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Preface

The purpose of this book is to convey to the reader some feeling for
what is surely one of the most important and exciting voyages of discovery
that humanity has embarked upon. This is the search for the underlying
principles that govern the behaviour of our universe. It is a voyage that
has lasted for more than two-and-a-half millennia, so it should not sur-
prise us that substantial progress has at last been made. But this journey
has proved to be a profoundly diYcult one, and real understanding has,
for the most part, come but slowly. This inherent diYculty has led us
in many false directions; hence we should learn caution. Yet the 20th
century has delivered us extraordinary new insights—some so impressive
that many scientists of today have voiced the opinion that we may be
close to a basic understanding of all the underlying principles of physics.
In my descriptions of the current fundamental theories, the 20th century
having now drawn to its close, I shall try to take a more sober view.
Not all my opinions may be welcomed by these ‘optimists’, but I expect
further changes of direction greater even than those of the last cen-
tury.

The reader will Wnd that in this book I have not shied away from
presenting mathematical formulae, despite dire warnings of the severe
reduction in readership that this will entail. I have thought seriously
about this question, and have come to the conclusion that what I have
to say cannot reasonably be conveyed without a certain amount of
mathematical notation and the exploration of genuine mathematical
concepts. The understanding that we have of the principles that actually
underlie the behaviour of our physical world indeed depends upon some
appreciation of its mathematics. Some people might take this as a cause
for despair, as they will have formed the belief that they have no
capacity for mathematics, no matter at how elementary a level. How
could it be possible, they might well argue, for them to comprehend the
research going on at the cutting edge of physical theory if they cannot
even master the manipulation of fractions? Well, I certainly see the
diYculty.
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Yet I am an optimist in matters of conveying understanding. Perhaps I
am an incurable optimist. I wonder whether those readers who cannot
manipulate fractions—or those who claim that they cannot manipulate
fractions—are not deluding themselves at least a little, and that a good
proportion of them actually have a potential in this direction that they are
not aware of. No doubt there are some who, when confronted with a line
of mathematical symbols, however simply presented, can see only the stern
face of a parent or teacher who tried to force into them a non-compre-
hending parrot-like apparent competence—a duty, and a duty alone—and
no hint of the magic or beauty of the subject might be allowed to come
through. Perhaps for some it is too late; but, as I say, I am an optimist and
I believe that there are many out there, even among those who could never
master the manipulation of fractions, who have the capacity to catch some
glimpse of a wonderful world that I believe must be, to a signiWcant degree,
genuinely accessible to them.

One of my mother’s closest friends, when she was a young girl, was
among those who could not grasp fractions. This lady once told me so
herself after she had retired from a successful career as a ballet dancer. I
was still young, not yet fully launched in my activities as a mathematician,
but was recognized as someone who enjoyed working in that subject. ‘It’s
all that cancelling’, she said to me, ‘I could just never get the hang of
cancelling.’ She was an elegant and highly intelligent woman, and there is
no doubt in my mind that the mental qualities that are required in
comprehending the sophisticated choreography that is central to ballet
are in no way inferior to those which must be brought to bear on a
mathematical problem. So, grossly overestimating my expositional abil-
ities, I attempted, as others had done before, to explain to her the simpli-
city and logical nature of the procedure of ‘cancelling’.

I believe that my eVorts were as unsuccessful as were those of others.
(Incidentally, her father had been a prominent scientist, and a Fellow of
the Royal Society, so she must have had a background adequate for the
comprehension of scientiWc matters. Perhaps the ‘stern face’ could have
been a factor here, I do not know.) But on reXection, I now wonder
whether she, and many others like her, did not have a more rational
hang-up—one that with all my mathematical glibness I had not noticed.
There is, indeed, a profound issue that one comes up against again and
again in mathematics and in mathematical physics, which one Wrst en-
counters in the seemingly innocent operation of cancelling a common
factor from the numerator and denominator of an ordinary numerical
fraction.

Those for whom the action of cancelling has become second nature,
because of repeated familiarity with such operations, may Wnd themselves
insensitive to a diYculty that actually lurks behind this seemingly simple
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procedure. Perhaps many of those who Wnd cancelling mysterious are
seeing a certain profound issue more deeply than those of us who press
onwards in a cavalier way, seeming to ignore it. What issue is this? It
concerns the very way in which mathematicians can provide an existence
to their mathematical entities and how such entities may relate to physical
reality.

I recall that when at school, at the age of about 11, I was somewhat
taken aback when the teacher asked the class what a fraction (such as 3

8)
actually is! Various suggestions came forth concerning the dividing up of
pieces of pie and the like, but these were rejected by the teacher on the
(valid) grounds that they merely referred to imprecise physical situations
to which the precise mathematical notion of a fraction was to be applied;
they did not tell us what that clear-cut mathematical notion actually is.
Other suggestions came forward, such as 3

8 is ‘something with a 3 at the top
and an 8 at the bottom with a horizontal line in between’ and I was
distinctly surprised to Wnd that the teacher seemed to be taking these
suggestions seriously! I do not clearly recall how the matter was Wnally
resolved, but with the hindsight gained from my much later experiences as
a mathematics undergraduate, I guess my schoolteacher was making a
brave attempt at telling us the deWnition of a fraction in terms of the
ubiquitous mathematical notion of an equivalence class.

What is this notion? How can it be applied in the case of a fraction and
tell us what a fraction actually is? Let us start with my classmate’s ‘some-
thing with a 3 at the top and an 8 on the bottom’. Basically, this is
suggesting to us that a fraction is speciWed by an ordered pair of whole
numbers, in this case the numbers 3 and 8. But we clearly cannot regard the
fraction as being such an ordered pair because, for example, the fraction 6

16
is the same number as the fraction 3

8, whereas the pair (6, 16) is certainly not
the same as the pair (3, 8). This is only an issue of cancelling; for we can
write 6

16 as 3!2
8!2 and then cancel the 2 from the top and the bottom to get 3

8.
Why are we allowed to do this and thereby, in some sense, ‘equate’ the pair
(6, 16) with the pair (3, 8)? The mathematician’s answer—which may well
sound like a cop-out—has the cancelling rule just built in to the deWnition of
a fraction: a pair of whole numbers (a! n, b! n) is deemed to represent the
same fraction as the pair (a, b) whenever n is any non-zero whole number
(and where we should not allow b to be zero either).

But even this does not tell us what a fraction is; it merely tells us
something about the way in which we represent fractions. What is a
fraction, then? According to the mathematician’s ‘‘equivalence class’’
notion, the fraction 3

8, for example, simply is the inWnite collection of all
pairs

(3, 8), (" 3," 8), (6, 16), (" 6," 16), (9, 24), (" 9," 24), (12, 32), . . . ,
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where each pair can be obtained from each of the other pairs in the list by
repeated application of the above cancellation rule.* We also need deWni-
tions telling us how to add, subtract, and multiply such inWnite collections
of pairs of whole numbers, where the normal rules of algebra hold, and
how to identify the whole numbers themselves as particular types of
fraction.

This deWnition covers all that we mathematically need of fractions (such
as 1

2 being a number that, when added to itself, gives the number 1, etc.), and
the operation of cancelling is, aswe have seen, built into the deWnition. Yet it
seems all very formal and we may indeed wonder whether it really captures
the intuitive notion of what a fraction is. Although this ubiquitous equiva-
lence class procedure, of which the above illustration is just a particular
instance, is very powerful as a pure-mathematical tool for establishing
consistency and mathematical existence, it can provide us with very top-
heavy-looking entities. It hardly conveys to us the intuitive notion of what 3

8
is, for example! No wonder my mother’s friend was confused.

In my descriptions of mathematical notions, I shall try to avoid, as far
as I can, the kind of mathematical pedantry that leads us to deWne a
fraction in terms of an ‘inWnite class of pairs’ even though it certainly
has its value in mathematical rigour and precision. In my descriptions here
I shall be more concerned with conveying the idea—and the beauty and
the magic—inherent in many important mathematical notions. The idea of
a fraction such as 3

8 is simply that it is some kind of an entity which has the
property that, when added to itself 8 times in all, gives 3. The magic is that
the idea of a fraction actually works despite the fact that we do not really
directly experience things in the physical world that are exactly quantiWed
by fractions—pieces of pie leading only to approximations. (This is quite
unlike the case of natural numbers, such as 1, 2, 3, which do precisely
quantify numerous entities of our direct experience.) One way to see that
fractions do make consistent sense is, indeed, to use the ‘deWnition’ in
terms of inWnite collections of pairs of integers (whole numbers), as
indicated above. But that does not mean that 3

8 actually is such a collection.
It is better to think of 3

8 as being an entity with some kind of (Platonic)
existence of its own, and that the inWnite collection of pairs is merely one
way of our coming to terms with the consistency of this type of entity.
With familiarity, we begin to believe that we can easily grasp a notion like 3

8
as something that has its own kind of existence, and the idea of an ‘inWnite
collection of pairs’ is merely a pedantic device—a device that quickly
recedes from our imaginations once we have grasped it. Much of math-
ematics is like that.

