
Coxeter factorizations and the Matrix Tree theorem with

generalized Jucys-Murphy weights

Guillaume Chapuy, Theo Douvropoulos

Paris VII, IRIF and CNRS, ERC CombiTop

UMN Combinatorics Seminar, April 24, 2020

Slides available at my website linked in the abstract (www.irif.fr/∼douvr001/)

Counting trees and counting factorizations

Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are nn−2 trees on n labeled vertices.

Example, n = 3:

1

1 12

2

23 3

3

33−1 = 3

Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are nn−2 trees on n labeled vertices.

Example, n = 3:

Corollary (Denes, 1959).
Call a permutation c ∈ Sn a long cycle if it is conjugate to (12 · · ·n). There are nn−2 · (n− 1)!
minimal length factorizations τ1 · · · τn−1 = c of long cycles c ∈ Sn in transpositions τi.

1

1 12

2

23 3

3

1

2

3

4

5

8

7

6

6

2 3

4
5

1

7
(68)(38)(23)(13)(56)(46)(78) = (12645873)

33−1 = 3

Counting trees and counting factorizations

Theorem (Cayley 1889, +other people). There are nn−2 trees on n labeled vertices.

Example, n = 3:

Corollary (Denes, 1959).
Call a permutation c ∈ Sn a long cycle if it is conjugate to (12 · · ·n). There are nn−2 · (n− 1)!
minimal length factorizations τ1 · · · τn−1 = c of long cycles c ∈ Sn in transpositions τi.

1

1 12

2

23 3

3

1

2

3

4

5

8

7

6

6

2 3

4
5

1

7
(68)(38)(23)(13)(56)(46)(78) = (12645873)

33−1 = 3

Caution:
All long cycles appear here!

1

2 3 4 5 6

Some long cycles do not appear here!

1

2

3 4
5

6

What if we add weights?

What if we add weights?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

What if we add weights?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Theorem ((weighted) Matrix Tree theorem).
The Laplacian of a graph G on n vertices counts the spanning trees of G via the formula∑

T a sp. tree for G

w(T) =
1

n
·
∏
λi 6=0

λi(ω),

where the λi(ω) are the eigenvalues of the Laplacian LG and wt the natural weight on trees.

What if we add weights?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Theorem ((weighted) Matrix Tree theorem).
The Laplacian of a graph G on n vertices counts the spanning trees of G via the formula∑

T a sp. tree for G

w(T) =
1

n
·
∏
λi 6=0

λi(ω),

where the λi(ω) are the eigenvalues of the Laplacian LG and wt the natural weight on trees.

qdet
(
LK4(ω)

)
:=
∏
λi 6=0

λi(ω) = 4 ·w12 ·w13 ·w14 + 4 ·w12 ·w23 ·w14 + 4 ·w13 ·w23 ·w14 + · · ·

Example for G = K4:

1

2
3

4
1

2

3

4

12

3

4

Same for factorizations!

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Corollary (the Denes argument).
The weighted count of factorizations of long cycles c ∈ Sn in tranpositions τi is given via∑

τ1 · · · τn−1 = c
w(τ1) · · ·w(τn−1) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

where the λi(ω) are the eigenvalues of the Laplacian LKn and w
(
(ij)
)
= ωij.

Same for factorizations!

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Corollary (the Denes argument).
The weighted count of factorizations of long cycles c ∈ Sn in tranpositions τi is given via∑

τ1 · · · τn−1 = c
w(τ1) · · ·w(τn−1) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

where the λi(ω) are the eigenvalues of the Laplacian LKn and w
(
(ij)
)
= ωij.

qdet
(
LK4(ω)

)
:=
∏
λi 6=0

λi(ω) = 4 ·w12 ·w13 ·w14 + 4 ·w12 ·w23 ·w14 + 4 ·w13 ·w23 ·w14 + · · ·

Example for G = K4:

(14)(13)(12) = (1234)

(14)(12)(13) = (1324)

(12)(13)(14) = (1432)

· · ·

(12)(23)(14) = (1423)

(12)(14)(23) = (1423)

(14)(12)(23) = (1234)

· · ·

(13)(23)(14) = (1432)

(13)(14)(23) = (1432)

(14)(13)(23) = (1324)

· · ·

Counting arbitrary length factorizations of long cycles

Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

For example FSn(n− 1) = nn−2 · (n− 1)! and FSn(k) = 0 for k ≤ n− 2.

Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

For example FSn(n− 1) = nn−2 · (n− 1)! and FSn(k) = 0 for k ≤ n− 2.

Now, consider the exponential generating function

FSn(t) =
∑
N≥0

FSn(N) · t
N

N !
.

Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

For example FSn(n− 1) = nn−2 · (n− 1)! and FSn(k) = 0 for k ≤ n− 2.

Now, consider the exponential generating function

FSn(t) =
∑
N≥0

FSn(N) · t
N

N !
.

Theorem (Jackson ’88 and Shapiro-Shapiro-Vainshtein ’96). For the symmetric group Sn:

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1.

Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

For example FSn(n− 1) = nn−2 · (n− 1)! and FSn(k) = 0 for k ≤ n− 2.

Now, consider the exponential generating function

FSn(t) =
∑
N≥0

FSn(N) · t
N

N !
.

Theorem (Jackson ’88 and Shapiro-Shapiro-Vainshtein ’96). For the symmetric group Sn:

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1.

Notice that [tn−1

(n− 1)!

]
FSn(t) =

1

n
· nn−1 · (n− 1)! = nn−2 · (n− 1)!.

exp. gen. fnc.

Can we do both at the same time?

Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
The exponential generating function above is given via the product formula:

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)
,

where w(R) =
∑

i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).

Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
The exponential generating function above is given via the product formula:

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)
,

where w(R) =
∑

i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).

Taking the leading term then gives:[tn−1

(n− 1)!

]
FSn(t,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

Exp. gen. fnc.

Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
The exponential generating function above is given via the product formula:

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)
,

where w(R) =
∑

i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).

Taking the leading term then gives:[tn−1

(n− 1)!

]
FSn(t,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

Exp. gen. fnc.
which is in fact a new proof of the (weighted)
Matrix Tree theorem after Denes’ argument.

A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!

A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!

Taking leading term
Forgetting the weights

Forgetting the weightsTaking leading term

A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!

Taking leading term
Forgetting the weights

Forgetting the weightsTaking leading term

Not yet!

Complex reflection groups and Coxeter elements

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group Sn, just any long cycle.

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group Sn, just any long cycle.
2. In a real reflection group W , a product of the simple generators in any order and any

element conjugate to that.

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group Sn, just any long cycle.
2. In a real reflection group W , a product of the simple generators in any order and any

element conjugate to that.
3. Equivalently for real W , c is an element whose order satisfies |c| · n = 2|R|, and which has

an invariant plane that is not orthogonal to any root and which it rotates by 2πi/|c|.

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group Sn, just any long cycle.
2. In a real reflection group W , a product of the simple generators in any order and any

element conjugate to that.
3. Equivalently for real W , c is an element whose order satisfies |c| · n = 2|R|, and which has

an invariant plane that is not orthogonal to any root and which it rotates by 2πi/|c|.

E6 E7 E8

Complex reflection groups and Coxeter elements

A finite subgroup W ≤ GL(V), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.

Shephard and Todd have classified (irreducible) complex reflection groups into:
1. an infinite 3-parameter family G(r, p, n) of monomial groups
2. 34 exceptional cases indexed G4 to G37.

Definition. Well-generated groups W possess Coxeter elements c. Those are:
1. In the symmetric group Sn, just any long cycle.
2. In a real reflection group W , a product of the simple generators in any order and any

element conjugate to that.
3. Equivalently for real W , c is an element whose order satisfies |c| · n = 2|R|, and which has

an invariant plane that is not orthogonal to any root and which it rotates by 2πi/|c|.

E6 E7 E8

4. In the general complex case, c is a Springer e2πi/h-regular element where h is the
Gordon-Griffeth Coxeter number (|R|+ |A|)/n.

Arbitrary length reflection factorizations of Coxeter elements c

Arbitrary length reflection factorizations of Coxeter elements c

If R denotes the set of reflections of W and C the class of Coxeter elements, we write

FW (N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

Arbitrary length reflection factorizations of Coxeter elements c

If R denotes the set of reflections of W and C the class of Coxeter elements, we write

FW (N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

We consider as before the exponential generating function:

FW (t) :=
∑
N≥0

FW (N) · t
N

N !
.

Arbitrary length reflection factorizations of Coxeter elements c

If R denotes the set of reflections of W and C the class of Coxeter elements, we write

FW (N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

We consider as before the exponential generating function:

FW (t) :=
∑
N≥0

FW (N) · t
N

N !
.

