Homework 3, Honors Calculus II DUE 9/27/18

Please hand in your home work before class, have it neatly written, organized (the grader will not decipher your notes), stapled, with your name and student ID on top.

Problem 1. An ellipse, centered at the origin, is given by the equation

$$(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$$

where a > b > 0 are the half axes length. For instance, if a = b then the ellipse becomes a circle of radius a. Calculate the area enclosed by the ellipse. In particular, this gives a formula for the area enclosed by a circle.

Problem 2. Find the area under of the domain bounded by the parabola $y = x^2 - 1$ and the line passing through the points (-2,3) and (3,8). Draw a picture of the region to scale and with labels before attempting the calculation. Also keep in mind that the integral calculates "signed" areas, that is, regions below the x-axis have a negative integral—but areas are always positiv.

Problem 3. Calculate the area bounded between the graphs of $y = \sin x$ and $y = \cos x$ between their first and second intersection points on the positive x-axis. Again, draw a picture of the region first.

Problem 4. Find an anti-derivative of each of the following functions:

- (i) $f(x) = \cos^3(x)$
- (ii) $f(x) = \frac{\ln(x)}{x}$ (iii) $f(x) = x^2 e^x$
- (iv) $f(x) = (\sin x)e^{4\cos x}$
- (v) $f(x) = \tan x$
- (vi) $f(x) = \frac{1}{\sqrt{1+x^2}}$

Problem 5. Consider the hyperbola $x^2 - y^2 = 1$. Calculate the area bounded by the two branches of the hyperbola and the two horizontal lines $y = \pm 1$.

Problem 6. Find an anti-derivative of

$$f(x) = \frac{1}{x^2 - a^2}$$

for arbitrary $a \ge 0$. This is the first instance of the more general "partial fraction" decomposition", which is found in letter exchanges between Bernoulli and Leibniz around 1700.

Problem 7. Show that

$$\int_0^{2\pi} \cos(nx) \cos(mx) \, dx = \begin{cases} 0 & \text{if } n \neq m \\ \pi & \text{if } n = m \neq 0 \end{cases}$$

where $n, m \in \mathbb{Z}$ are integers.

Problem 8. A function $f: [-a, a] \to \mathbb{R}$ is called *even*, respectively *odd*, if f(-x) =f(x), respectively f(-x) = -f(x), for all $x \in [-a, a]$.

- (i) Give two examples of an even and two examples of an odd function.
- (ii) Show that for an even (continuous) function $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.

- (iii) Show that for an odd (continuous) function $\int_{-a}^{a} f(x) dx = 0$. (iv) Give an example of a function which is *not* even, but for which (ii) holds. Give an example of a function which is *not* odd, but for which (iii) holds.