* This is called an ‘equivalence class’ because it actually is a class of entities (the entities, in this

particular case, being pairs of whole numbers), each member of which is deemed to be equivalent,
in a speciWed sense, to each of the other members.

xviii
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To mathematicians (at least to most of them, as far as I can make out),
mathematics is not just a cultural activity that we have ourselves created,
but it has a life of its own, and much of it Wnds an amazing harmony with
the physical universe. We cannot get any deep understanding of the laws
that govern the physical world without entering the world of mathematics.
In particular, the above notion of an equivalence class is relevant not only
to a great deal of important (but confusing) mathematics, but a great deal
of important (and confusing) physics as well, such as Einstein’s general
theory of relativity and the ‘gauge theory’ principles that describe the
forces of Nature according to modern particle physics. In modern physics,
one cannot avoid facing up to the subtleties of much sophisticated math-
ematics. It is for this reason that I have spent the Wrst 16 chapters of this
work directly on the description of mathematical ideas.

What words of advice can I give to the reader for coping with this?
There are four diVerent levels at which this book can be read. Perhaps you
are a reader, at one end of the scale, who simply turns oV whenever a
mathematical formula presents itself (and some such readers may have
diYculty with coming to terms with fractions). If so, I believe that there is
still a good deal that you can gain from this book by simply skipping all
the formulae and just reading the words. I guess this would be much like
the way I sometimes used to browse through the chess magazines lying
scattered in our home when I was growing up. Chess was a big part of the
lives of my brothers and parents, but I took very little interest, except that
I enjoyed reading about the exploits of those exceptional and often strange
characters who devoted themselves to this game. I gained something from
reading about the brilliance of moves that they frequently made, even
though I did not understand them, and I made no attempt to follow
through the notations for the various positions. Yet I found this to be
an enjoyable and illuminating activity that could hold my attention.
Likewise, I hope that the mathematical accounts I give here may convey
something of interest even to some profoundly non-mathematical readers
if they, through bravery or curiosity, choose to join me in my journey of
investigation of the mathematical and physical ideas that appear to under-
lie our physical universe. Do not be afraid to skip equations (I do this
frequently myself) and, if you wish, whole chapters or parts of chapters,
when they begin to get a mite too turgid! There is a great variety in the
diYculty and technicality of the material, and something elsewhere may be
more to your liking. You may choose merely to dip in and browse. My
hope is that the extensive cross-referencing may suYciently illuminate
unfamiliar notions, so it should be possible to track down needed concepts
and notation by turning back to earlier unread sections for clariWcation.

At a second level, you may be a reader who is prepared to peruse
mathematical formulae, whenever such is presented, but you may not

xix
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have the inclination (or the time) to verify for yourself the assertions that
I shall be making. The conWrmations of many of these assertions consti-
tute the solutions of the exercises that I have scattered about the mathemat-
ical portions of the book. I have indicated three levels of difficulty by the
icons –

very straight forward

needs a bit of thought

not to be undertaken lightly.

It is perfectly reasonable to take these on trust, if you wish, and there is no
loss of continuity if you choose to take this position.

If, on the other hand, you are a reader who does wish to gain a facility
with these various (important) mathematical notions, but for whom the
ideas that I am describing are not all familiar, I hope that working through
these exercises will provide a signiWcant aid towards accumulating such
skills. It is always the case, with mathematics, that a little direct experience
of thinking over things on your own can provide a much deeper under-
standing than merely reading about them. (If you need the solutions, see
the website www.roadsolutions.ox.ac.uk.)

Finally, perhaps you are already an expert, in which case you should
have no diYculty with the mathematics (most of which will be very
familiar to you) and you may have no wish to waste time with the
exercises. Yet you may Wnd that there is something to be gained from
my own perspective on a number of topics, which are likely to be some-
what diVerent (sometimes very diVerent) from the usual ones. You may
have some curiosity as to my opinions relating to a number of modern
theories (e.g. supersymmetry, inXationary cosmology, the nature of the Big
Bang, black holes, string theory or M-theory, loop variables in quantum
gravity, twistor theory, and even the very foundations of quantum theory).
No doubt you will Wnd much to disagree with me on many of these topics.
But controversy is an important part of the development of science, so I
have no regrets about presenting views that may be taken to be partly
at odds with some of the mainstream activities of modern theoretical
physics.

It may be said that this book is really about the relation between
mathematics and physics, and how the interplay between the two strongly
inXuences those drives that underlie our searches for a better theory of the
universe. In many modern developments, an essential ingredient of these
drives comes from the judgement of mathematical beauty, depth, and
sophistication. It is clear that such mathematical inXuences can be vitally
important, as with some of the most impressively successful achievements

xx

Preface



of 20th-century physics: Dirac’s equation for the electron, the general
framework of quantum mechanics, and Einstein’s general relativity. But
in all these cases, physical considerations—ultimately observational
ones—have provided the overriding criteria for acceptance. In many of
the modern ideas for fundamentally advancing our understanding of the
laws of the universe, adequate physical criteria—i.e. experimental data, or
even the possibility of experimental investigation—are not available. Thus
we may question whether the accessible mathematical desiderata are suY-
cient to enable us to estimate the chances of success of these ideas. The
question is a delicate one, and I shall try to raise issues here that I do not
believe have been suYciently discussed elsewhere.

Although, in places, I shall present opinions that may be regarded as
contentious, I have taken pains to make it clear to the reader when I am
actually taking such liberties. Accordingly, this book may indeed be used
as a genuine guide to the central ideas (and wonders) of modern physics. It
is appropriate to use it in educational classes as an honest introduction to
modern physics—as that subject is understood, as we move forward into
the early years of the third millennium.
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Notation

(Not to be read until you are familiar with the concepts, but perhaps Wnd
the fonts confusing!)

I have tried to be reasonably consistent in the use of particular fonts in
this book, but as not all of this is standard, it may be helpful to the reader
to have the major usage that I have adopted made explicit.

Italic lightface (Greek or Latin) letters, such as in w2, pn, log z,
cos y, eiy, or ex are used in the conventional way for mathematical vari-
ables which are numerical or scalar quantities; but established numerical
constants, such as e, i, or p or established functions such as sin, cos, or log
are denoted by upright letters. Standard physical constants such as c, G, h,
!h, g, or k are italic, however.

A vector or tensor quantity, when being thought of in its (abstract)
entirety, is denoted by a boldface italic letter, such as R for the Riemann
curvature tensor, while its set of components might be written with italic
letters (both for the kernel symbol its indices) as Rabcd . In accordance with
the abstract-index notation, introduced here in §12.8, the quantity Rabcd

may alternatively stand for the entire tensor R, if this interpretation is
appropriate, and this should be made clear in the text. Abstract linear
transformations are kinds of tensors, and boldface italic letters such as T
are used for such entities also. The abstract-index form Ta

b is also used
here for an abstract linear transformation, where appropriate, the stagger-
ing of the indices making clear the precise connection with the ordering of
matrix multiplication. Thus, the (abstract-)index expression Sa

bT
b
c stands

for the product ST of linear transformations. As with general tensors, the
symbols Sa

b and Tb
c could alternatively (according to context or explicit

speciWcation in the text) stand for the corresoponding arrays of compon-
ents—these being matrices—for which the corresponding bold upright
letters S and T can also be used. In that case, ST denotes the correspond-
ing matrix product. This ‘ambivalent’ interpretation of symbols such as
Rabcd or Sa

b (either standing for the array of components or for the
abstract tensor itself) should not cause confusion, as the algebraic (or
diVerential) relations that these symbols are subject to are identical for
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both interpretations. A third notation for such quantities—the diagram-
matic notation—is also sometimes used here, and is described in Figs.
12.17, 12.18, 14.6, 14.7, 14.21, 19.1 and elsewhere in the book.

There are places in this book where I need to distinguish the 4-dimen-
sional spacetime entities of relativity theory from the corresponding ordin-
ary 3-dimensional purely spatial entities. Thus, while a boldface italic
notation might be used, as above, such as por x, for the 4-momentum or
4-position, respectively, the corresponding 3-dimensional purely spatial
entities would be denoted by the corresponding upright bold letters por x.
By analogy with the notation T for a matrix, above, as opposed to T for an
abstract linear transformation, the quantities pand x would tend to be
thought of as ‘standing for’ the three spatial components, in each case,
whereas p and x might be viewed as having a more abstract component-
free interpretation (although I shall not be particularly strict about this).
The Euclidean ‘length’ of a 3-vector quantity a¼ (a1,a2,a3) may be written
a, where a2 ¼ a2

1 þ a2
2 þ a2

3, and the scalar product of awith b¼ (b1,b2,b3),
written a.b¼ a1b1 þ a2b2 þ a3b3. This ‘dot’ notation for scalar products
applies also in the general n-dimensional context, for the scalar (or inner)
product a .jof an abstract covector a with a vector j.

