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1. Integral and Anti-derivative

If f : [a, b]→ R is a continuous function, any differentiable function G : [a, b]→ R satisfying

(1) G′ = f

is called an anti-derivative of f . The 1st FTC asserts that the “area function”

F (x) :=

∫ x

a

f(t) dt ,

measuring the area of the graph y = f(x) over the interval [a, x] with x ∈ [a, b], is an anti-derivative
of f , that is, F ′ = f .

We have also seen that any two anti-derivatives of f differ by a constant. Thus, if we have found
some anti-derivative G of a function f , we know that

G(x) =

∫ x

a

f(t) dt+ c

for some constant c ∈ R (the (in)famous constant of integration). Using this, we obtained the 2nd
FTC, which states that

(2)

∫ b

a

f(t) dt = G(b)−G(a)

for any anti-derivative G of f .
In order to make our notation more concise and intuitive, we have introduced the indefinite

integral notation ∫
f(x) dx

for anti-derivatives of f . Then the relevant relations between differentiation and integration read

(3)
d

dx

∫
f(x) dx = f(x) and

∫
g′(x) dx = g(x) .

Note that the first relation is in essence the FTC (in either version), whereas the second equation
just states the obvious, namely that a differentiable function g is an anti-derivative of its derivative
g′. This last gives us anti-derivatives of some of the basic functions, by reading the derivative rules
backwards.

Using the notation of differentials, (3) takes the rather elegant (and possibly more intuitive) form

(4) d

∫
α = α and

∫
dg = g

1
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for a continuously differentiable function g and an arbitrary continuous differential α = f(x)dx.
Note that the FTC asserts that every differential α = f(x) dx is exact, that is, of the form α = dF ,
namely F =

∫
α. This is specific to one variable Calculus and will fail to hold in two and more

variables Calculus 233H and 425H.

2. Integration by Parts and Substitution Rule

The Leibniz, or product, rule and the chain rule give us two methods to find anti-derivatives of
more complicated functions. The Leibniz rule yields the integration by parts formula∫

f(x)g′(x) dx = −
∫
f ′(x)g(x) dx+ f(x)g(x)

for continuously differentiable functions f and g. Using differentials the formula reads

(5)

∫
f dg = −

∫
df g + fg .

The chain rule provides us with the substitution rule

(6)

∫ g(b)

g(a)

f(y) dy =

∫ b

a

f(g(x))g′(x) dx

for a continuous function f : I → R and a continuously differentiable function g : [a, b] → I, where
I ⊂ R is an interval. Using the differentials notation, this formula produces itself via the substitution
y = g(x) and thus dy = dg = g′(x) dx.

3. Length of curves

We discussed in class how the length of a (smooth) curve γ : [a, b]→ R2 can be thought of as the
limit of finer and finer polygonal approximations of the curve. This process resulted in a Riemann
sum for the speed function ||γ′||, and thus it is reasonable to define the length of a curve by

(7) L(γ) =

∫ b

a

||γ′(t)|| dt

We also introduced notations coming from physical intuitions: the velocity (vector) γ′ (rate of change
of position), the already mentioned speed, the length of the velocity ||γ′||, and the acceleration
(vector) γ′′ (rate of change of velocity).

Given a (smooth) function f : I → R, we defined its graph parametrization to be the curve

(8) γ : I → R2 , γ(t) := (t, f(t))

which traces out the graph y = f(x) of f over the interval I ⊂ R. Since γ′(t) = (1, f ′(t)), we obtain
from (7) the length of the graph curve

L(γ) =

∫ b

a

√
1 + (f ′(t))2 dt

where I = [a, b]. Disregarding the “rule” that differentials can’t be multiplied (in fact, they can....),
the above formula for the length of the graph curve can be rewritten as

L(γ) =

∫ b

a

√
dt2 + df2 .
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Now, since for the graph parametrization x = t and y = f(x), thus dt = dx and dy = df = f ′(x)dx,
you can rewrite this last as

L(γ) =

∫ b

a

√
dx2 + dy2 .

If you are adventurous, you may want to contemplate the “differential version” for the length
formula for an arbitrary curve γ = (γ1, γ2), namely

L(γ) =

∫ b

a

√
dγ · dγ

where we think of dγ = (dγ1, dγ2) as an R2-valued differential—something to contemplate—and the
dot indicates the dot-product on R2. Recalling that dγ1 = γ′1(t)dt and similar for dγ2, we obtain∫ b

a

√
dγ · dγ =

∫ b

a

√
(dγ1)2 + (dγ2)2 =

∫ b

a

√
(γ′1(t))2 dt2 + (γ′2(t))2 dt2 =

∫ b

a

√
(γ′1(t))2 + (γ′2(t))2 dt

and therefore

L(γ) =

∫ b

a

√
(γ′1(t))2 + (γ′2(t))2 dt

which is indeed the formula for the length of the curve γ. Putting γ1 = x and γ2 = y, so that
dx = γ′1 dt, dy = γ′2 dt, we get the formula

L(γ) =

∫ b

a

√
dx2 + dy2 .

So, no matter what kind of curve we have, this last formula in terms of differentials works, as long
as we understand what it all means...