Theorem (Chapuy-Stump, ’12).
If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

FW (t) =
et|R|

h
(1− e−th)n.

Arbitrary length reflection factorizations of Coxeter elements c

If R denotes the set of reflections of W and C the class of Coxeter elements, we write

FW (N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

We consider as before the exponential generating function:

FW (t) :=
∑
N≥0

FW (N) · t
N

N !
.

Theorem (Chapuy-Stump, ’12).
If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

FW (t) =
et|R|

h
(1− e−th)n.

Notice that [tn
n!

]
FW (t) =

1

h
· hn · n! = |C| · h

nn!

|W |
.

Exp. gen. fnc.

Arbitrary length reflection factorizations of Coxeter elements c

If R denotes the set of reflections of W and C the class of Coxeter elements, we write

FW (N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

We consider as before the exponential generating function:

FW (t) :=
∑
N≥0

FW (N) · t
N

N !
.

Theorem (Chapuy-Stump, ’12).
If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

FW (t) =
et|R|

h
(1− e−th)n.

Notice that [tn
n!

]
FW (t) =

1

h
· hn · n! = |C| · h

nn!

|W |
.

Exp. gen. fnc.

Looijenga-Deligne-Arnol’d-Chapoton-Reading-Bessis formula
for the chain number of the noncrossing lattice NC(W)

A bigger poset of formulas!

A bigger poset of formulas!

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn
(t) =

et(
n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn
(n− 1) = nn−2 · (n− 1)!

FW (n) = hn−1 · n!

FW (t) =
et|R|

h
· (1− t−th)n

A bigger poset of formulas!

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn
(t) =

et(
n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn
(n− 1) = nn−2 · (n− 1)!

FW (n) = hn−1 · n!

FW (t) =
et|R|

h
· (1− t−th)n

Leading term
Leading term

Leading term
ωi = 1 W = Sn

W = Sn

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn
(t) =

et(
n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn
(n− 1) = nn−2 · (n− 1)!

FW (n) = hn−1 · n!

FW (t) =
et|R|

h
· (1− t−th)n

A bigger poset of formulas! something is missing...

Leading term
Leading term

Leading term
ωi = 1 W = Sn

W = Sn

???

???

W = Sn Leading term
ωi = 1

Factorizations of Coxeter elements with Jucys-Muprhy weights

Factorizations of Coxeter elements with Jucys-Muprhy weights

Consider a (maximal) tower of parabolic subgroups

T :=
(
{1} = W0 ≤ W1 ≤ W2 ≤ · · · ≤ Wn = W

)
,

Factorizations of Coxeter elements with Jucys-Muprhy weights

Consider a (maximal) tower of parabolic subgroups

T :=
(
{1} = W0 ≤ W1 ≤ W2 ≤ · · · ≤ Wn = W

)
,

and a weight system wT on reflections τ ∈ R with parameters ω := (ωi) assigned by:

wT (τ) = ωi if and only if τ ∈ Wi \Wi−1.

Factorizations of Coxeter elements with Jucys-Muprhy weights

Consider a (maximal) tower of parabolic subgroups

T :=
(
{1} = W0 ≤ W1 ≤ W2 ≤ · · · ≤ Wn = W

)
,

and a weight system wT on reflections τ ∈ R with parameters ω := (ωi) assigned by:

wT (τ) = ωi if and only if τ ∈ Wi \Wi−1.

If C denotes the class of Coxeter elements, define the exponential generating function

FTW (t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

wT (τ1) ·wT (τ2) · · ·wT (τN).

Factorizations of Coxeter elements with Jucys-Muprhy weights

Consider a (maximal) tower of parabolic subgroups

T :=
(
{1} = W0 ≤ W1 ≤ W2 ≤ · · · ≤ Wn = W

)
,

and a weight system wT on reflections τ ∈ R with parameters ω := (ωi) assigned by:

wT (τ) = ωi if and only if τ ∈ Wi \Wi−1.

If C denotes the class of Coxeter elements, define the exponential generating function

FTW (t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

wT (τ1) ·wT (τ2) · · ·wT (τN).