A notational complication arises with quantum mechanics, however,
since physical quantities, in that subject, tend to be represented as linear
operators. I do not adopt what is a quite standard procedure in this
context, of putting ‘hats’ (circumXexes) on the letters representing the
quantum-operator versions of the familiar classical quantities, as I believe
that this leads to an unnecessary cluttering of symbols. (Instead, I shall
tend to adopt a philosophical standpoint that the classical and quantum
entities are really the ‘same’—and so it is fair to use the same symbols for
each—except that in the classical case one is justiWed in ignoring quantities
of the order of !h, so that the classical commutation properties ab ¼ ba can
hold, whereas in quantum mechanics, ab might diVer from ba by some-
thing of order !h.) For consistency with the above, such linear operators
would seem to have to be denoted by italic bold letters (like T), but that
would nullify the philosophy and the distinctions called for in the preced-
ing paragraph. Accordingly, with regard to speciWc quantities, such as the
momentum por p, or the position x or x, I shall tend to use the same
notation as in the classical case, in line with what has been said earlier in
this paragraph. But for less speciWc quantum operators, bold italic letters
such as Q will tend to be used.

The shell letters N, Z, R, C, and Fq, respectively, for the system of
natural numbers (i.e. non-negative integers), integers, real numbers, com-
plex numbers, and the Wnite Weld with q elements (q being some power of a
prime number, see §16.1), are now standard in mathematics, as are the
corresponding Nn, Zn, Rn, Cn, Fn

q, for the systems of ordered n-tuples
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of such numbers. These are canonical mathematical entities in standard
use. In this book (as is not all that uncommon), this notation is extended
to some other standard mathematical structures such as Euclidean 3-space
E3 or, more generally, Euclidean n-space En. In frequent use in this book
is the standard Xat 4-dimensional Minkowski spacetime, which is itself a
kind of ‘pseudo-’ Euclidean space, so I use the shell letter M for this space
(with Mn to denote the n-dimensional version—a ‘Lorentzian’ spacetime
with 1 time and (n" 1) space dimensions). Sometimes I use C as an
adjective, to denote ‘complexiWed’, so that we might consider the complex
Euclidean 4-space, for example, denoted by CEn. The shell letter P can
also be used as an adjective, to denote ‘projective’ (see §15.6), or as a noun,
with Pn denoting projective n-space (or I use RPn or CPn if it is to be
made clear that we are concerned with real or complex projective n-space,
respectively). In twistor theory (Chapter 33), there is the complex 4-space
T, which is related to M (or its complexiWcation CM) in a canonical
way, and there is also the projective version PT. In this theory, there is
also a space N of null twistors (the double duty that this letter serves
causing no conXict here), and its projective version PN.

The adjectival role of the shell letter C should not be confused with that
of the lightface sans serif C, which here stands for ‘complex conjugate of’
(as used in §13.1,2). This is basically similar to another use of C in particle
physics, namely charge conjugation, which is the operation which inter-
changes each particle with its antiparticle (see Chapters 24, 25). This
operation is usually considered in conjunction with two other basic par-
ticle-physics operations, namely P for parity which refers to the operation
of reXection in a mirror, and T, which refers to time-reveral. Sans serif
letters which are bold serve a diVerent purpose here, labelling vector
spaces, the letters V, W, and H, being most frequently used for this
purpose. The use of H, is speciWc to the Hilbert spaces of quantum
mechanics, and Hn would stand for a Hilbert space of n complex dimen-
sions. Vector spaces are, in a clear sense, Xat. Spaces which are (or could
be) curved are denoted by script letters, such asM, S, or T , where there is
a special use for the particular script font I to denote null inWnity. In
addition, I follow a fairly common convention to use script letters for
Lagrangians (L) and Hamiltonians (H), in view of their very special status
in physical theory.
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Prologue

Am-tep was the King’s chief craftsman, an artist of consummate skills. It
was night, and he lay sleeping on his workshop couch, tired after a
handsomely productive evening’s work. But his sleep was restless—per-
haps from an intangible tension that had seemed to be in the air. Indeed,
he was not certain that he was asleep at all when it happened. Daytime had
come—quite suddenly—when his bones told him that surely it must still be
night.

He stood up abruptly. Something was odd. The dawn’s light could not
be in the north; yet the red light shone alarmingly through his broad
window that looked out northwards over the sea. He moved to the
window and stared out, incredulous in amazement. The Sun had never
before risen in the north! In his dazed state, it took him a few moments to
realize that this could not possibly be the Sun. It was a distant shaft of a
deep Wery red light that beamed vertically upwards from the water into the
heavens.

As he stood there, a dark cloud became apparent at the head of the
beam, giving the whole structure the appearance of a distant giant parasol,
glowing evilly, with a smoky Xaming staV. The parasol’s hood began to
spread and darken—a daemon from the underworld. The night had been
clear, but now the stars disappeared one by one, swallowed up behind this
advancing monstrous creature from Hell.

Though terror must have been his natural reaction, he did not move,
transWxed for several minutes by the scene’s perfect symmetry and awe-
some beauty. But then the terrible cloud began to bend slightly to the east,
caught up by the prevailing winds. Perhaps he gained some comfort from
this and the spell was momentarily broken. But apprehension at once
returned to him as he seemed to sense a strange disturbance in the ground
beneath, accompanied by ominous-sounding rumblings of a nature quite
unfamiliar to him. He began to wonder what it was that could have
caused this fury. Never before had he witnessed a God’s anger of such
magnitude.
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His Wrst reaction was to blame himself for the design on the sacriWcial
cup that he had just completed—he had worried about it at the time. Had
his depiction of the Bull-God not been suYciently fearsome? Had that god
been oVended? But the absurdity of this thought soon struck him. The fury
he had just witnessed could not have been the result of such a trivial
action, and was surely not aimed at him speciWcally. But he knew that
there would be trouble at the Great Palace. The Priest-King would waste
no time in attempting to appease this Daemon-God. There would be
sacriWces. The traditional oVerings of fruits or even animals would not
suYce to pacify an anger of this magnitude. The sacriWces would have to
be human.

Quite suddenly, and to his utter surprise, he was blown backwards
across the room by an impulsive blast of air followed by a violent wind.
The noise was so extreme that he was momentarily deafened. Many of his
beautifully adorned pots were whisked from their shelves and smashed
to pieces against the wall behind. As he lay on the Xoor in a far corner of
the room where he had been swept away by the blast, he began to recover
his senses, and saw that the room was in turmoil. He was horriWed to see
one of his favourite great urns shattered to small pieces, and the wonder-
fully detailed designs, which he had so carefully crafted, reduced to
nothing.

Am-tep arose unsteadily from the Xoor and after a while again ap-
proached the window, this time with considerable trepidation, to re-exam-
ine that terrible scene across the sea. Now he thought he saw a
disturbance, illuminated by that far-oV furnace, coming towards him.
This appeared to be a vast trough in the water, moving rapidly towards
the shore, followed by a cliVlike wall of wave. He again became transWxed,
watching the approaching wave begin to acquire gigantic proportions.
Eventually the disturbance reached the shore and the sea immediately
before him drained away, leaving many ships stranded on the newly
formed beach. Then the cliV-wave entered the vacated region and struck
with a terrible violence. Without exception the ships were shattered, and
many nearby houses instantly destroyed. Though the water rose to great
heights in the air before him, his own house was spared, for it sat on high
ground a good way from the sea.

The Great Palace too was spared. But Am-tep feared that worse might
come, and he was right—though he knew not how right he was. He did
know, however, that no ordinary human sacriWce of a slave could now be
suYcient. Something more would be needed to pacify the tempestuous
anger of this terrible God. His thoughts turned to his sons and daughters,
and to his newly born grandson. Even they might not be safe.

Am-tep had been right to fear new human sacriWces. A young girl and a
youth of good birth had been soon apprehended and taken to a nearby
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temple, high on the slopes of a mountain. The ensuing ritual was well
under way when yet another catastrophe struck. The ground shook with
devastating violence, whence the temple roof fell in, instantly killing all the
priests and their intended sacriWcial victims. As it happened, they would lie
there in mid-ritual—entombed for over three-and-a-half millennia!

The devastation was frightful, but not Wnal. Many on the island where
Am-tep and his people lived survived the terrible earthquake, though the
Great Palace was itself almost totally destroyed. Much would be rebuilt
over the years. Even the Palace would recover much of its original splen-
dour, constructed on the ruins of the old. Yet Am-tep had vowed to leave
the island. His world had now changed irreparably.

In the world he knew, there had been a thousand years of peace,
prosperity, and culture where the Earth-Goddess had reigned. Wonderful
art had been allowed to Xourish. There was much trade with neighbouring
lands. The magniWcent Great Palace was a huge luxurious labyrinth, a
virtual city in itself, adorned by superb frescoes of animals and Xowers.
There was running water, excellent drainage, and Xushed sewers. War was
almost unknown and defences unnecessary. Now, Am-tep perceived the
Earth-Goddess overthrown by a Being with entirely diVerent values.