4. Areas and Volumes

A further application of integration is the computation of area and volume for surfaces of revo-
lution. The set up is a s follows: we have a (smooth) function f : [a, b] → R and rotate its graph
around the x-axis, which is the surface of revolution with profile curve y = f(x). We want to
calculate a formula for the area of this surface (e.g., the area of the piece of paper needed to wrap
around an old can to make it a nice looking pencil holder), and the volume of the solid , the bulk
inside the surface of revolution (e..g,, how much water does the can hold).

4.1. Area. In class I have made a conceptual mistake, which is best explained by Picture 1. With
the arguments given in class, the area of a portion of the surface where the graph is very steep, will
be very badly approximated by a cylinder area. We have to somehow account for the steepness of
the graph in our approximation attempts.

A good sanity check is to use the wrong formula (based on cylinder approximation) from class
and apply it to a cone of base radius R and height h: this cone is obtained by rotating the line
y = R

h x around the x-axis, and we obtain for its area

A(cone) = 2π

∫ h

0

R

h
dx = 2πR .

This is patently not the surface area of a cone, which is known to be πR
√
h2 +R2 (we only look

at the cone mantle, not including the area of the base disk, which would add πR2). In case you
have not done this in high school, the surface area of the cone (mantle) can be calculated without
integrals by cutting the cone along a straight line from its base to its vertex, then unrolling it onto
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Figure 1. The ratio of l to subinterval length xk−xk−1 depends on the steepness

of the graph. It converges to
√

1 + (f ′(xk))2 as xk−1 → xk, and not to 1, as it
would be for the cylinder approximation.

the plane, which results in a disk segment (this is how children make cone hats out of paper, and
you should do this yourself at least once), see Picture 2. That disk segment (what is the angle of

the wedge given R and h?) has the same area as the cone mantle, and is given by πR
√
h2 +R2

(which can be deduced with or without using integration).
Now that we understand that the steepness of the graph y = f(x) has to be accounted for, we

set up a new approximation for the area of the surface obtained by revolving y = f(x) (assuming
for simplicity that f(x) ≥ 0 for all x ∈ [a, b]) around the x-axis: given a partition P : (x0 =
a, x1, . . . , xn−1, xn = b), we approximate the area over each subinterval [xk−1, xk] by

2πf(ηk)
√

(xk − xk−1)2 + (f(xk)− f(xk−1))2 = 2πf(ηk)

√
1 +

(
f(xk)− f(xk−1)

xk − xk−1

)2

(xk − xk−1)

for some, yet to be determined, evaluation point ηk ∈ [xk−1, xk]. Notice that the above expression is
nothing but the length of the secant line connecting the points (xk−1, f(xk−1)) and (xk, f(xk)) on
the graph y = f(x) times some average radius f(ηk) over the subinterval [xk−1, xk]. By the Mean
Value Theorem, we can rewrite

f(xk)− f(xk−1

xk − xk−1
= f ′(ξk)
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Figure 2. The area of a cone.

for some ξk ∈ [xk−1, xk]. We now take ηk to be this very ξk (whose existence is guaranteed by the
MVT), and obtain for our approximate area over the subinterval [xk−1, xk] the expression

2π f(ξk)
√

1 + (f ′(ξk))2 (xk − xk−1) .

Now we just need to sum this last expression over all subintervals of the partition, to obtain an
approximate area of the surface of revolution

A ≈ 2π

n∑
k=1

f(ξk)
√

1 + (f ′(ξk))2 (xk − xk−1) .

But this is just the Riemann sum of the function 2πf(x)
√

1 + (f(x)′)2, so that by refining the
partition and taking the limit as the subinterval length tends to zero, the area of the surface of
revolution of the graph y = f(x) becomes

A = 2π

∫ b

a

|f(x)|
√

1 + (f ′(x))2 dx ,

where we have put the absolute value into our formula to allow the function f to change signs over
the interval [a, b].

4.2. Volume. The volume formula from our discussion on class remains the same. We approximate,
over each subinterval, by the cylinder volume

πf(ξk)2(xk − xk−1)
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of the cylinder of hight (xk−xk−1) and some average radius f(ξk) with ξk ∈ [xk−1, xk]. Notice that
the steepness of the graph will not really matter here, why? Then, like shown in class, the volume
becomes

V = π

∫ b

a

f(x)2 dx .

5. The exponential function—an important example of an infinite series

We discussed in class that the only functions we could in principle compute, when sitting on some
island writing symbols in the sand, are polynomials and rational functions. For transcendental
functions like trig functions we have a geometric definition, but this does not help much with
calculating explicit values of those functions. We are slightly better off with the natural logarithm,
which could be defined via the integral formula

ln(x) :=

∫ x

1

dt

t
= area under the graph of y = 1/t over the interval [1, x] .

