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Caution:
All long cycles appear here!
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w(T ) =
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where the λi(ω) are the eigenvalues of the Laplacian LG and wt the natural weight on trees.
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Theorem ((weighted) Matrix Tree theorem).
The Laplacian of a graph G on n vertices counts the spanning trees of G via the formula∑

T a sp. tree for G

w(T ) =
1

n
·
∏
λi 6=0

λi(ω),

where the λi(ω) are the eigenvalues of the Laplacian LG and wt the natural weight on trees.

qdet
(
LK4(ω)

)
:=
∏
λi 6=0

λi(ω) = 4 ·w12 ·w13 ·w14 + 4 ·w12 ·w23 ·w14 + 4 ·w13 ·w23 ·w14 + · · ·
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Same for factorizations!

LK4(ω) :=



∑
j 6=1

ω1j −ω12 −ω13 −ω14

−ω12

∑
j 6=2

ω2j −ω23 −ω24

−ω13 −ω23

∑
j 6=3

ω3j −ω34

−ω14 −ω24 −ω34

∑
j 6=4

ω4j



1 2

34

ω14

ω34

ω23

ω12

ω
13

ω 2
4

Laplacian Matrix

Corollary (the Denes argument).
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·
∏
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λi(ω)
)
· (n− 1)!,

where the λi(ω) are the eigenvalues of the Laplacian LKn and w
(
(ij)
)
= ωij.
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Example for G = K4:
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· · ·

(12)(23)(14) = (1423)
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· · ·
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· · ·
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Counting arbitrary length factorizations of long cycles

If R denotes the set of transpositions of Sn and C the class of long cycles, we write

FSn(N) := #{(τ1, · · · , τN , c) ∈ RN × C | τ1 · · · τN = c}.

For example FSn(n− 1) = nn−2 · (n− 1)! and FSn(k) = 0 for k ≤ n− 2.

Now, consider the exponential generating function

FSn(t) =
∑
N≥0

FSn(N) · t
N

N !
.

Theorem (Jackson ’88 and Shapiro-Shapiro-Vainshtein ’96). For the symmetric group Sn:

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1.

Notice that [ tn−1

(n− 1)!

]
FSn(t) =

1

n
· nn−1 · (n− 1)! = nn−2 · (n− 1)!.

exp. gen. fnc.
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We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).



Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
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i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).



Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
The exponential generating function above is given via the product formula:

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)
,

where w(R) =
∑

i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).

Taking the leading term then gives:[ tn−1

(n− 1)!

]
FSn(t,ω) =

( 1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

Exp. gen. fnc.



Can we do both at the same time?

We consider
(
n
2

)
parameters ω := (ωij)i<j that form a weight system w

(
(ij)
)
= ωij for the

transpositions (ij) ∈ Sn. If C is the class of the long cycles, define:

FSn(t,ω) :=
∑
N≥0

tN

N !

∑
(τ1, · · · , τN , c) ∈ RN × C

τ1 · · · τN = c

w(τ1) ·w(τ2) · · ·w(τN).

Theorem (Burman-Zvonkine ’08, Alon-Kozma ’10).
The exponential generating function above is given via the product formula:

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)
,

where w(R) =
∑

i<j ωij and the λi(ω) are the eigenvalues of the Laplacian LKn(ω).

Taking the leading term then gives:[ tn−1

(n− 1)!

]
FSn(t,ω) =

( 1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!,

Exp. gen. fnc.
which is in fact a new proof of the (weighted)
Matrix Tree theorem after Denes’ argument.



A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

( 1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!



A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

( 1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!

Taking leading term
Forgetting the weights

Forgetting the weightsTaking leading term



A complete poset of formulas?

FSn(t,ω) =
etw(R)

n
·
∏
λi 6=0

(
1− e−tλi(ω)

)

FSn(t) =
et(

n
2)

n
· (1− e−tn)n−1FSn(n− 1,ω) =

( 1
n
·
∏
λi 6=0

λi(ω)
)
· (n− 1)!

FSn(n− 1) = nn−2 · (n− 1)!

Taking leading term
Forgetting the weights

Forgetting the weightsTaking leading term

Not yet!
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A finite subgroup W ≤ GL(V ), for some V ∼= Cn is called a complex reflection group if it is
generated by pseudo-reflections. These are C-linear maps t that fix a hyperplane. If W is
generated by n reflections we say that it is well-generated.
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an invariant plane that is not orthogonal to any root and which it rotates by 2πi/|c|.

E6 E7 E8

4. In the general complex case, c is a Springer e2πi/h-regular element where h is the
Gordon-Griffeth Coxeter number (|R|+ |A|)/n.
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Looijenga-Deligne-Arnol’d-Chapoton-Reading-Bessis formula
for the chain number of the noncrossing lattice NC(W )
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FSn
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A bigger poset of formulas! something is missing...

Leading term
Leading term

Leading term
ωi = 1 W = Sn
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???

???

W = Sn Leading term
ωi = 1
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Consider a (maximal) tower of parabolic subgroups
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FTW (t,ω) =
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where {λTi (ω)} are the eigenvaues of the W -Laplacian:

LTW (ω) :=
∑
τ∈R

wT (τ) ·
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1− ρV (τ)
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∈ GL(V ).