It was some years before Am-tep actually left the island, accompanied
by his surviving family, on a ship rebuilt by his youngest son, who was a
skilled carpenter and seaman. Am-tep’s grandson had developed into an
alert child, with an interest in everything in the world around. The voyage
took some days, but the weather had been supremely calm. One clear
night, Am-tep was explaining to his grandson about the patterns in the
stars, when an odd thought overtook him: The patterns of stars had been
disturbed not one iota from what they were before the Catastrophe of the
emergence of the terrible daemon.

Am-tep knew these patterns well, for he had a keen artist’s eye. Surely,
he thought, those tiny candles of light in the sky should have been blown
at least a little from their positions by the violence of that night, just as his
pots had been smashed and his great urn shattered. The Moon also had
kept her face, just as before, and her route across the star-Wlled heavens
had changed not one whit, as far as Am-tep could tell. For many moons
after the Catastrophe, the skies had appeared diVerent. There had been
darkness and strange clouds, and the Moon and Sun had sometimes worn
unusual colours. But this had now passed, and their motions seemed
utterly undisturbed. The tiny stars, likewise, had been quite unmoved.

If the heavens had shown such little concern for the Catastrophe, having
a stature far greater even than that terrible Daemon, Am-tep reasoned,
why should the forces controlling the Daemon itself show concern for
what the little people on the island had been doing, with their foolish
rituals and human sacriWce? He felt embarrassed by his own foolish
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thoughts at the time, that the daemon might be concerned by the mere
patterns on his pots.

Yet Am-tep was still troubled by the question ‘why?’ What deep forces
control the behaviour of the world, and why do they sometimes burst forth
in violent and seemingly incomprehensible ways? He shared his questions
with his grandson, but there were no answers.

. . .

A century passed by, and then a millennium, and still there were no
answers.

. . .

Amphos the craftsman had lived all his life in the same small town as his
father and his father before him, and his father’s father before that. He
made his living constructing beautifully decorated gold bracelets, earrings,
ceremonial cups, and other Wne products of his artistic skills. Such work
had been the family trade for some forty generations—a line unbroken
since Am-tep had settled there eleven hundred years before.

But it was not just artistic skills that had been passed down from
generation to generation. Am-tep’s questions troubled Amphos just as
they had troubled Am-tep earlier. The great story of the Catastrophe
that destroyed an ancient peaceful civilization had been handed down
from father to son. Am-tep’s perception of the Catastrophe had also
survived with his descendants. Amphos, too, understood that the heavens
had a magnitude and stature so great as to be quite unconcerned by that
terrible event. Nevertheless, the event had had a catastrophic eVect on the
little people with their cities and their human sacriWces and insigniWcant
religious rituals. Thus, by comparison, the event itself must have been the
result of enormous forces quite unconcerned by those trivial actions of
human beings. Yet the nature of those forces was as unknown in
Amphos’s day as it was to Am-tep.

Amphos had studied the structure of plants, insects and other small
animals, and crystalline rocks. His keen eye for observation had served
him well in his decorative designs. He took an interest in agriculture and
was fascinated by the growth of wheat and other plants from grain. But
none of this told him ‘why?’, and he felt unsatisWed. He believed that there
was indeed reason underlying Nature’s patterns, but he was in no way
equipped to unravel those reasons.

One clear night, Amphos looked up at the heavens, and tried to make
out from the patterns of stars the shapes of those heroes and heroines who
formed constellations in the sky. To his humble artist’s eye, those shapes
made poor resemblances. He could himself have arranged the stars far
more convincingly. He puzzled over why the gods had not organized the
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stars in a more appropriate way? As they were, the arrangements seemed
more like scattered grains randomly sowed by a farmer, rather than the
deliberate design of a god. Then an odd thought overtook him: Do not seek
for reasons in the speciWc patterns of stars, or of other scattered arrange-
ments of objects; look, instead, for a deeper universal order in the way that
things behave.

Amphos reasoned that we Wnd order, after all, not in the patterns that
scattered seeds form when they fall to the ground, but in the miraculous
way that each of those seeds develops into a living plant having a superb
structure, similar in great detail to one another. We would not try to seek
the meaning in the precise arrangement of seeds sprinkled on the soil; yet,
there must be meaning in the hidden mystery of the inner forces control-
ling the growth of each seed individually, so that each one follows essen-
tially the same wonderful course. Nature’s laws must indeed have a
superbly organized precision for this to be possible.

Amphos became convinced that without precision in the underlying
laws, there could be no order in the world, whereas much order is indeed
perceived in the way that things behave. Moreover, there must be precision
in our ways of thinking about these matters if we are not to be led seriously
astray.

It so happened that word had reached Amphos of a sage who lived in
another part of the land, and whose beliefs appeared to be in sympathy
with those of Amphos. According to this sage, one could not rely on the
teachings and traditions of the past. To be certain of one’s beliefs, it was
necessary to form precise conclusions by the use of unchallengeable
reason. The nature of this precision had to be mathematical—ultimately
dependent on the notion of number and its application to geometric forms.
Accordingly, it must be number and geometry, not myth and superstition,
that governed the behaviour of the world.

As Am-tep had done a century and a millennium before, Amphos took
to the sea. He found his way to the city of Croton, where the sage and his
brotherhood of 571 wise men and 28 wise women were in search of truth.
After some time, Amphos was accepted into the brotherhood. The name
of the sage was Pythagoras.

Prologue
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1
The roots of science

1.1 The quest for the forces that shape the world

What laws govern our universe? How shall we know them? How
may this knowledge help us to comprehend the world and hence guide
its actions to our advantage?

Since the dawn of humanity, people have been deeply concerned by
questions like these. At Wrst, they had tried to make sense of those
inXuences that do control the world by referring to the kind of understand-
ing that was available from their own lives. They had imagined that
whatever or whoever it was that controlled their surroundings would do
so as they would themselves strive to control things: originally they had
considered their destiny to be under the inXuence of beings acting very
much in accordance with their own various familiar human drives. Such
driving forces might be pride, love, ambition, anger, fear, revenge, passion,
retribution, loyalty, or artistry. Accordingly, the course of natural
events—such as sunshine, rain, storms, famine, illness, or pestilence—
was to be understood in terms of the whims of gods or goddesses motiv-
ated by such human urges. And the only action perceived as inXuencing
these events would be appeasement of the god-Wgures.

But gradually patterns of a diVerent kind began to establish their reli-
ability. The precision of the Sun’s motion through the sky and its clear
relation to the alternation of day with night provided the most obvious
example; but also the Sun’s positioning in relation to the heavenly orb of
stars was seen to be closely associated with the change and relentless
regularity of the seasons, and with the attendant clear-cut inXuence on
the weather, and consequently on vegetation and animal behaviour. The
motion of the Moon, also, appeared to be tightly controlled, and its phases
determined by its geometrical relation to the Sun. At those locations on
Earth where open oceans meet land, the tides were noticed to have a
regularity closely governed by the position (and phase) of the Moon.
Eventually, even the much more complicated apparent motions of the
planets began to yield up their secrets, revealing an immense underlying
precision and regularity. If the heavens were indeed controlled by the
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whims of gods, then these gods themselves seemed under the spell of exact
mathematical laws.

Likewise, the laws controlling earthly phenomena—such as the daily
and yearly changes in temperature, the ebb and Xow of the oceans, and the
growth of plants—being seen to be inXuenced by the heavens in this
respect at least, shared the mathematical regularity that appeared to
guide the gods. But this kind of relationship between heavenly bodies
and earthly behaviour would sometimes be exaggerated or misunderstood
and would assume an inappropriate importance, leading to the occult and
mystical connotations of astrology. It took many centuries before the
rigour of scientiWc understanding enabled the true inXuences of the
heavens to be disentangled from purely suppositional and mystical ones.
Yet it had been clear from the earliest times that such inXuences did indeed
exist and that, accordingly, the mathematical laws of the heavens must
have relevance also here on Earth.

Seemingly independently of this, there were perceived to be other regu-
larities in the behaviour of earthly objects. One of these was the tendency
for all things in one vicinity to move in the same downward direction,
according to the inXuence that we now call gravity. Matter was observed
to transform, sometimes, from one form into another, such as with the
melting of ice or the dissolving of salt, but the total quantity of that matter
appeared never to change, which reXects the law that we now refer to as
conservation of mass. In addition, it was noticed that there are many
material bodies with the important property that they retain their shapes,
whence the idea of rigid spatial motion arose; and it became possible to
understand spatial relationships in terms of a precise, well-deWned geom-
etry—the 3-dimensional geometry that we now call Euclidean. Moreover,
the notion of a ‘straight line’ in this geometry turned out to be the same as
that provided by rays of light (or lines of sight). There was a remarkable
precision and beauty to these ideas, which held a considerable fascination
for the ancients, just as it does for us today.

