using a “trick”, namely adding
zero to an expression in an intelligent way, usually by thinking 0 = 1 − 1. Fill in
the calculation below:∫ √

x2 − 1 dx = x
√

x2 − 1−
∫

x2

√
x2 − 1

dx = . . .???

Now apply the “adding zero trick” in the last integrant numerator, continue the
above calculation, and show that∫ √

x2 − 1 dx = x
√
x2 − 1−

∫ √
x2 − 1 dx +

∫
dx√
x2 − 1

Conclude from this that∫ √
x2 − 1 dx =

1

2

(
x
√
x2 − 1 +

∫
dx√
x2 − 1

)
Now integrate

∫
1√

x2−1 dx using the hyperbolic trig substitution, which gives an

easier integral than the original integral with the reciprocal integrant.

Problem 7. Consider the hyperbola x2 − y2 = 1. Calculate the area bounded by
the two branches of the hyperbola and the two horizontal lines y = ±1.

Problem 8. Combining integration with some elementary series (e.g. the geomet-
ric series), one can obtain methods to calculate values of various functions, e.g. the
natural logarithm in this example. Here how this could work:

(i) Prove the formula for the finite geometric series
n∑

k=0

xk =
1− xn+1

1− x

(ii) Now provide an argument that for numbers |x| < 1 one can in fact add up
infinitely many terms and obtain

∞∑
k=0

xk =
1

1− x

(iii) Now use the partial fraction decomposition to integrate
∫

dx
1−x2 and com-

bine this with the geometric series, to show that
∞∑
k=0

x2k+1

2k + 1
=

1

2
ln

1 + x

1− x
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(iv) Next verify that the function y = 1+x
1−x maps the interval [0, 1) to the

interval [1,∞). Use this and the previous formula (iii) to calculate ln(2)
(what value of x does y = 2 correspond to ?) to three decimals accuracy
(compared to the value you get on the calculator). Do the same for ln(5).

(v) Bonus: comparing to the calculator is of course cheating, since the calcu-
lator cannot compare its calculation to itself, so it has to have a method to
decide whether its calculation of ln(2) is accurate to whatever precision is
demanded. So can you find a method to decide whether your approxima-
tion is accurate up to three decimals without comparison to the calculator?
Here a hint for that: the series

∞∑
k=0

x2k+1

2k + 1

probably converges pretty fast. What you would need to have is an esti-
mate how close to the true value of the series you are when you sum only
a finite number (say n) of terms, i.e. you need to estimate the “tail” of
the infinite series:

∞∑
k=0

x2k+1

2k + 1
−

n∑
k=0

x2k+1

2k + 1
=

∞∑
k=n+1

x2k+1

2k + 1

One way to do this (not super sophisticated, but a first step) is to look at
the series tail for a given 0 ≤ x < 1 (justify each step in the calculation
below):

∞∑
k=n+1

x2k+1

2k + 1
=

x2n+3

2n + 3
+

x2n+5

2n + 5
+ · · · ≤ x2n+3

2n + 3
(1+x2 +x4 + . . . ) =

x2n+3

2n + 3

1

1− x2

So you get a worst case scenario how big your error is for a given x when
you just sum the first n many terms. Try to apply this to the case at hand.

You may wonder why we started with the function 1
1−x2 rather than the simpler

function 1
1−x (one would not have to do that partial fraction stunt). Any ideas?