Using Riemann sums to approximate the integral, or using some more refined numerical integration
algorithms, we could in principle calculate values for ln(x) with reasonable precision. Another well
known function is the exponential function y = ex, which somehow appears when looking at powers
of a number, i.e. an, for integers n ∈ Z, and generalizing this, in the case a ≥ 0, to arbitrary real
powers ax for x ∈ R. This is done by a limiting process, where one approximates a real number
x by a sequence of rational numbers rn = pn/qn, where pn, qn ∈ Z, which limit to x, that is,
limn→∞ rn = x. Then one sets

ax = lim
n→∞

arn

where we interpret ap/q as the qth-root of ap = a · · · a, multiplied p-many times. Perhaps less
obvious in this approach is why the number e = 2.71828182846 . . . , called Euler’s number, plays a
central role. This is why a more fundamental approach to the exponential function is needed.

It is interesting that a process called beta decay, which is responsible for radioactivity, started
more or less immediately after the Big Bang. It is governed by a fundamental law, namely that the
average rate of change of the material (which is subjected to beta decay) over some time interval
is proportional to how much material is present on average over that time interval. Expressed in a
formula this becomes

Q(t+ ∆t)−Q(t)

∆t
= k

Q(t+ ∆t) +Q(t)

2
where k ∈ R is the proportionality factor. In particular, for a decay process, that is, the quantity
Q(t) decreases over time, k < 0 and for a growth process, when Q(t) increases over time, k > 0.
Taking the limit as ∆t→ 0, we arrive at

(9) Q′(t) = kQ(t)

which says that the instantaneous rate of change of the function Q(t) at time t is proportional to
its value Q(t) at that time. Now beta decay has been happening over the last 10 Billion or so years,
most likely long before there were sentient beings able to conceive the mathematical frame work to
express this process in a formula.

The question for us of course is, what function(s) satisfy the relation (9), which is called a first
order differential equation (relation) for the unknown function Q(t) ? In order to not get bogged
down by unnecessary constants etc., we choose k = 1 and look at the equation Q′(t) = Q(t).
Since the only functions we really understand are polynomials, we tried the Ansatz (German for
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“educated guess”) that Q(t) is a polynomial, but this failed. But we learned that if we don’t limit
the degree of the polynomial, we would succeed, namely the function

Q(t) =

∞∑
k=0

tk

k!

is a solution of Q′(t) = Q(t) for the initial condition Q(0) = 1, as can be checked by term by term
differentiation. The issue here is, that we need to add terms infinitely often, and we don’t really
know how to make sense of that. Postponing that for a moment, we make

Definition 1. The exponential function is defined by the infinite series

exp(x) =

∞∑
k=0

xk

k!

In general, “infinite degree polynomials”, such as exp(x), are called power series:

Definition 2. A power series centered at x0 ∈ R is an expression of the form
∞∑
k=0

ak(x− x0)k

where ak ∈ R are the coefficients of the power series.

The exponential function thus is a power series centered at x0 = 0 with coefficients ak = 1
k! .

What we hope/wish for at this stage is the following:

(i) Under reasonable and checkable circumstances, a power series defines a function

f(x) :=

∞∑
k=0

ak(x− x0)k

on some interval around x0. Moreover, this function is infinitely often differentiable and
integrable and one computes derivatives and integrals term by term. Since each term is,
up to the constant ak, a monomial function (x− x0)k, we can explicitly carry this out.

(ii) Any reasonable function g : I → R defined on some interval I ⊂ R should have a description
in terms of a power series, that is, choosing some x0 ∈ I then g(x) =

∑∞
k=0 ak(x − x0)k.

If this is at all true, then, by taking repeated derivatives of this equation and evaluating

at x = x0, one immediately checks ak = g(k)(x0)
k! . So this premeditates the Tayler series of

a function....

Returning to the exponential function exp(x) and assuming (i) for now, we could easily show the
following important properties of the exponential function:

(i) exp(x) is defined for all x ∈ R, in particular, e := exp(1) ∈ R is a well-defined number,
which we call Euler’s number. We used the infinite series to calculate e = 2.71828182846 . . .
up to as many decimals as we wanted.

(ii) exp(x+ y) = exp(x) exp(y), the functional equation.
This was verified by regarding y as fixed, and differentiating the functions exp(x + y)

and exp(x) exp(y) w.r.t. x. This showed that both of these functions satisfy the relation
Q′ = Q with Q(0) = exp(y). We then convinced ourselves that all solutions of Q′ = Q
are of the form c exp(x) for some constant c ∈ R. Therefore, exp(x + y) = c1 exp(x) and
exp(x) exp(y) = c2 exp(x). Putting x = 0, we see c1 = c2 = exp(y) and we verified the
functional equation.
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(iii) Since 1 = exp(0) = exp(x+ (−x)) = exp(x) exp(−x), we also deduced

1

exp(x)
= exp(−x)

.
(iv) From the above, we deduce exp(x) > 0 and exp: R→ (0,∞) is strictly monotone increasing

and concave up with limx→−∞ exp(x) = 0 and limx→∞ = ∞. It is thus bijective and its
inverse function exp−1(x) = ln(x) is the natural logarithm. To check this last, we needed to
recall the formula for the derivative of the inverse function, which gives [exp−1(x)]′ = 1/x.
Thus, from the definition of ln(x) =

∫ x
1
dt
t , both exp−1(x) and ln(x) are antiderivatives of

the function y = 1/x. So they differ by a constant, but ln(1) = 0 and also exp−1(1) = 0
(since exp(0) = 1), so that constant has to be zero. Being the inverse function of the
exponential function, ln : (0,∞)→ R is bijective, strictly monoton increasing, and concave
down, with limx→0 ln(x) = −∞ and limx→∞ ln(x) =∞.