Yet, with regard to our everyday lives, the implications of this math-
ematical precision for the actions of the world often appeared unexciting
and limited, despite the fact that the mathematics itself seemed to repre-
sent a deep truth. Accordingly, many people in ancient times would allow
their imaginations to be carried away by their fascination with the subject
and to take them far beyond the scope of what was appropriate. In
astrology, for example, geometrical Wgures also often engendered mystical
and occult connotations, such as with the supposed magical powers of
pentagrams and heptagrams. And there was an entirely suppositional
attempted association between Platonic solids and the basic elementary
states of matter (see Fig. 1.1). It would not be for many centuries that the
deeper understanding that we presently have, concerning the actual
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Fig. 1.1 A fanciful association, made by the ancient Greeks, between the Wve
Platonic solids and the four ‘elements’ (Wre, air, water, and earth), together with
the heavenly Wrmament represented by the dodecahedron.

relationships between mass, gravity, geometry, planetary motion, and the
behaviour of light, could come about.

1.2 Mathematical truth

The Wrst steps towards an understanding of the real inXuences controll-
ing Nature required a disentangling of the true from the purely suppos-
itional. But the ancients needed to achieve something else Wrst, before
they would be in any position to do this reliably for their understanding of
Nature. What they had to do Wrst was to discover how to disentangle the
true from the suppositional in mathematics. A procedure was required for
telling whether a given mathematical assertion is or is not to be trusted as
true. Until that preliminary issue could be settled in a reasonable way, there
would be little hope of seriously addressing those more diYcult problems
concerning forces that control the behaviour of the world and whatever
their relations might be to mathematical truth. This realization that the key
to the understanding of Nature lay within an unassailable mathematics was
perhaps the Wrst major breakthrough in science.

Although mathematical truths of various kinds had been surmised
since ancient Egyptian and Babylonian times, it was not until the
great Greek philosophers Thales of Miletus (c.625–547 bc) and
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Pythagoras1* of Samos (c.572–497 bc) began to introduce the notion of
mathematical proof that the Wrst Wrm foundation stone of mathematical
understanding—and therefore of science itself—was laid. Thales may have
been the Wrst to introduce this notion of proof, but it seems to have been the
Pythagoreans who Wrst made important use of it to establish things that
were not otherwise obvious. Pythagoras also appeared to have a strong
vision of the importance of number, and of arithmetical concepts, in
governing the actions of the physical world. It is said that a big factor in
this realization was his noticing that the most beautiful harmonies produced
by lyres or Xutes corresponded to the simplest fractional ratios between
the lengths of vibrating strings or pipes. He is said to have introduced the
‘Pythagorean scale’, the numerical ratios of what we now know to be
frequencies determining the principal intervals on which Western music is
essentially based.2 The famous Pythagorean theorem, asserting that the
square on the hypotenuse of a right-angled triangle is equal to the sum of
the squares on the other two sides, perhaps more than anything else, showed
that indeed there is a precise relationship between the arithmetic of numbers
and the geometry of physical space (see Chapter 2).

He had a considerable band of followers—the Pythagoreans—situated
in the city of Croton, in what is now southern Italy, but their inXuence on
the outside world was hindered by the fact that the members of the
Pythagorean brotherhood were all sworn to secrecy. Accordingly, almost
all of their detailed conclusions have been lost. Nonetheless, some of these
conclusions were leaked out, with unfortunate consequences for the
‘moles’—on at least one occasion, death by drowning!

In the long run, the inXuence of the Pythagoreans on the progress of
human thought has been enormous. For the Wrst time, with mathematical
proof, it was possible to make signiWcant assertions of an unassailable
nature, so that they would hold just as true even today as at the time that
they were made, no matter how our knowledge of the world has pro-
gressed since then. The truly timeless nature of mathematics was beginning
to be revealed.

But what is a mathematical proof? A proof, in mathematics, is an
impeccable argument, using only the methods of pure logical reasoning,
which enables one to infer the validity of a given mathematical assertion
from the pre-established validity of other mathematical assertions, or from
some particular primitive assertions—the axioms—whose validity is taken
to be self-evident. Once such a mathematical assertion has been estab-
lished in this way, it is referred to as a theorem.

Many of the theorems that the Pythagoreans were concerned with were
geometrical in nature; others were assertions simply about numbers. Those

*Notes, indicated in the text by superscript numbers, are gathered at the ends of the chapter

(in this case on p. 23).
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that were concerned merely with numbers have a perfectly unambiguous
validity today, just as they did in the time of Pythagoras. What about the
geometrical theorems that the Pythagoreans had obtained using their
procedures of mathematical proof? They too have a clear validity today,
but now there is a complicating issue. It is an issue whose nature is more
obvious to us from our modern vantage point than it was at that time of
Pythagoras. The ancients knew of only one kind of geometry, namely that
which we now refer to as Euclidean geometry, but now we know of many
other types. Thus, in considering the geometrical theorems of ancient
Greek times, it becomes important to specify that the notion of geometry
being referred to is indeed Euclid’s geometry. (I shall be more explicit
about these issues in §2.4, where an important example of non-Euclidean
geometry will be given.)

Euclidean geometry is a speciWc mathematical structure, with its own
speciWc axioms (including some less assured assertions referred to as postu-
lates), which provided an excellent approximation to a particular aspect of
the physicalworld. Thatwas the aspect of reality, well familiar to the ancient
Greeks, which referred to the laws governing the geometry of rigid objects
and their relations to other rigid objects, as they are moved around in 3-
dimensional space. Certain of these properties were so familiar and self-
consistent that they tended to become regarded as ‘self-evident’ mathemat-
ical truths and were taken as axioms (or postulates). As we shall be seeing in
Chapters 17–19 and §§27.8,11, Einstein’s general relativity—and even the
Minkowskian spacetime of special relativity—provides geometries for the
physical universe that are diVerent from, and yet more accurate than, the
geometry of Euclid, despite the fact that the Euclidean geometry of the
ancients was already extraordinarily accurate. Thus, we must be careful,
when considering geometrical assertions, whether to trust the ‘axioms’ as
being, in any sense, actually true.

But what does ‘true’ mean, in this context? The diYculty was well
appreciated by the great ancient Greek philosopher Plato, who lived in
Athens from c.429 to 347 bc, about a century after Pythagoras. Plato
made it clear that the mathematical propositions—the things that could be
regarded as unassailably true—referred not to actual physical objects (like
the approximate squares, triangles, circles, spheres, and cubes that might
be constructed from marks in the sand, or from wood or stone) but to
certain idealized entities. He envisaged that these ideal entities inhabited a
diVerent world, distinct from the physical world. Today, we might refer to
this world as the Platonic world of mathematical forms. Physical structures,
such as squares, circles, or triangles cut from papyrus, or marked on a Xat
surface, or perhaps cubes, tetrahedra, or spheres carved from marble,
might conform to these ideals very closely, but only approximately. The
actual mathematical squares, cubes, circles, spheres, triangles, etc., would
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not be part of the physical world, but would be inhabitants of Plato’s
idealized mathematical world of forms.

1.3 Is Plato’s mathematical world ‘real’?

This was an extraordinary idea for its time, and it has turned out to be a
very powerful one. But does the Platonic mathematical world actually
exist, in any meaningful sense? Many people, including philosophers,
might regard such a ‘world’ as a complete Wction—a product merely of
our unrestrained imaginations. Yet the Platonic viewpoint is indeed an
immensely valuable one. It tells us to be careful to distinguish the precise
mathematical entities from the approximations that we see around us in
the world of physical things. Moreover, it provides us with the blueprint
according to which modern science has proceeded ever since. Scientists will
put forward models of the world—or, rather, of certain aspects of the
world—and these models may be tested against previous observation and
against the results of carefully designed experiment. The models are
deemed to be appropriate if they survive such rigorous examination and
if, in addition, they are internally consistent structures. The important
point about these models, for our present discussion, is that they are
basically purely abstract mathematical models. The very question of the
internal consistency of a scientiWc model, in particular, is one that requires
that the model be precisely speciWed. The required precision demands that
the model be a mathematical one, for otherwise one cannot be sure that
these questions have well-deWned answers.

If the model itself is to be assigned any kind of ‘existence’, then this
existence is located within the Platonic world of mathematical forms. Of
course, one might take a contrary viewpoint: namely that the model is
itself to have existence only within our various minds, rather than to take
Plato’s world to be in any sense absolute and ‘real’. Yet, there is something
important to be gained in regarding mathematical structures as having a
reality of their own. For our individual minds are notoriously imprecise,
unreliable, and inconsistent in their judgements. The precision, reliability,
and consistency that are required by our scientiWc theories demand some-
thing beyond any one of our individual (untrustworthy) minds. In math-
ematics, we Wnd a far greater robustness than can be located in any
particular mind. Does this not point to something outside ourselves,
with a reality that lies beyond what each individual can achieve?