Theorem 1 (Chapuy, D. ’19). For any parabolic tower T , the function FTW (t,ω) is given as

FTW (t,ω) =
etwT (R)

h
·
n∏
i=1

(
1− e−tλTi (ω)

)
,

Factorizations of Coxeter elements with Jucys-Muprhy weights

Consider a (maximal) tower of parabolic subgroups

T :=
(
{1} = W0 ≤ W1 ≤ W2 ≤ · · · ≤ Wn = W

)
,

and a weight system wT on reflections τ ∈ R with parameters ω := (ωi) assigned by:

wT (τ) = ωi if and only if τ ∈ Wi \Wi−1.

If C denotes the class of Coxeter elements, define the exponential generating function

FTW (t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

wT (τ1) ·wT (τ2) · · ·wT (τN).

Theorem 1 (Chapuy, D. ’19). For any parabolic tower T , the function FTW (t,ω) is given as

FTW (t,ω) =
etwT (R)

h
·
n∏
i=1

(
1− e−tλTi (ω)

)
,

where {λTi (ω)} are the eigenvaues of the W -Laplacian:

LTW (ω) :=
∑
τ∈R

wT (τ) ·
(
1− ρV (τ)

)
∈ GL(V).

(ρV is the reflection representation of W)

Why call it the W -Laplacian?

Why call it the W -Laplacian?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Why call it the W -Laplacian?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j


=
∑
i<j


0 0 0 0
0 ωij −ωij 0
0 −ωij ωij 0
0 0 0 0

 =
∑
i<j

ωij ·

(
1−


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


)

Why call it the W -Laplacian?

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j


=
∑
i<j


0 0 0 0
0 ωij −ωij 0
0 −ωij ωij 0
0 0 0 0

 =
∑
i<j

ωij ·

(
1−


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


)

So that the definition

LTW (ω) :=
∑
τ∈R

wT (τ) ·
(
1− ρV (τ)

)
∈ GL(V)

is a direct generalization of the graph Laplacian.

A (maximally ?) good poset of formulas!

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn
(t) =

et(
n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn
(n− 1) = nn−2 · (n− 1)!

FW (n) = hn−1 · n!

FW (t) =
et|R|

h
· (1− t−th)n

A (maximally ?) good poset of formulas!

FTW (t,ω) =
etwT (R)

h
·
n∏
i=1

(
1− e−tλ

T
i (ω)

)

FTW (ω) =
(1
h
·
n∏
i=1

λTi (ω)
)
· (n− 1)!

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn
(t) =

et(
n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

(1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn
(n− 1) = nn−2 · (n− 1)!

FW (n) = hn−1 · n!

FW (t) =
et|R|

h
· (1− t−th)n

A (maximally ?) good poset of formulas!

Leading term
Leading term

Leading term
ωi = 1 W = Sn

W = Sn

W = Sn Leading term
ωi = 1

FTW (t,ω) =
etwT (R)

h
·
n∏
i=1

(
1− e−tλ

T
i (ω)

)

FTW (ω) =
(1
h
·
n∏
i=1

λTi (ω)
)
· (n− 1)!

W = Sn

ωi = 1

Representation theoretic interpretation

Representation theoretic interpretation

The filtration of R by the tower T defines natural analogs of the Jucys-Murphy elements:

C[W] 3 Ji :=
∑

τ ∈ R and τ ∈ Wi \Wi−1

τ,

and we write C[J] := C[J1, · · · , Jn] for the (commutative) algebra they generate.

Representation theoretic interpretation

The filtration of R by the tower T defines natural analogs of the Jucys-Murphy elements:

C[W] 3 Ji :=
∑

τ ∈ R and τ ∈ Wi \Wi−1

τ,

and we write C[J] := C[J1, · · · , Jn] for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ1 and ψ2 of W are tower equivalent, and
write ψ1 ≡ ψ2, if they agree on the subalgebra C[J] of C[W] for any choice of T .

Representation theoretic interpretation

The filtration of R by the tower T defines natural analogs of the Jucys-Murphy elements:

C[W] 3 Ji :=
∑

τ ∈ R and τ ∈ Wi \Wi−1

τ,

and we write C[J] := C[J1, · · · , Jn] for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ1 and ψ2 of W are tower equivalent, and
write ψ1 ≡ ψ2, if they agree on the subalgebra C[J] of C[W] for any choice of T .

Theorem 2 (Chapuy, D. ’19). Our Thm. 1 can be rephrased as the tower equivalence:

∑
χ∈Ŵ

χ(c−1) · χ ≡
n∑
k=1

(−1)k ·
k∧
(Vref).