With this at hand and the defining formulas for the inverse function

exp(ln(x)) = x and ln(exp(x)) = x

we deduce the functional relations for the natural logarithm:

(i) ln(1) = 0
(ii) ln(x+ y) = ln(x) + ln(y)

(iii) ln(1/x) = − ln(x)
(iv) ln(xα) = α ln(x) for any α ∈ R.

The properties of exp and ln make it possible to define what it means to take an arbitrary power
x ∈ R of a non-negative real number a ≥ 0:

ax := exp(x ln(a))

In light of the properties listed, this last definition makes a lot of sense. We checked that for
x = n ∈ Z this reproduces the n-fold product of a with itself. And for rational x = p/q it gives
the usual expression of the q-th root of ap, just as we expected. But notice, we derived everything
from the exponential function, and Euler’s number appears naturally. With this last definition, we
now can write

ex = exp(x)

and everything you ever learned about ex is contained in the above couple of paragraphs, fairly
rigorously proven, from a first principle as old as the universe....The caveat is that we are dealing
with infinite series and we have, so far, not really defined what it means to sum up infinitely many
numbers. We worked in good faith that things pan out as we expect them to. The next section fills
in the necessary theory of infinite series.

6. Complex numbers

When we discussed partial fraction decomposition, we needed to find the zeros of polynomials.
Unfortunately, not all polynomials have real zeros as P (x) = x2 +1 shows. This problem has a long
history and eventually got resolved by the introduction of complex numbers C. A complex number
is given by

z = x+ iy where x, y ∈ R and i2 = −1
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The “imaginary unit” i =
√
−1 is formally introduced to build a new number system which extends

the real numbers R ⊂ C. We call

Re(z) := x the real part and Im(z) := y the imaginary part

of the complex number z = x+ iy. The pictorial representation of C, given by Gauss, is the plane
R2, where the x-axis presents the real numbers and the y-axis presents all the real multiples of i,
the imaginary numbers. A complex number z then is just a point in the plane, whose x-coordinate
is its real part and whose y-coordinate is its imaginary part. The usual operations of numbers hold
for complex numbers (commutativity, associativity, distributivity) and the only new feature is to
replace i · i = i2 = −1 in all calculations.

We list some new notation needed when calculating with complex numbers z = x+ iy:

(i) |z| :=
√
x2 + y2 is called the absolute value of z ∈ C, which is just the Euclidean length of

z viewed as a vector in the plane. Notice that |z| becomes the absolute value in R when
z ∈ R.

(ii) z̄ := x− iy is called the conjugate complex number, which is reflection of z in the real axis,
the x-axis. Since

zz̄ = (x+ iy)(x− iy) = x2 + y2 = |z|2 we have |z| =
√
zz̄ .

Furthermore,

z ∈ R is real, if and only if z = z̄

and

z ∈ iR is imaginary, if and only if z = −z̄
Addition/subtraction and scaling by c ∈ R of complex numbers z = x+ iy, w = u+ iv is just vector
addition/subtraction and scaling:

z ± w = (x± u) + i(y ± v) cz = cx+ icy

Multiplication of complex numbers

zw = (xu− yv) + i(xv + yu)

can be interpreted as first counter clockwise rotating w by the angle z makes with the x-axis and
scaling the result by |z|. In particular, iz is the vector perpendicular to z of same length in counter
clockwise direction.

The reciprocal of a non-zero complex number z 6= 0 gets calculated by

1

z
=

z̄

zz̄
=

z̄

|z|2
=

1

|z|2
(x− iy)

which shows that the reciprocal 1
z of a non-zero complex number is the reflection of z in the x-axis

scaled by 1
|z|2 . These operations are compatible with taking complex conjugation and absolute

value in the following way:

z ± w = z̄ ± w̄ zw = z̄w̄ (
z

w
) =

z̄

w̄

|z ± w| ≤ |z|+ |w| |zw| = |z||w| | z
w
| = |z|
|w|

Finally we note that the dot product between vectors z, w in the plane is expressed using complex
numbers by

z • w = Re(z̄w) = Re(zw̄)
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We have extended our number universe to complex numbers by taking all combinations of real
numbers and imaginary numbers. One of the wonderful results of this expanded view of numbers
is that polynomials now have as many zeros as their degree (which is false over real numbers, as
the example P (x) = x2 + 1 shows, which is a polynomial of degree 2 without any real zeros, but
with the two complex zeros ±i).

Theorem 1 (Fundamental Theorem of Algebra). Let P (z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0 be
a polynomial with complex coefficients ak ∈ C with an 6= 0, so degP = n. Then

P (z) = an(z − z1)n1 . . . (z − zk)nk

with z1, . . . , zk the mutually distinct zeros of P (z) with multiplicities (how often the zero repeats)
n1, . . . , nk satisfying n = n1 + · · · + nk. In other words, every polynomial decomposes into linear
factors over C (as compared to the more tedious decomposition over R).