Nevertheless, one might still take the alternative view that the math-
ematical world has no independent existence, and consists merely of
certain ideas which have been distilled from our various minds and
which have been found to be totally trustworthy and are agreed by all.
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Yet even this viewpoint seems to leave us far short of what is required. Do
we mean ‘agreed by all’, for example, or ‘agreed by those who are in their
right minds’, or ‘agreed by all those who have a Ph.D. in mathematics’
(not much use in Plato’s day) and who have a right to venture an ‘authori-
tative’ opinion? There seems to be a danger of circularity here; for to judge
whether or not someone is ‘in his or her right mind’ requires some external
standard. So also does the meaning of ‘authoritative’, unless some stand-
ard of an unscientiWc nature such as ‘majority opinion’ were to be adopted
(and it should be made clear that majority opinion, no matter how
important it may be for democratic government, should in no way be
used as the criterion for scientiWc acceptability). Mathematics itself indeed
seems to have a robustness that goes far beyond what any individual
mathematician is capable of perceiving. Those who work in this subject,
whether they are actively engaged in mathematical research or just using
results that have been obtained by others, usually feel that they are merely
explorers in a world that lies far beyond themselves—a world which
possesses an objectivity that transcends mere opinion, be that opinion
their own or the surmise of others, no matter how expert those others
might be.

It may be helpful if I put the case for the actual existence of the Platonic
world in a diVerent form. What I mean by this ‘existence’ is really just the
objectivity of mathematical truth. Platonic existence, as I see it, refers to
the existence of an objective external standard that is not dependent upon
our individual opinions nor upon our particular culture. Such ‘existence’
could also refer to things other than mathematics, such as to morality or
aesthetics (cf. §1.5), but I am here concerned just with mathematical
objectivity, which seems to be a much clearer issue.

Let me illustrate this issue by considering one famous example of a
mathematical truth, and relate it to the question of ‘objectivity’. In 1637,
Pierre de Fermat made his famous assertion now known as ‘Fermat’s Last
Theorem’ (that no positive nth power3 of an integer, i.e. of a whole
number, can be the sum of two other positive nth powers if n is an integer
greater than 2), which he wrote down in the margin of his copy of the
Arithmetica, a book written by the 3rd-century Greek mathematician
Diophantos. In this margin, Fermat also noted: ‘I have discovered a
truly marvellous proof of this, which this margin is too narrow to contain.’
Fermat’s mathematical assertion remained unconWrmed for over 350
years, despite concerted eVorts by numerous outstanding mathematicians.
A proof was Wnally published in 1995 by Andrew Wiles (depending on the
earlier work of various other mathematicians), and this proof has now
been accepted as a valid argument by the mathematical community.

Now, do we take the view that Fermat’s assertion was always true, long
before Fermat actually made it, or is its validity a purely cultural matter,
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dependent upon whatever might be the subjective standards of the com-
munity of human mathematicians? Let us try to suppose that the validity
of the Fermat assertion is in fact a subjective matter. Then it would not be
an absurdity for some other mathematician X to have come up with an
actual and speciWc counter-example to the Fermat assertion, so long as X
had done this before the date of 1995.4 In such a circumstance, the
mathematical community would have to accept the correctness of X’s
counter-example. From then on, any eVort on the part of Wiles to prove
the Fermat assertion would have to be fruitless, for the reason that X had
got his argument in Wrst and, as a result, the Fermat assertion would now
be false! Moreover, we could ask the further question as to whether,
consequent upon the correctness of X’s forthcoming counter-example,
Fermat himself would necessarily have been mistaken in believing in the
soundness of his ‘truly marvellous proof’, at the time that he wrote his
marginal note. On the subjective view of mathematical truth, it could
possibly have been the case that Fermat had a valid proof (which would
have been accepted as such by his peers at the time, had he revealed it) and
that it was Fermat’s secretiveness that allowed the possibility of X later
obtaining a counter-example! I think that virtually all mathematicians,
irrespective of their professed attitudes to ‘Platonism’, would regard such
possibilities as patently absurd.

Of course, it might still be the case that Wiles’s argument in fact
contains an error and that the Fermat assertion is indeed false. Or there
could be a fundamental error in Wiles’s argument but the Fermat assertion
is true nevertheless. Or it might be that Wiles’s argument is correct in its
essentials while containing ‘non-rigorous steps’ that would not be up to the
standard of some future rules of mathematical acceptability. But these
issues do not address the point that I am getting at here. The issue is the
objectivity of the Fermat assertion itself, not whether anyone’s particular
demonstration of it (or of its negation) might happen to be convincing to
the mathematical community of any particular time.

It should perhaps be mentioned that, from the point of view of math-
ematical logic, the Fermat assertion is actually a mathematical statement
of a particularly simple kind,5 whose objectivity is especially apparent.
Only a tiny minority6 of mathematicians would regard the truth of such
assertions as being in any way ‘subjective’—although there might be some
subjectivity about the types of argument that would be regarded as being
convincing. However, there are other kinds of mathematical assertion
whose truth could plausibly be regarded as being a ‘matter of opinion’.
Perhaps the best known of such assertions is the axiom of choice. It is not
important for us, now, to know what the axiom of choice is. (I shall
describe it in §16.3.) It is cited here only as an example. Most mathemat-
icians would probably regard the axiom of choice as ‘obviously true’, while
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others may regard it as a somewhat questionable assertion which might
even be false (and I am myself inclined, to some extent, towards this
second viewpoint). Still others would take it as an assertion whose
‘truth’ is a mere matter of opinion or, rather, as something which can be
taken one way or the other, depending upon which system of axioms and
rules of procedure (a ‘formal system’; see §16.6) one chooses to adhere to.
Mathematicians who support this Wnal viewpoint (but who accept the
objectivity of the truth of particularly clear-cut mathematical statements,
like the Fermat assertion discussed above) would be relatively weak Pla-
tonists. Those who adhere to objectivity with regard to the truth of the
axiom of choice would be stronger Platonists.

I shall come back to the axiom of choice in §16.3, since it has some
relevance to the mathematics underlying the behaviour of the physical
world, despite the fact that it is not addressed much in physical theory. For
the moment, it will be appropriate not to worry overly about this issue. If
the axiom of choice can be settled one way or the other by some appropri-
ate form of unassailable mathematical reasoning,7 then its truth is indeed
an entirely objective matter, and either it belongs to the Platonic world or
its negation does, in the sense that I am interpreting this term ‘Platonic
world’. If the axiom of choice is, on the other hand, a mere matter of
opinion or of arbitrary decision, then the Platonic world of absolute
mathematical forms contains neither the axiom of choice nor its negation
(although it could contain assertions of the form ‘such-and-such follows
from the axiom of choice’ or ‘the axiom of choice is a theorem according
to the rules of such-and-such mathematical system’).

The mathematical assertions that can belong to Plato’s world are pre-
cisely those that are objectively true. Indeed, I would regard mathematical
objectivity as really what mathematical Platonism is all about. To say that
some mathematical assertion has a Platonic existence is merely to say that
it is true in an objective sense. A similar comment applies to mathematical
notions—such as the concept of the number 7, for example, or the rule of
multiplication of integers, or the idea that some set contains inWnitely
many elements—all of which have a Platonic existence because they are
objective notions. To my way of thinking, Platonic existence is simply a
matter of objectivity and, accordingly, should certainly not be viewed as
something ‘mystical’ or ‘unscientiWc’, despite the fact that some people
regard it that way.

As with the axiom of choice, however, questions as to whether some
particular proposal for a mathematical entity is or is not to be regarded as
having objective existence can be delicate and sometimes technical. Des-
pite this, we certainly need not be mathematicians to appreciate the
general robustness of many mathematical concepts. In Fig. 1.2, I have
depicted various small portions of that famous mathematical entity known
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Fig. 1.2 (a) The Mandelbrot set. (b), (c), and (d) Some details, illustrating blow-
ups of those regions correspondingly marked in Fig. 1.2a, magniWed by respective
linear factors 11.6, 168.9, and 1042.

as the Mandelbrot set. The set has an extraordinarily elaborate structure,
but it is not of any human design. Remarkably, this structure is deWned by
a mathematical rule of particular simplicity. We shall come to this expli-
citly in §4.5, but it would distract us from our present purposes if I were to
try to provide this rule in detail now.

The point that I wish to make is that no one, not even Benoit Mandel-
brot himself when he Wrst caught sight of the incredible complications in
the Wne details of the set, had any real preconception of the set’s extraor-
dinary richness. The Mandelbrot set was certainly no invention of any
human mind. The set is just objectively there in the mathematics itself. If it
has meaning to assign an actual existence to the Mandelbrot set, then that
existence is not within our minds, for no one can fully comprehend the set’s

§1.3 CHAPTER 1

16



endless variety and unlimited complication. Nor can its existence lie within
the multitude of computer printouts that begin to capture some of its
incredible sophistication and detail, for at best those printouts capture
but a shadow of an approximation to the set itself. Yet it has a robustness
that is beyond any doubt; for the same structure is revealed—in all its
perceivable details, to greater and greater Wneness the more closely it is
examined—independently of the mathematician or computer that examines
it. Its existence can only be within the Platonic world of mathematical
forms.