Representation theoretic interpretation

The filtration of R by the tower T defines natural analogs of the Jucys-Murphy elements:

C[W] 3 Ji :=
∑

τ ∈ R and τ ∈ Wi \Wi−1

τ,

and we write C[J] := C[J1, · · · , Jn] for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ1 and ψ2 of W are tower equivalent, and
write ψ1 ≡ ψ2, if they agree on the subalgebra C[J] of C[W] for any choice of T .

Theorem 2 (Chapuy, D. ’19). Our Thm. 1 can be rephrased as the tower equivalence:

∑
χ∈Ŵ

χ(c−1) · χ ≡
n∑
k=1

(−1)k ·
k∧
(Vref).

That the virtual characters agree on the identity id ∈ W and the element of the group
algebra R :=

∑n
i=1 Ji =

∑
τ∈R τ is in fact equivalent with the Chapuy-Stump formula.

It has relatively difficult uniform proofs.

The product form is forced by the tower equivalence (Thm. 2)

The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

FTW (t,ω) =
etw(R)

h

∑
χ∈Ŵ

χ(c−1) · χ
(
−LT

W (ω)N
)
· t

N

N !
,

where we write LT
W (ω) for the Laplacian element

∑
τ∈RwT (τ)(id− τ) ∈ C[W].

The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

FTW (t,ω) =
etw(R)

h

∑
χ∈Ŵ

χ(c−1) · χ
(
−LT

W (ω)N
)
· t

N

N !
,

where we write LT
W (ω) for the Laplacian element

∑
τ∈RwT (τ)(id− τ) ∈ C[W].

By Theorem 2 we can rewrite this as

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
(k∧(

Vref
))(
−LT

W (ω)N
)
· t

N

N !

The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

FTW (t,ω) =
etw(R)

h

∑
χ∈Ŵ

χ(c−1) · χ
(
−LT

W (ω)N
)
· t

N

N !
,

where we write LT
W (ω) for the Laplacian element

∑
τ∈RwT (τ)(id− τ) ∈ C[W].

By Theorem 2 we can rewrite this as

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
(k∧(

Vref
))(
−LT

W (ω)N
)
· t

N

N !

=
etw(R)

h

n∑
k=0

(−1)k
∑

σj(ω)∈Spec
(∧k(Vref)

)(
LT

W (ω)
) e−tσi(ω)

The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

FTW (t,ω) =
etw(R)

h

∑
χ∈Ŵ

χ(c−1) · χ
(
−LT

W (ω)N
)
· t

N

N !
,

where we write LT
W (ω) for the Laplacian element

∑
τ∈RwT (τ)(id− τ) ∈ C[W].

By Theorem 2 we can rewrite this as

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
(k∧(

Vref
))(
−LT

W (ω)N
)
· t

N

N !

=
etw(R)

h

n∑
k=0

(−1)k
∑

σj(ω)∈Spec
(∧k(Vref)

)(
LT

W (ω)
) e−tσi(ω)

Burman’s theory of Lie-like elements completely determines the eigenvalues of LT
W (ω) on∧k(Vref). They are precisely the k-sums of the eigenvalues of the W -Laplacian LTW (ω).

The product form is forced by the tower equivalence (Thm. 2)

The Frobenius lemma for enumeration gives us that

FTW (t,ω) =
etw(R)

h

∑
χ∈Ŵ

χ(c−1) · χ
(
−LT

W (ω)N
)
· t

N

N !
,

where we write LT
W (ω) for the Laplacian element

∑
τ∈RwT (τ)(id− τ) ∈ C[W].

By Theorem 2 we can rewrite this as

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
(k∧(

Vref
))(
−LT

W (ω)N
)
· t

N

N !

=
etw(R)

h

n∑
k=0

(−1)k
∑

σj(ω)∈Spec
(∧k(Vref)

)(
LT

W (ω)
) e−tσi(ω)

Burman’s theory of Lie-like elements completely determines the eigenvalues of LT
W (ω) on∧k(Vref). They are precisely the k-sums of the eigenvalues of the W -Laplacian LTW (ω).

So now, we have

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
∑

1≤i1≤···≤ik≤n

e−tλi1 (ω)−···−tλik (ω) =
etw(R)

h
·
n∏
i=1

(
1− e−tλi(ω)

)
.