In our simple example z2 + 1 = (z + i)(z − i), with two distinct zeros each of multiplicity 1.
Another example if P (z) = z2 + 4z + 13 whose zeros are z1 = −2 + 3i and z2 = −2 − 3i, so that
P (z) = (z − (−2 + 3i))(z − (−2 − 3i)). We notice here that the two zeros z2 = z̄1 are complex
conjugate to each other. This is a general fact for polynomials with real coefficients:

Lemma 1. Let P (z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 with ak ∈ R real, then the zeros of P (z)
are either real or, if non-real complex, come in complex conjugate pairs. Therefore,

P (z) = an(z − x1)n1 . . . (z − xk)nk(z − z1)m1(z − z̄1)m1 . . . (z − zl)ml(z − z̄l)ml

where x1, . . . , xk ∈ R are the distinct real zeros, z1, z̄1, . . . , zk, z̄k ∈ C are the distinct complex
conjugate pairs of zeros, and n = n1 + · · ·+ nk + 2m1 + · · ·+ 2ml.

Proof. Let z0 ∈ C be a zero of P (z) which is not real. Then P (z0) = 0 implies also that P (z0) = 0,
which, since all the coefficient ak ∈ R of P (z) are real, that is, āk = ak, implies P (z̄0) = 0. But
this says that both, z0 and z̄0 are zeros of P (z). �

Notice that for a non-real zero z0 of a polynomial with real coefficients the term

(z − z0)(z − z̄0) = z2 − 2 Re(z0)z + |z0|2

is a polynomial of degree 2 with real coefficients, but without any real zeros (compare this to the
example P (z) = z2 + 4z+ 13 above). So the decomposition in the lemma above of a real coefficient
polynomial P (z) is exactly the one on the HW sheet about partial fraction decompositions

P (z) = an(z − x1)n1 . . . (z − xk)nk(z2 + a1z + b1)n1 . . . (z2 + alz + bl)
nl

where aj = −2 Re(zj) and bj = |zj |2 for j = 1, . . . ,m.

7. Infinte series

Definition 3. An infinite series of numbers (which can be real or complex at this stage, we have
expanded our world view lately) is an expression of the form

∞∑
k=1

zk = z1 + z2 + z3 + . . .

where the zk ∈ C are complex numbers (note, this includes also real numbers R ⊂ C), the summands
or terms in the sum. Some series will start at k = 1, others at k = 0, or sometimes even at k = N ,
for some suitable integer number N .
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Since we can sum up finitely many terms, we do this first, and define the n-th partial sum of the
infinite series

∑∞
k=1 zk to be

sn :=

n∑
k=1

zk = z1 + · · ·+ zn

So we can calculate (at least in principle) every partial sum, no matter how big n is. An important
example is the n-th partial sum

n∑
k=0

qk =
1− qn+1

1− q

of the geometric series
∑∞
k=0 q

k, which we derived in class. Since this derivation never used the fact
that q was a real number (but only the usual arithmetic rules), this formula also holds generally
for q ∈ C.

The crucial notion is that of convergency of an infinite series: I think it is intuitively clear that
the only reasonable notion for convergency of an infinite series is that we continue summing more
an more terms and hope that this process tends to some number, that is, the sequence of partial
sums {sn} converges to some number s ∈ C.

Definition 4. The infinite series
∑∞
k=1 zk converges (a better term I think would be “is summable”)

to some number s ∈ C, if and only if the sequence of partial sums sn → s as n→∞, that is

lim
n→∞

n∑
k=1

zk = s

To test whether sn → s, one reduces this to the test whether (sn − s) → 0, which is equivalent to
the distances |sn − s| → 0 as n→∞.

If a series does not converge, we say it diverges.

To diverge does not necessarily mean that the result of summing all terms becomes infinite (which
is mostly the case though), but it could be that summing more and more terms will generate some
“jumping all over the place” of the partial sums, like in the series 1−1+1−1+1 . . . , where s2n = 0
but s2n+1 = 1, so that the partial sum sequence is {sn} = 1,−1, 1,−1, . . . , which certainly does
not converge to anything, it jumps between 1 and −1.

Make sure you clearly understand the difference between “a sequence converges” and “an infinite
series converges”, the latter meaning that summing up more and more terms in the series (that is,
calculating partials sums sn for larger and larger n) leads to a finite number s—as I said, summable
would be a better terminology for “convergency of a series”.

Another important issue to understand is, that when checking the convergency/divergency of an
infinite series it does not matter to totally disregard finitely many terms of the series. The sum of
those finitely many terms will always be a finite number, so only the infinitely many other terms
matter. But once you have decided that a series does converge and you want to calculate its value,
all terms have to be summed up to get the correct value of the sum.

Finally, the usual rules for adding/subtracting and scaling convergent series
∑∞
k=1 zk,

∑∞
k=1 wk

hold:
∞∑
k=1

(zk ± wk) =

∞∑
k=1

zk ±
∞∑
k=1

zk and

∞∑
k=1

c zk = c

∞∑
k=1

zk

for any c ∈ C. It is important to keep in mind, that these “obvious formulas” only hold for
convergent series, and generally give non-sensical results for divergent series, as the example zk = 1
and wk = −1 shows.
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Before looking at examples, we strengthen the notion of convergency somewhat to the notion of
absolute convergency, which will play a decisive role for power series:

Definition 5. An infinite series
∑∞
k=1 zk converges absolutely, if the infinite series

∑∞
k=1 |zk| of

absolute values of each of the terms in the original series converges. Note the latter is a series of
non-negative real numbers, even when zk ∈ C.