(ρV is the reflection representation of W )
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So that the definition

LTW (ω) :=
∑
τ∈R

wT (τ) ·
(
1− ρV (τ)

)
∈ GL(V )

is a direct generalization of the graph Laplacian.
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The filtration of R by the tower T defines natural analogs of the Jucys-Murphy elements:

C[W ] 3 Ji :=
∑

τ ∈ R and τ ∈ Wi \Wi−1

τ,

and we write C[J ] := C[J1, · · · , Jn] for the (commutative) algebra they generate.

Definition. We say that two virtual characters ψ1 and ψ2 of W are tower equivalent, and
write ψ1 ≡ ψ2, if they agree on the subalgebra C[J ] of C[W ] for any choice of T .

Theorem 2 (Chapuy, D. ’19). Our Thm. 1 can be rephrased as the tower equivalence:

∑
χ∈Ŵ

χ(c−1) · χ ≡
n∑
k=1

(−1)k ·
k∧
(Vref).

That the virtual characters agree on the identity id ∈ W and the element of the group
algebra R :=

∑n
i=1 Ji =

∑
τ∈R τ is in fact equivalent with the Chapuy-Stump formula.

It has relatively difficult uniform proofs.
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Burman’s theory of Lie-like elements completely determines the eigenvalues of LT
W (ω) on∧k(Vref). They are precisely the k-sums of the eigenvalues of the W -Laplacian LTW (ω).

So now, we have

FTW (t,ω) =
etw(R)

h

n∑
k=0

(−1)k
∑

1≤i1≤···≤ik≤n

e−tλi1 (ω)−···−tλik (ω) =
etw(R)

h
·
n∏
i=1

(
1− e−tλi(ω)

)
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χ(1) · χ(c−1) · exp
(
t · χ̃(R)

)
becomes

FTW (t,ω) =
1

h

∑
χ∈Ŵ
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appear as we restrict the character χ of W down the tower T .

This is one way to cover the exceptional cases. It took about 500 CPU hours!

2) A non-trivial recursion in the infinite families G(r, 1, n) and G(r, r, n).
Their characters and parabolic subgroups are indexed by combinatorial objects and restriction
to (parabolic) subgroups can be described via a variant of the Littlewood-Richardson’s rules
(John Stembridge’s notes were very helpful).

3) Burman’s theory of Lie-like elements and our ability to experiment in Sage-Gap-Chevie
were key. Also a love for the ”Okounkov-Vershik approach” (thanks Vic!).
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|CWX
(cX)| ·wT (τ1) · · ·wT (τn−k) ·

xk

(n− k)!
,

where the sum is over (reduced) reflection factorizations of any Coxeter element cX of any
parabolic subgroup WX .

The whole characteristic polynomial of the Laplacian of a graph G has
a combinatorial interpretation. This is usually referred to as the
(weighted) Matrix-forest theorem:

det
(
x+ LG(ω)

)
=
∑
F

w(F) · xc(F),

where the sum is over all forests F of rooted trees in G, and where c(F) counts the number
of trees in the forest (and hence also roots).

Corollary (Chapuy, D. ’19). If we set all weights equal to 1 we get a generalization of the
Deligne-Arnol’d-Bessis formula Hur(W ) = hnn!

|W | :

(x+ h)n =
∑

X∈LAW

|WX | · Hur(WX) ·
xdim(X)(

codim(X)
)
!
.
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N∑
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ωi ·
(
Id(n)− SHi

)
,

where Id(n) is the (n×n) identity matrix and SHi
denotes the orthogonal reflection across Hi.

Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
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)
=

∑
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Lemma (Burman et al. ’15). (Abstract Matrix-forest theorem)
For each hyperplane Hi ∈ A choose an orthogonal vector ri of unit norm. Then

det
(
x+ LA(ω)

)
=

∑
{ri1 ,··· ,rik}

ωi1 · · ·ωik · det
(
〈ris , rit〉
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satisfies
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(
x+ LA(ω)

)
=
∑
X∈LA

qdet
(
LAX

(ω)
)
· xdim(X),

where LA denotes the intersection lattice of A and qdet stands for quasideterminant.

Corollary. Our W -Matrix-forest theorem.

The recursion looks very similar to Brieskorn’s lemma:

Poin(V \ A, t) =
∑
X∈LA

rank
(
Htop(V \ AX)

)
· tdim(X),

which in fact shows furthermore a natural decomposition of the corresponding cohomology
spaces. Could the previous proposition be interpreted in a similar way?
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Uniformely!

Case by case.
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So, now the stupid recursion:

Hur(W ) =
∑

L∈L1AW
/W

Krew(L) · Hur(WL),

becomes

Hur(W ) =
∑

L∈L1AW
/W

h

[N(L) : WL]
· Hur(WL),

which after pluggin in the formula to be proven demands that

hn−1n! =
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L∈L1AW
/W

|W |
|N(L)|

·
( n−1∏
i=1

hi(WL)
)
· (n− 1)!,

and now summing over all flats (instead of orbits of flats):

n · hn−1 =
∑

L∈L1AW

n−1∏
i=1

hi(WL).

But in fact the recursion for the characteristic polynomial of the W -Laplacian gives us more:

(h+ x)n =
∑

X∈LAW

( codim(X)∏
i=1

hi(X)
)
· xdim(X).
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