Ingredients of our proof

Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

FW (t) =
1

h

∑
χ∈Ŵ

χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

FW (t) =
1

h

∑
χ∈Ŵ

χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

FTW (t,ω) =
1

h

∑
χ∈Ŵ

χ(c−1) ·
∑

χ∈ResT (χ)

mult(χ) · exp
(
t ·

n∑
i=1

(
χ̃i(Ri)− χ̃i−1(Ri−1)

)
· ωi
)
,

where the second summation is over all chains of characters χ : (χ = χn, χn−1, · · · , χ0) that
appear as we restrict the character χ of W down the tower T .

Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

FW (t) =
1

h

∑
χ∈Ŵ

χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

FTW (t,ω) =
1

h

∑
χ∈Ŵ

χ(c−1) ·
∑

χ∈ResT (χ)

mult(χ) · exp
(
t ·

n∑
i=1

(
χ̃i(Ri)− χ̃i−1(Ri−1)

)
· ωi
)
,

where the second summation is over all chains of characters χ : (χ = χn, χn−1, · · · , χ0) that
appear as we restrict the character χ of W down the tower T .

This is one way to cover the exceptional cases. It took about 500 CPU hours!

Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

FW (t) =
1

h

∑
χ∈Ŵ

χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

FTW (t,ω) =
1

h

∑
χ∈Ŵ

χ(c−1) ·
∑

χ∈ResT (χ)

mult(χ) · exp
(
t ·

n∑
i=1

(
χ̃i(Ri)− χ̃i−1(Ri−1)

)
· ωi
)
,

where the second summation is over all chains of characters χ : (χ = χn, χn−1, · · · , χ0) that
appear as we restrict the character χ of W down the tower T .

This is one way to cover the exceptional cases. It took about 500 CPU hours!

2) A non-trivial recursion in the infinite families G(r, 1, n) and G(r, r, n).
Their characters and parabolic subgroups are indexed by combinatorial objects and restriction
to (parabolic) subgroups can be described via a variant of the Littlewood-Richardson’s rules
(John Stembridge’s notes were very helpful).

Ingredients of our proof

1) A weighted version of the Frobenius Lemma:

FW (t) =
1

h

∑
χ∈Ŵ

χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

FTW (t,ω) =
1

h

∑
χ∈Ŵ

χ(c−1) ·
∑

χ∈ResT (χ)

mult(χ) · exp
(
t ·

n∑
i=1

(
χ̃i(Ri)− χ̃i−1(Ri−1)

)
· ωi
)
,

where the second summation is over all chains of characters χ : (χ = χn, χn−1, · · · , χ0) that
appear as we restrict the character χ of W down the tower T .

This is one way to cover the exceptional cases. It took about 500 CPU hours!

2) A non-trivial recursion in the infinite families G(r, 1, n) and G(r, r, n).
Their characters and parabolic subgroups are indexed by combinatorial objects and restriction
to (parabolic) subgroups can be described via a variant of the Littlewood-Richardson’s rules
(John Stembridge’s notes were very helpful).

3) Burman’s theory of Lie-like elements and our ability to experiment in Sage-Gap-Chevie
were key. Also a love for the ”Okounkov-Vershik approach” (thanks Vic!).

A W -matrix forest theorem!

A W -matrix forest theorem!

The whole characteristic polynomial of the Laplacian of a graph G has
a combinatorial interpretation. This is usually referred to as the
(weighted) Matrix-forest theorem:

det
(
x+ LG(ω)

)
=
∑
F

w(F) · xc(F),

where the sum is over all forests F of rooted trees in G, and where c(F) counts the number
of trees in the forest (and hence also roots).

A W -matrix forest theorem!

Theorem 3 (Chapuy, D. ’19). The characteristic polynomial of the W -Laplacian is given as

det
(
x+ LTW (ω)

)
=

∑
τ1 · · · τn−k = cX

cX ∈ C(WX), k = dim(X)

|CWX
(cX)| ·wT (τ1) · · ·wT (τn−k) ·

xk

(n− k)!
,

where the sum is over (reduced) reflection factorizations of any Coxeter element cX of any
parabolic subgroup WX .

The whole characteristic polynomial of the Laplacian of a graph G has
a combinatorial interpretation. This is usually referred to as the
(weighted) Matrix-forest theorem:

det
(
x+ LG(ω)

)
=
∑
F

w(F) · xc(F),

where the sum is over all forests F of rooted trees in G, and where c(F) counts the number
of trees in the forest (and hence also roots).