I am aware that there will still be many readers who Wnd diYculty with
assigning any kind of actual existence to mathematical structures. Let me
make the request of such readers that they merely broaden their notion of
what the term ‘existence’ can mean to them. The mathematical forms of
Plato’s world clearly do not have the same kind of existence as do ordinary
physical objects such as tables and chairs. They do not have spatial
locations; nor do they exist in time. Objective mathematical notions
must be thought of as timeless entities and are not to be regarded as
being conjured into existence at the moment that they are Wrst humanly
perceived. The particular swirls of the Mandelbrot set that are depicted
in Fig. 1.2c or 1.2d did not attain their existence at the moment that they
were Wrst seen on a computer screen or printout. Nor did they come about
when the general idea behind the Mandelbrot set was Wrst humanly put
forth—not actually Wrst by Mandelbrot, as it happened, but by R. Brooks
and J. P. Matelski, in 1981, or perhaps earlier. For certainly neither
Brooks nor Matelski, nor initially even Mandelbrot himself, had any
real conception of the elaborate detailed designs that we see in Fig. 1.2c
and 1.2d. Those designs were already ‘in existence’ since the beginning of
time, in the potential timeless sense that they would necessarily be revealed
precisely in the form that we perceive them today, no matter at what time
or in what location some perceiving being might have chosen to examine
them.

1.4 Three worlds and three deep mysteries

Thus, mathematical existence is diVerent not only from physical existence
but also from an existence that is assigned by our mental perceptions. Yet
there is a deep and mysterious connection with each of those other two
forms of existence: the physical and the mental. In Fig. 1.3, I have
schematically indicated all of these three forms of existence—the physical,
the mental, and the Platonic mathematical—as entities belonging to three
separate ‘worlds’, drawn schematically as spheres. The mysterious connec-
tions between the worlds are also indicated, where in drawing the diagram
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I have imposed upon the reader some of my beliefs, or prejudices, con-
cerning these mysteries.

It may be noted, with regard to the Wrst of these mysteries—relating the
Platonic mathematical world to the physical world—that I am allowing
that only a small part of the world of mathematics need have relevance to
the workings of the physical world. It is certainly the case that the vast
preponderance of the activities of pure mathematicians today has no
obvious connection with physics, nor with any other science (cf. §34.9),
although we may be frequently surprised by unexpected important appli-
cations. Likewise, in relation to the second mystery, whereby mentality
comes about in association with certain physical structures (most speciW-
cally, healthy, wakeful human brains), I am not insisting that the majority
of physical structures need induce mentality. While the brain of a cat may
indeed evoke mental qualities, I am not requiring the same for a rock.
Finally, for the third mystery, I regard it as self-evident that only a small
fraction of our mental activity need be concerned with absolute mathemat-
ical truth! (More likely we are concerned with the multifarious irritations,
pleasures, worries, excitements, and the like, that Wll our daily lives.) These
three facts are represented in the smallness of the base of the connection of
each world with the next, the worlds being taken in a clockwise sense in the
diagram. However, it is in the encompassing of each entire world within
the scope of its connection with the world preceding it that I am revealing
my prejudices.

Thus, according to Fig. 1.3, the entire physical world is depicted as
being governed according to mathematical laws. We shall be seeing in later
chapters that there is powerful (but incomplete) evidence in support of this
contention. On this view, everything in the physical universe is indeed

Fig. 1.3 Three ‘worlds’—
the Platonic mathematical,
the physical, and the
mental—and the three
profound mysteries in the
connections between them.
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governed in completely precise detail by mathematical principles—
perhaps by equations, such as those we shall be learning about in chapters
to follow, or perhaps by some future mathematical notions fundamen-
tally diVerent from those which we would today label by the term ‘equa-
tions’. If this is right, then even our own physical actions would be entirely
subject to such ultimate mathematical control, where ‘control’ might still
allow for some random behaviour governed by strict probabilistic
principles.

Many people feel uncomfortable with contentions of this kind, and I
must confess to having some unease with it myself. Nonetheless, my
personal prejudices are indeed to favour a viewpoint of this general nature,
since it is hard to see how any line can be drawn to separate physical
actions under mathematical control from those which might lie beyond it.
In my own view, the unease that many readers may share with me on this
issue partly arises from a very limited notion of what ‘mathematical
control’ might entail. Part of the purpose of this book is to touch upon,
and to reveal to the reader, some of the extraordinary richness, power, and
beauty that can spring forth once the right mathematical notions are hit
upon.

In the Mandelbrot set alone, as illustrated in Fig. 1.2, we can begin to
catch a glimpse of the scope and beauty inherent in such things. But even
these structures inhabit a very limited corner of mathematics as a whole,
where behaviour is governed by strict computational control. Beyond this
corner is an incredible potential richness. How do I really feel about the
possibility that all my actions, and those of my friends, are ultimately
governed by mathematical principles of this kind? I can live with that. I
would, indeed, prefer to have these actions controlled by something resid-
ing in some such aspect of Plato’s fabulous mathematical world than to
have them be subject to the kind of simplistic base motives, such as
pleasure-seeking, personal greed, or aggressive violence, that many
would argue to be the implications of a strictly scientiWc standpoint.

Yet, I can well imagine that a good many readers will still have diYculty
in accepting that all actions in the universe could be entirely subject to
mathematical laws. Likewise, many might object to two other prejudices
of mine that are implicit in Fig. 1.3. They might feel, for example, that I
am taking too hard-boiled a scientiWc attitude by drawing my diagram in a
way that implies that all of mentality has its roots in physicality. This is
indeed a prejudice, for while it is true that we have no reasonable scientiWc
evidence for the existence of ‘minds’ that do not have a physical basis, we
cannot be completely sure. Moreover, many of a religious persuasion
would argue strongly for the possibility of physically independent minds
and might appeal to what they regard as powerful evidence of a diVerent
kind from that which is revealed by ordinary science.

The roots of science §1.4

19



A further prejudice of mine is reXected in the fact that in Fig. 1.3 I have
represented the entire Platonic world to be within the compass of mental-
ity. This is intended to indicate that—at least in principle—there are no
mathematical truths that are beyond the scope of reason. Of course, there
are mathematical statements (even straightforward arithmetical addition
sums) that are so vastly complicated that no one could have the mental
fortitude to carry out the necessary reasoning. However, such things
would be potentially within the scope of (human) mentality and would
be consistent with the meaning of Fig. 1.3 as I have intended to represent
it. One must, nevertheless, consider that there might be other mathemat-
ical statements that lie outside even the potential compass of reason, and
these would violate the intention behind Fig. 1.3. (This matter will be
considered at greater length in §16.6, where its relation to Gödel’s famous
incompleteness theorem will be discussed.)8

In Fig. 1.4, as a concession to those who do not share all my personal
prejudices on these matters, I have redrawn the connections between the
three worlds in order to allow for all three of these possible violations of
my prejudices. Accordingly, the possibility of physical action beyond the
scope of mathematical control is now taken into account. The diagram
also allows for the belief that there might be mentality that is not rooted in
physical structures. Finally, it permits the existence of true mathematical
assertions whose truth is in principle inaccessible to reason and insight.

This extended picture presents further potential mysteries that lie even
beyond those which I have allowed for in my own preferred picture of the
world, as depicted in Fig. 1.3. In my opinion, the more tightly organized
scientiWc viewpoint of Fig. 1.3 has mysteries enough. These mysteries are
not removed by passing to the more relaxed scheme of Fig. 1.4. For it

Platonic
mathematical

world

Physical
worldMental

world

Fig. 1.4 A redrawing of
Fig. 1.3 in which violations
of three of the prejudices of
the author are allowed for.
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remains a deep puzzle why mathematical laws should apply to the world
with such phenomenal precision. (We shall be glimpsing something of the
extraordinary accuracy of the basic physical theories in §19.8, §26.7,
and §27.13.) Moreover, it is not just the precision but also the subtle
sophistication and mathematical beauty of these successful theories that
is profoundly mysterious. There is also an undoubted deep mystery in how
it can come to pass that appropriately organized physical material—and
here I refer speciWcally to living human (or animal) brains—can somehow
conjure up the mental quality of conscious awareness. Finally, there is also
a mystery about how it is that we perceive mathematical truth. It is not just
that our brains are programmed to ‘calculate’ in reliable ways. There is
something much more profound than that in the insights that even the
humblest among us possess when we appreciate, for example, the actual
meanings of the terms ‘zero’, ‘one’, ‘two’, ‘three’, ‘four’, etc.9

Some of the issues that arise in connection with this third mystery will be
our concern in the next chapter (and more explicitly in §§16.5,6) in relation
to the notion of mathematical proof. But the main thrust of this book has
to do with the Wrst of these mysteries: the remarkable relationship between
mathematics and the actual behaviour of the physical world. No proper
appreciation of the extraordinary power of modern science can be
achieved without at least some acquaintance with these mathematical
ideas. No doubt, many readers may Wnd themselves daunted by the
prospect of having to come to terms with such mathematics in order to
arrive at this appreciation. Yet, I have the optimistic belief that they may
not Wnd all these things to be so bad as they fear. Moreover, I hope that I
may persuade many reader that, despite what she or he may have previ-
ously perceived, mathematics can be fun!