Here a few important

Remarks. • It can be checked that if a series converges absolutely, then it converges. The
converse is false, as the alternating harmonic series shows:

∑∞
k=1(−1)k+1 1

k converges by

Leibniz Test, but the sum of the absolute value terms |(−1)k+1 1
k | = 1

k is the harmonic

series
∑∞
k=1

1
k , which diverges (to verify these statements see the various tests below).

• Absolute convergence and convergence are the same for series of non-negative real numbers.
• Most tests mentioned below will test for absolute convergence, except the Leibniz and

integral tests, were assumptions on the signs of the series elements are necessary.
• Also note, that complex numbers are not ordered like real numbers, so it makes no sense

to compare two complex numbers, other than by their length.

An important example of a convergent series is the geometric series:

Example 1. The geometric series
∑∞
k=0 q

k converges absolutely for |q| < 1. We have for the partial
sums

lim
n→∞

n∑
k=0

qk = lim
n→∞

1− qn+1

1− q
=

1− limn→∞ qn+1

1− q
=

1

1− q

provided that |q| < 1, since then the repeated powers qn as n → ∞ get smaller and smaller and
converge to zero. Therefore

∞∑
k=0

qk =
1

1− q
if |q| < 1

Notice, that this says that the geometric series converges for any complex number q inside the disk
of unit radius around zero (but not on its boundary) in the complex plane. In fact, this is the
largest domain on which the series converges.

8. Convergency tests of infinite series

Theorem 2 (Divergency Test). If the series
∑∞
k=1 zk converges, then limk→∞ zk = 0. This is

often used in the equivalent negation: If limk→∞ zk 6= 0 then the series
∑∞
k=1 zk diverges. Note that

zk ∈ C can be complex numbers.

Important is to understand that limk→∞ zk = 0 does not imply that the series
∑∞
k=1 zk converges,

as shown by the harmonic series. The Divergency Test is the first test to apply. It either gives you
divergency (and thus nothing more needs to be done), or it is inconclusive, at which point you look
for another test.

Theorem 3 (Integral Test). Let f : [1,∞]→ [0,∞) be a non-negative real valued function f(x) ≥ 0
which can be integrated over every finite subinterval [1, b] ∈ [1,∞) (e.g., any continues function
f(x) ≥ 0 satisfies this assumption). Then the infinite series

∑∞
k=1 f(k) converges if and only if

the improper integral
∫∞

1
f(x)dx <∞, that is, the area under the graph y = f(x) is finite over the

whole interval [1,∞).
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The standard example where this test can be applied to is the series
∑∞
k=1

1
nα : it converges for

α > 1 and diverges for α ≤ 1.

Theorem 4 (Leibnitz Test). Consider the alternating series
∑∞
k=1(−1)kak where

(i) ak ≥ 0 and
(ii) limk→∞ ak = 0 .

Then the series
∑∞
k=1(−1)kak converges.

The standard example is the alternating harmonic series
∑∞
k=1(−1)k 1

k , which sums to ln(2) as
we will soon prove.

The last two tests only apply to series of real numbers. The next two criterions, which test for
absolute convergency, can be applied to series of complex numbers.

Theorem 5 (Ratio Test). Let
∑∞
k=1 zk be a series of complex numbers. Then the following holds:

(i) If limk→∞
|zk+1|
|zk| < 1, the series is absolutely convergent.

(ii) If limk→∞
|zk+1|
|zk| > 1, the series is divergent.

(iii) If limk→∞
|zk+1|
|zk| = 1, nothing can be concluded.

Sometimes the successive ratios of absolute values |zk+1|
|zk| of the terms of the original series do

not form a convergent sequence. In this case a modified, but slightly more tedious, criterion can be
formulated:

(i) If there exists a number 0 ≤ M < 1 so that |zk+1|
|zk| ≤ M for all but finitely many k, then

the series is absolutely convergent. Important here is that M < 1 is strictly less than 1.

(ii) If there exists a number M > 1 so that |zk+1|
|zk| ≥ M for infinitely many k, then the series

is divergent. Again, it is important that M > 1 is strictly larger than 1.

The standard example where this test can be applied is the exponential series
∑∞
k=0

zk

k! , which

we now also have for complex numbers z ∈ C: in this case zk = zk

k! and thus |zk+1|
|zk| = |z|

k+1 . Since
1
k+1 → 0 as k →∞, we have

lim
k→∞

|zk+1|
|zk|

= lim
k→∞

|z|
k + 1

= |z| lim
k→∞

1

k + 1
= 0

Since 0 < 1, we conclude from the Ratio Test that the exponential series converges absolutely for
all z ∈ C. Note that we now can raise any real non-negative number a ≥ 0 to complex powers via

az := ez ln a

So we came a long way from an = a · · · a to az.