A W -matrix forest theorem!

Theorem 3 (Chapuy, D. ’19). The characteristic polynomial of the W -Laplacian is given as

det
(
x+ LTW (ω)

)
=

∑
τ1 · · · τn−k = cX

cX ∈ C(WX), k = dim(X)

|CWX
(cX)| ·wT (τ1) · · ·wT (τn−k) ·

xk

(n− k)!
,

where the sum is over (reduced) reflection factorizations of any Coxeter element cX of any
parabolic subgroup WX .

The whole characteristic polynomial of the Laplacian of a graph G has
a combinatorial interpretation. This is usually referred to as the
(weighted) Matrix-forest theorem:

det
(
x+ LG(ω)

)
=
∑
F

w(F) · xc(F),

where the sum is over all forests F of rooted trees in G, and where c(F) counts the number
of trees in the forest (and hence also roots).

Corollary (Chapuy, D. ’19). If we set all weights equal to 1 we get a generalization of the
Deligne-Arnol’d-Bessis formula Hur(W) = hnn!

|W | :

(x+ h)n =
∑

X∈LAW

|WX | · Hur(WX) ·
xdim(X)(

codim(X)
)
!
.

A Laplacian LA(ω) for general hyperplane arrangements

A Laplacian LA(ω) for general hyperplane arrangements

Let A a hyperplane arrangement in some V ∼= Cn and ω := (ωi)
N
i=1 a weight system for each

of its N -many hyperplanes Hi.

A Laplacian LA(ω) for general hyperplane arrangements

Let A a hyperplane arrangement in some V ∼= Cn and ω := (ωi)
N
i=1 a weight system for each

of its N -many hyperplanes Hi.

Definition. We give an A-Laplacian matrix as

GL(V) 3 LA(ω) :=
N∑
i=1

ωi ·
(
Id(n)− SHi

)
,

where Id(n) is the (n×n) identity matrix and SHi
denotes the orthogonal reflection across Hi.

A Laplacian LA(ω) for general hyperplane arrangements

Let A a hyperplane arrangement in some V ∼= Cn and ω := (ωi)
N
i=1 a weight system for each

of its N -many hyperplanes Hi.

Definition. We give an A-Laplacian matrix as

GL(V) 3 LA(ω) :=
N∑
i=1

ωi ·
(
Id(n)− SHi

)
,

where Id(n) is the (n×n) identity matrix and SHi
denotes the orthogonal reflection across Hi.

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉

)k
s,t=1
· xn−k,

where the sum is over all linearly independent sets of vectors ri (and k = 0 . . . n).

A recursion for the A-Laplacian

A recursion for the A-Laplacian

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉

)k
s,t=1
· xn−k,

where the sum is over all linearly independent sets of vectors ri (and k = 0 . . . n).

A recursion for the A-Laplacian

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉

)k
s,t=1
· xn−k,

where the sum is over all linearly independent sets of vectors ri (and k = 0 . . . n).

Proposition (Chapuy, D. ’19). The characteristic polynomial of the A-Laplacian matrix
satisfies

det
(
x+ LA(ω)

)
=
∑
X∈LA

qdet
(
LAX

(ω)
)
· xdim(X),

where LA denotes the intersection lattice of A and qdet stands for quasideterminant.

A recursion for the A-Laplacian

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉

)k
s,t=1
· xn−k,

where the sum is over all linearly independent sets of vectors ri (and k = 0 . . . n).

Proposition (Chapuy, D. ’19). The characteristic polynomial of the A-Laplacian matrix
satisfies

det
(
x+ LA(ω)

)
=
∑
X∈LA

qdet
(
LAX

(ω)
)
· xdim(X),

where LA denotes the intersection lattice of A and qdet stands for quasideterminant.

Corollary. Our W -Matrix-forest theorem.

A recursion for the A-Laplacian

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉

)k
s,t=1
· xn−k,

where the sum is over all linearly independent sets of vectors ri (and k = 0 . . . n).

Proposition (Chapuy, D. ’19). The characteristic polynomial of the A-Laplacian matrix
satisfies

det
(
x+ LA(ω)

)
=
∑
X∈LA

qdet
(
LAX

(ω)
)
· xdim(X),

where LA denotes the intersection lattice of A and qdet stands for quasideterminant.

Corollary. Our W -Matrix-forest theorem.