I shall not be especially concerned here with the second of the mysteries
depicted in Figs. 1.3 and 1.4, namely the issue of how it is that mentality—
most particularly conscious awareness—can come about in associationwith
appropriate physical structures (although I shall touch upon this deep
question in §34.7). There will be enough to keep us busy in exploring the
physical universe and its associated mathematical laws. In addition, the
issues concerning mentality are profoundly contentious, and it would dis-
tract from the purpose of this book if we were to get embroiled in them.
Perhaps one comment will not be amiss here, however. This is that, in my
own opinion, there is little chance that any deep understanding of the nature
of the mind can come about without our Wrst learning much more about the
very basis of physical reality. As will become clear from the discussions that
will be presented in later chapters, I believe that major revolutions are
required in our physical understanding. Until these revolutions have come
to pass, it is, in my view, greatly optimistic to expect that much real progress
can be made in understanding the actual nature of mental processes.10
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1.5 The Good, the True, and the Beautiful

In relation to this, there is a further set of issues raised by Figs. 1.3 and 1.4.
I have taken Plato’s notion of a ‘world of ideal forms’ only in the limited
sense of mathematical forms. Mathematics is crucially concerned with the
particular ideal of Truth. Plato himself would have insisted that there are
two other fundamental absolute ideals, namely that of the Beautiful and of
the Good. I am not at all averse to admitting to the existence of such ideals,
and to allowing the Platonic world to be extended so as to contain
absolutes of this nature.

Indeed, we shall later be encountering some of the remarkable interrela-
tions between truth and beauty that both illuminate and confuse the issues
of the discovery and acceptance of physical theories (see §§34.2,3,9 par-
ticularly; see also Fig. 34.1). Moreover, quite apart from the undoubted
(though often ambiguous) role of beauty for the mathematics underlying
the workings of the physical world, aesthetic criteria are fundamental to
the development of mathematical ideas for their own sake, providing both
the drive towards discovery and a powerful guide to truth. I would even
surmise that an important element in the mathematician’s common con-
viction that an external Platonic world actually has an existence independ-
ent of ourselves comes from the extraordinary unexpected hidden beauty
that the ideas themselves so frequently reveal.

Of less obvious relevance here—but of clear importance in the broader
context—is the question of an absolute ideal of morality: what is good and
what is bad, and how do our minds perceive these values? Morality has a
profound connection with the mental world, since it is so intimately related
to the values assigned by conscious beings and, more importantly, to the
very presence of consciousness itself. It is hard to see what morality might
mean in the absence of sentient beings. As science and technology progress,
an understanding of the physical circumstances under which mentality is
manifested becomes more and more relevant. I believe that it is more
important than ever, in today’s technological culture, that scientiWc ques-
tions should not be divorced from their moral implications. But these issues
would take us too far aWeld from the immediate scope of this book. We need
to address the question of separating true from false before we can ad-
equately attempt to apply such understanding to separate good from bad.

There is, Wnally, a further mystery concerning Fig. 1.3, which I have left
to the last. I have deliberately drawn the Wgure so as to illustrate a
paradox. How can it be that, in accordance with my own prejudices,
each world appears to encompass the next one in its entirety? I do not
regard this issue as a reason for abandoning my prejudices, but merely for
demonstrating the presence of an even deeper mystery that transcends
those which I have been pointing to above. There may be a sense in
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which the three worlds are not separate at all, but merely reXect, individu-
ally, aspects of a deeper truth about the world as a whole of which we have
little conception at the present time. We have a long way to go before such
matters can be properly illuminated.

I have allowed myself to stray too much from the issues that will
concern us here. The main purpose of this chapter has been to emphasize
the central importance that mathematics has in science, both ancient and
modern. Let us now take a glimpse into Plato’s world—at least into a
relatively small but important part of that world, of particular relevance to
the nature of physical reality.

Notes

Section 1.2
1.1. Unfortunately, almost nothing reliable is known about Pythagoras, his life, his

followers, or of their work, apart from their very existence and the recognition by
Pythagoras of the role of simple ratios in musical harmony. See Burkert (1972).
Yet much of great importance is commonly attributed to the Pythagoreans.
Accordingly, I shall use the term ‘Pythagorean’ simply as a label, with no impli-
cation intended as to historical accuracy.

1.2. This is the pure ‘diatonic scale’ in which the frequencies (in inverse proportion to
the lengths of the vibrating elements) are in the ratios 24 : 27 : 30 : 36 : 40 : 45 : 48,
giving many instances of simple ratios, which underlie harmonies that are pleasing
to the ear. The ‘white notes’ of a modern piano are tuned (according to a
compromise between Pythagorean purity of harmony and the facility of key
changes) as approximations to these Pythagorean ratios, according to the equal
temperament scale, with relative frequencies 1:a2: a4: a5: a7: a9: a11: a12, where
a ¼

ffiffiffi
212
p
¼ 1:05946 . . . : (Note: a5 means the Wfth power of a, i.e.

a" a" a" a" a. The quantity
ffiffiffi
212
p

is the twelfth root of 2, which is the number
whose twelfth power is 2, i.e. 21=12, so that a12 ¼ 2. See Note 1.3 and §5.2.)

Section 1.3
1.3. Recall from Note 1.2 that the nth power of a number is that number multiplied by

itself n times. Thus, the third power of 5 is 125, written 53 ¼ 125; the fourth power
of 3 is 81, written 34 ¼ 81; etc.

1.4. In fact, while Wiles was trying to Wx a ‘gap’ in his proof of Fermat’s Last Theorem
which had become apparent after his initial presentation at Cambridge in June
1993, a rumour spread through the mathematical community that the mathemat-
ician Noam Elkies had found a counter-example to Fermat’s assertion. Earlier, in
1988, Elkies had found a counter-example to Euler’s conjecture—that there are no
positive solutions to the equation x4 þ y4 þ z4 ¼ w4—thereby proving it false. It
was not implausible, therefore, that he had proved that Fermat’s assertion also
was false. However, the e-mail that started the rumour was dated 1 April and was
revealed to be a spoof perpetrated by Henri Darmon; see Singh (1997), p. 293.

1.5. Technically it is a P1-sentence; see §16.6.
1.6. I realize that, in a sense, I am falling into my own trap by making such an

assertion. The issue is not really whether the mathematicians taking such an
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extreme subjective view happen to constitute a tiny minority or not (and I have
certainly not conducted a trustworthy survey among mathematicians on this
point); the issue is whether such an extreme position is actually to be taken
seriously. I leave it to the reader to judge.

1.7. Some readers may be aware of the results of Gödel and Cohen that the axiom of
choice is independent of the more basic standard axioms of set theory (the
Zermelo–Frankel axiom system). It should be made clear that the Gödel–
Cohen argument does not in itself establish that the axiom of choice will never
be settled one way or the other. This kind of point is stressed, for example, in the
Wnal section of Paul Cohen’s book (Cohen 1966, Chap. 14, §13), except that,
there, Cohen is more explicitly concerned with the continuum hypothesis than the
axiom of choice; see §16.5.

Section 1.4
1.8. There is perhaps an irony here that a fully Xedged anti-Platonist, who believes

that mathematics is ‘all in the mind’ must also believe—so it seems—that there
are no true mathematical statements that are in principle beyond reason. For
example, if Fermat’s Last Theorem had been inaccessible (in principle) to reason,
then this anti-Platonist view would allow no validity either to its truth or to its
falsity, such validity coming only through the mental act of perceiving some
proof or disproof.

1.9. See e.g. Penrose (1997b).
1.10. My own views on the kind of change in our physical world-view that will be

needed in order that conscious mentality may be accommodated are expressed in
Penrose (1989, 1994, 1996,1997).
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2
An ancient theorem and a modern question

2.1 The Pythagorean theorem

Let us consider the issue of geometry. What, indeed, are the diVerent
‘kinds of geometry’ that were alluded to in the last chapter? To lead up to
this issue, we shall return to our encounter with Pythagoras and consider
that famous theorem that bears his name:1 for any right-angled triangle,
the square of the length of the hypotenuse (the side opposite the right
angle) is equal to the sum of the squares of the lengths of the other two
sides (Fig. 2.1). What reasons do we have for believing that this assertion is
true? How, indeed, do we ‘prove’ the Pythagorean theorem? Many argu-
ments are known. I wish to consider two such, chosen for their particular
transparency, each of which has a diVerent emphasis.

For the Wrst, consider the pattern illustrated in Fig. 2.2. It is composed
entirely of squares of two diVerent sizes. It may be regarded as ‘obvious’
that this pattern can be continued indeWnitely and that the entire plane is
thereby covered in this regular repeating way, without gaps or overlaps, by
squares of these two sizes. The repeating nature of this pattern is made
manifest by the fact that if we mark the centres of the larger squares, they
form the vertices of another system of squares, of a somewhat greater size
than either, but tilted at an angle to the original ones (Fig. 2.3) and which
alone will cover the entire plane. Each of these tilted squares is marked in
exactly the same way, so that the markings on these squares Wt together to

c

b

a

a2 + b2 = c2

Fig. 2.1 The Pythagorean
theorem: for any right-angled
triangle, the squared length of the
hypotenuse c is the sum of the
squared lengths of the other two
sides a and b.
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