Theorem 6 (Root Test). Let
∑∞
k=1 zk be a series of complex numbers. Then the following holds:

(i) If limk→∞
k
√
|zk| < 1, the series is absolutely convergent.

(ii) If limk→∞
k
√
|zk| > 1, the series is divergent.

(iii) If limk→∞
k
√
|zk| = 1, nothing can be concluded.

Sometimes the k-th roots of the absolute values k
√
|zk| of the terms of the original series do not

form a convergent sequence. In this case a modified, but slightly more tedious, criterion can be
formulated:
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(i) If there exists a number 0 ≤ M < 1 so that k
√
|zk| ≤ M for all but finitely many k, then

the series is absolutely convergent. Important here is that M < 1 is strictly less than 1.
(ii) If there exists a number M > 1 so that k

√
|zk| ≥ M for infinitely many k, then the series

is divergent. Again, it is important that M > 1 is strictly larger than 1.

The Ratio and Root Tests may give different results when applied to the same series, so if one
of the tests is inconclusive, try the other.

9. Power series

We are now applying all the things we know about series of numbers to power series, and we
will do it immediately over complex numbers since there is not much of a difference. Suggestive
notation (not always religiously adhered to and motivated by z = x + iy) is to use z for complex
numbers and x for real numbers.

Recall that a power series with (complex) coefficients ak ∈ C centered at z0 ∈ C is just an infinite
degree polynomial

∞∑
k=0

ak(z − z0)k

The first question arising is for which values of z does this series converge? For the two examples we
have discussed the geometric series

∑∞
k=0 z

k converges only in the interior of the unit disk |z| < 1

and the exponential series
∑∞
k=0

zk

k! converges for al z ∈ C.
In general there are three possibilities when discussing the convergency behavior of a power series∑∞
k=0 ak(z − z0)k:

(i) The power series only converges for z = z0, in which case its value is a0.
(ii) There is some number R > 0 so that the power series absolutely converges for |z−z0| < R,

that is, inside the disk of radius R centered at z0 in the complex plane, and diverges for
|z − z0| > R, that is, outside this disk.

(iii) The power series converges for all z ∈ C.

We call the number R the convergency radius of the power series. We set R = 0 in case (i) and
R =∞ in case (iii). Notice that nothing is said what happens along the boundary circle |z−z0| = R.
There the power series may converge of diverge.

The convergency radius of a power series
∑∞
k=0 ak(z − z0)k is calculated using the Ratio (or

Root) Tests as follows: since zk = ak(z−z0)k we have zk+1

zk
= ak+1

ak
(z−z0), and therefore the power

series converges absolutely provided that

lim
k→∞

|z − z0|
|ak+1|
|ak|

< 1 or equivalently |z − z0| <
1

limk→∞
|ak+1|
|ak|

and diverges if |z− z0| > 1

limk→∞
|ak+1|
|ak|

. Thus, we obtain the following formulas for the convergency

radius, depending whether it is computed by the Ratio or Root Test:

Theorem 7 (Convergency radius). The convergency radius of the power series
∑∞
k=0 ak(z − z0)k

is given by

R =
1

limk→∞
|ak+1|
|ak|

(from Ratio Test) and R =
1

limk→∞
k
√
|ak|

( from Root Test)
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One of the reasons power series are important is that every “reasonable” function can be ex-
pressed/represented as a power series (even though we have encountered a function in HW 11 which
cannot be expressed by a power series). A second reason is that power series can be differentiated
and integrated term by term.

Theorem 8. Let
∑∞
k=0 ak(z− z0)k be a power series with convergency radius R > 0 and define the

function

f(z) :=

∞∑
k=0

ak(z − z0)k

that is, the function values f(z) are given by summing up the power series with input z. Then,

(i) f ′(z) =
∑∞
k=1 k ak(z − z0)k−1 with same convergency radius R > 0.

(ii)
∫
f(z)dz =

∑∞
k=0

ak
k+1 (z − z0)k+1 with same convergency radius R > 0.

In particular, when restricted to the real axis (and assuming the coefficients ak are real numbers),
f : (x0−R, x0+R)→ R is an infinitely often differentiable and integrable function whose derivatives
and integrals are computed term by term.

This leaves us with the question which functions have power series representations. From (i)
in the previous theorem we note that f ′(z0) = a1 and by definition of f(z) we have f(z0) = a0.
Calculating f ′′(z) term by term, we see that f ′′(z0) = 2a2, and generally f (k)(z0) = k!ak. Therefore,
if some arbitrary function g(z) can be expressed as a power series centered at some point z0 at all,
then this series must have the form

g(z) =

∞∑
k=0

g(k)(z0)

k!
(z − z0)k

Definition 6. Given an infinitely often differentiable function f : I → R on an interval I ⊂ R and
a point z0 ∈ I, its Taylor series T (f)(z) is the power series

T (f)(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k .