The recursion looks very similar to Brieskorn’s lemma:

Poin(V \ A, t) =
∑
X∈LA

rank
(
Htop(V \ AX)

)
· tdim(X),

which in fact shows furthermore a natural decomposition of the corresponding cohomology
spaces. Could the previous proposition be interpreted in a similar way?

A uniform proof of the chain number hnn!
|W | of NC(W).

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

The Deligne-Reading recursion:

Hur(W) =
h

2

∑
s∈S

Hur(W〈s〉).

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

The Deligne-Reading recursion:

Hur(W) =
h

2

∑
s∈S

Hur(W〈s〉).

A stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

The Deligne-Reading recursion:

Hur(W) =
h

2

∑
s∈S

Hur(W〈s〉).

A stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

τ1 · · · τn−1︸ ︷︷ ︸
cL

·τn = c.

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

The Deligne-Reading recursion:

Hur(W) =
h

2

∑
s∈S

Hur(W〈s〉).

A stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

The point is that we know:

Krew(X) =

∏dim(X)
i=1 (h+ 1− bXi)
[N(X) : WX]

and Krew(L) =
h

[N(L) : WL]
.

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

τ1 · · · τn−1︸ ︷︷ ︸
cL

·τn = c.

A uniform proof of the chain number hnn!
|W | of NC(W).

Write Hur(W) for the number of reduced reflection factorizations of a fixed Coxeter element c:

Hur(W) = #{(τ1, · · · , τn) ∈ Rn : τ1 · · · τn = c} = hnn!

|W |
.

Only recenlty we have
uniform proofs. They
are all quite involved!

The Deligne-Reading recursion:

Hur(W) =
h

2

∑
s∈S

Hur(W〈s〉).

A stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

The point is that we know:

Krew(X) =

∏dim(X)
i=1 (h+ 1− bXi)
[N(X) : WX]

and Krew(L) =
h

[N(L) : WL]
.

indeed this is equivalent as enumerating factorizations with respect to just the last reflection:

τ1 · · · τn−1︸ ︷︷ ︸
cL

·τn = c.

Uniformely!

Case by case.

A uniform proof of the chain number hnn!
|W | of NC(W).

A uniform proof of the chain number hnn!
|W | of NC(W).

So, now the stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

A uniform proof of the chain number hnn!
|W | of NC(W).

So, now the stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

becomes

Hur(W) =
∑

L∈L1AW
/W

h

[N(L) : WL]
· Hur(WL),

A uniform proof of the chain number hnn!
|W | of NC(W).

So, now the stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

becomes

Hur(W) =
∑

L∈L1AW
/W

h

[N(L) : WL]
· Hur(WL),

which after pluggin in the formula to be proven demands that

hn−1n! =
∑

L∈L1AW
/W

|W |
|N(L)|

·
(n−1∏
i=1

hi(WL)
)
· (n− 1)!,

A uniform proof of the chain number hnn!
|W | of NC(W).

So, now the stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

becomes

Hur(W) =
∑

L∈L1AW
/W

h

[N(L) : WL]
· Hur(WL),

which after pluggin in the formula to be proven demands that

hn−1n! =
∑

L∈L1AW
/W

|W |
|N(L)|

·
(n−1∏
i=1

hi(WL)
)
· (n− 1)!,

and now summing over all flats (instead of orbits of flats):

n · hn−1 =
∑

L∈L1AW

n−1∏
i=1

hi(WL).

A uniform proof of the chain number hnn!
|W | of NC(W).

So, now the stupid recursion:

Hur(W) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

becomes

Hur(W) =
∑

L∈L1AW
/W

h

[N(L) : WL]
· Hur(WL),

which after pluggin in the formula to be proven demands that

hn−1n! =
∑

L∈L1AW
/W

|W |
|N(L)|

·
(n−1∏
i=1

hi(WL)
)
· (n− 1)!,

and now summing over all flats (instead of orbits of flats):

n · hn−1 =
∑

L∈L1AW

n−1∏
i=1

hi(WL).

But in fact the recursion for the characteristic polynomial of the W -Laplacian gives us more:

(h+ x)n =
∑

X∈LAW

(codim(X)∏
i=1

hi(X)
)
· xdim(X).

The end!

The end!

Thank you very much!

A combinatorial description of the eigenvalues of the W -Laplacian

A combinatorial description of the eigenvalues of the W -Laplacian