How can we decide whether the Taylor series on its interval of convergency is equal to the
function, that is, T (f)(z) = f(z) for |z − z0| < R? This is answered by Taylor’s Theorem, which
expands any infinitely often differentiable function in its Taylor polynomial and a remainder term:

Theorem 9 (Taylor polynomial with remainder term). Let f : I → R be an infinitely often differ-
entiable function and let z0 ∈ I. Then

f(z) =

n∑
k=0

f (k)(z0)

k!
(z − z0)k +

{∫ z
z0

(z−t)k
k! f (k+1)(t) dt

(z−z0)k+1

(k+1)! f (k+1)(ξ)

where ξ ∈ [z0, z] is between z0 and z. We call the first expression on the right hand side the Taylor
polynomial of degree n, and the second term the n-th remainder term Rn(z), for which we have two
versions. In this theorem everything is on the real number line, even though we notate by z etc.

From this presentation of a function f(z) we deduce that the remainder term has to tend to zero
as n→∞ in order for the Taylor series to equal the function.
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Theorem 10 (Taylor series). Let f : I → R be an infinitely often differentiable function and let
z0 ∈ I. Assume that the Taylor series T (f)(z) has convergency radius R > 0. Then

f(z) = T (f)(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)k

on the interval |z − z0| < R if and only if limn→∞Rn(z) = 0 for all |z − z0| < R.
Moreover, if the Taylor series converges at any of the boundary points y = z0±R of the interval

(z0 −R, z0 +R) then its value at y equals to the function value f(y), that is,

f(y) =

∞∑
k=0

f (k)(z0)

k!
(y − z0)k .

One example, where this theorem applies, is the Taylor series of the natural logarithm

ln(1 + z) =

∞∑
k=1

(−1)k+1 z
k

k

which has convergency radius R = 1, and thus absolutely converges for |z| < 1. But by the Leibniz
Test the series also converges at z = 1, so that we obtain

ln(2) =

∞∑
k=1

(−1)k+1 1

k

as the value of the alternating harmonic series.

10. Euler’s Formula

As a first application of complex numbers, we investigate the exponential series

(10) ez =

∞∑
k=0

zk

k!

Since |zk| = |z|k and the series of non-negative real numbers
∑∞
k=0

|z|k
k! converges for any value of

|z|, we conclude that (10) converges absolutely for all z ∈ C. Moreover, the same arguments as for
the real exponential series show the functional equation

ez+w = ezew

Next note that

ez =

∞∑
k=0

zk

k!
=
∞∑
k=0

(
zk

k!
) =

∞∑
k=0

zk

k!
=
∞∑
k=0

z̄k

k!
= ez̄

and hence, for real α ∈ R,

eiα = eiα = e−iα .

Therefore

|eiα| =
√
eiαeiα =

√
eiαe−iα =

√
eiα−iα =

√
e0 = 1

so that eiα ∈ S1 is a point on the the circle S1 of radius 1 centered at the origin. The small miracle
happening here is that eiα makes the angle (in radiants) α ∈ [0, 2π) with the x-axis in counter
clockwise direction. This means, using the Greek’s geometric definition of the trig functions, that
we obtain Euler’s Formula

(11) eiα = cosα+ i sinα
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which relates the trig functions and the exponential function.
To see why eiα ∈ S1 has angle α with the x-axis, we view γ(t) = eit as a parameterized curve

starting at γ(0) = 1 tracing out the unit circle. Since

|γ′(t) = |ieit| = 1

this curve has unit speed, and therefore its length between 1 and eiα is given by

L(γ; [0, α]) =

∫ α

0

|γ′(t)| dt =

∫ α

0

dt = α

which shows that eiα ∈ S1 makes angle α in radiants (which is just arclength on the unit circle)
with the x-axis.

From our geometric interpretation of eiα and the periodicity of the trig functions, we read off
the periodicity of the exponential function on the imaginary line:

e0 = 1 ei
π
2 = i eiπ = −1 ei

3π
2 = −i ei2π = 1

and therefore
ei2πn = 1

for all integers n ∈ Z.
Euler’s formula (11) can be used, for example, to derive the power series expansions of the trig

functions and the angle sum formulas for the trig functions from the functional equation of the
exponential function.

A further application is the polar decomposition of a complex number

z = |z|eiα

into its length and angle α ∈ [0, 2π) in radiants measured counter clockwise from the x-axis. The
polar presentation is particularly useful when multiplying complex numbers: let z = |z|eiα and
w = |w|eiβ , then

zw = |z||w|ei(α+β) .

This verifies our interpretation of multiplication of complex numbers: multiplication by z rotates
w by the angle α which z makes with the x-axis and scales w by the length !z! of z.

Besides their algebraic significance—polynomials have as many zeros as their degree—complex
numbers present planar Euclidean geometry: the absolute value |z| is the Euclidean length, addition
of complex numbers is vector addition, and multiplication by a complex number is a stretch rotation.

There are two more number systems, in each of which one has to give up familiar properties, which
describe Euclidean geometry of Euclidean 3- and 4-space, the Hamilton numbers or Quaternions H,
and the Cayley numbers or Octonions O, which present Euclidean geometry in 7- and 8-dimensional
space. In the case of Quaternions multiplication presents rotation is 3- and 4-space, which we
know is non-commutative (e.g., the Rubik’s cube). For the Cayley numbers multiplication is non-
commutative but also non-associative. One can show that those are the only number systems which
extend the real numbers, so we have a tower of number systems

R ⊂ C ⊂ H ⊂ O .


