Coxeter numbers: From fake degree palindromicity to the enumeration of reflection factorizations.

Theo Douvropoulos

Paris VII, IRIF (ERC CombiTop)

November 21, 2018

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

For example, the 3¹ factorizations

$$(12)(23) = (123)$$
 $(13)(12) = (123)$ $(23)(13) = (123)$.

The number of reduced reflection factorizations of c

Theorem (Hurwitz, 1892)

There are n^{n-2} (minimal length) factorizations $t_1 \cdots t_{n-1} = (12 \cdots n) \in S_n$ where the t_i 's are transpositions.

For example, the 3¹ factorizations

$$(12)(23) = (123)$$
 $(13)(12) = (123)$ $(23)(13) = (123)$.

$\mathsf{Theorem}\;(\mathsf{Deligne} ext{-}\mathsf{Arnol'd} ext{-}\mathsf{Bessis})$

For a well-generated, complex reflection group W, with Coxeter number h, there are $\frac{h^n n!}{|W|}$ (minimal length) reflection factorizations $t_1 \cdots t_n = c$ of the Coxeter element c.

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

If $\mathcal R$ denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

Theorem (Jackson, '88)

If
$$c = (12 \cdots n) \in S_n$$
, then

$$FAC_{S_n,c}(t) = \frac{e^{t\binom{n}{2}}}{n!} (1 - e^{-tn})^{n-1}.$$

If ${\mathcal R}$ denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{S_n,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{S_n,c}(N) \frac{t^N}{N!}.$$

Theorem (Jackson, '88)

If
$$c = (12 \cdots n) \in S_n$$
, then

$$\mathsf{FAC}_{S_n,c}(t) = \frac{e^{t\binom{n}{2}}}{n!} (1 - e^{-tn})^{n-1}.$$

Notice that

$$\left[\frac{t^{n-1}}{(n-1)!}\right] \mathsf{FAC}_{S_n,c}(t) = \frac{1}{n!} \cdot (n)^{n-1} \cdot (n-1)! = n^{n-2}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$\mathsf{FAC}_{W,c}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} (1 - e^{-th})^n.$$

If R denotes the set of reflections of W, we write

$$\mathsf{Fact}_{W,c}(N) := \#\{(t_1,\cdots,t_N) \in \mathcal{R}^n \mid t_1\cdots t_N = c\}.$$

Now, consider the exponential generating function:

$$\mathsf{FAC}_{W,c}(t) = \sum_{N \geq 0} \mathsf{Fact}_{W,c}(N) \frac{t^N}{N!}.$$

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

$$\mathsf{FAC}_{W,c}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} (1 - e^{-th})^n.$$

Notice that

$$\left[\frac{t^n}{n!}\right]\mathsf{FAC}_{W,c}(t) = \frac{1}{|W|} \cdot h^n \cdot n! = \frac{h^n n!}{|W|}.$$

A brief history of the W-Hurwitz number $\frac{n}{1}$

 $\frac{h^n n!}{|W|}$

Some proofs and some mathematical shadows:

A brief history of the W-Hurwitz number

 $\frac{h^n n!}{|W|}$

Some proofs and some mathematical shadows:

1 Deligne-Tits-Zagier, rediscovered by Reading. Enumerate factorizations $t_1 \cdots t_n = c$ with respect to the c-orbit of t_n :

$$\operatorname{\mathsf{Hur}}(W) = rac{h}{2} \sum_{s \in S} \operatorname{\mathsf{Hur}}(W_{\langle s \rangle})$$

A brief history of the W-Hurwitz number

 $\frac{h^n n!}{|W|}$

Some proofs and some mathematical shadows:

1 Deligne-Tits-Zagier, rediscovered by Reading. Enumerate factorizations $t_1 \cdots t_n = c$ with respect to the c-orbit of t_n :

$$\operatorname{\mathsf{Hur}}(W) = rac{h}{2} \sum_{s \in S} \operatorname{\mathsf{Hur}}(W_{\langle s \rangle})$$

② Chapoton. Interpretation as the number of maximal chains of NC(W):

$$Hur(W) = \left[\frac{X^n}{n!}\right] \prod_{i=1}^n \frac{hX + d_i}{d_i}$$

A brief history of the W-Hurwitz number $\frac{h^n n!}{|W|}$

Some proofs and some mathematical shadows:

Deligne-Tits-Zagier, rediscovered by Reading. Enumerate factorizations $t_1 \cdots t_n = c$ with respect to the *c*-orbit of t_n :

$$\operatorname{\mathsf{Hur}}(W) = rac{h}{2} \sum_{s \in S} \operatorname{\mathsf{Hur}}(W_{\langle s \rangle})$$

Chapoton. Interpretation as the number of maximal chains of NC(W):

$$\mathsf{Hur}(W) = \left[\frac{X^n}{n!}\right] \prod_{i=1}^n \frac{hX + d_i}{d_i}$$

Uyashko-Looijenga and Bessis. There exist two subgroups $G_1 \leq G_2 \leq B_n$ of the braid group B_n on n strands, with *finite* indexes ν_1 and ν_2 such that:

$$u_1 = \frac{h^n n!}{|W|}$$
 $u_2 = \#\{\text{reduced reflection factorizations of } c\}$

$$\sum_{N\geq 0} \#\{(t_1,\cdots,t_N)\in\mathcal{R}^N\mid t_1\cdots t_N=c\} \quad \cdot \frac{t^N}{N!}$$

$$\sum_{N\geq 0} \#\{(t_1,\cdots,t_N)\in\mathcal{R}^N\mid t_1\cdots t_N=c\} \cdot \frac{t^N}{N!}$$
$$=\sum_{N\geq 0} \left[c\right] \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \quad \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \quad \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \quad \cdot \frac{t^N}{N!}$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$\stackrel{!}{=!} \sum_{N\geq 0} \frac{1}{|W|} \operatorname{Tr}_{\mathbb{C}[W]} \left(\mathfrak{R}^N \cdot c^{-1}\right) \cdot \frac{t^N}{N!}$$

$$\sum_{N\geq 0} \#\{(t_1, \cdots, t_N) \in \mathcal{R}^N \mid t_1 \cdots t_N = c\} \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [c] \, \mathfrak{R}^N \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} [\operatorname{id}] \, (\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$\stackrel{!}{=!} \sum_{N\geq 0} \frac{1}{|W|} \operatorname{Tr}_{\mathbb{C}[W]} \left(\mathfrak{R}^N \cdot c^{-1}\right) \cdot \frac{t^N}{N!}$$

$$= \sum_{N\geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$= \sum_{N \ge 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \frac{t^N}{N!}$$

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi \big(\mathfrak{R}^N \cdot c^{-1} \big) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \Big(\frac{\chi(\mathfrak{R})}{\chi(1)} \Big)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \end{split}$$

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \left(\frac{\chi(\mathfrak{R})}{\chi(1)}\right)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \frac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp\left(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)}\right) \end{split}$$

Consider the central element $\mathfrak{R} := \sum_{t \in \mathcal{R}} t$ of the group algebra $\mathbb{C}[W]$.

$$\begin{split} &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \dim(\chi) \cdot \chi(\mathfrak{R}^N \cdot c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \sum_{N \geq 0} \frac{1}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \left(\frac{\chi(\mathfrak{R})}{\chi(1)}\right)^N \cdot \chi(c^{-1}) \cdot \quad \frac{t^N}{N!} \\ &= \frac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \exp\left(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)}\right) \end{split}$$

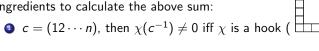
Remark (Hurwitz 1901)

Exponential generating functions that enumerate factorizations of the form $a_1 \cdots a_N = g$, where all a_i 's belong to a set C closed under conjugation, are finite (weighted) sums of (scaled) exponentials.

$$\mathsf{FAC}_{S_n,c}(t) = rac{1}{n!} \sum_{\chi \in \widehat{S}_n} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

$$\mathsf{FAC}_{\mathcal{S}_n,c}(t) = rac{1}{n!} \sum_{\chi \in \widehat{\mathcal{S}}_n} \chi(1) \cdot \chi(c^{-1}) \cdot \exp(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:



$$\mathsf{FAC}_{S_n,c}(t) = rac{1}{n!} \sum_{\chi \in \widehat{S}_n} \chi(1) \cdot \chi(c^{-1}) \cdot \exp(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- engredients to calculate the above sum: $c = (12 \cdots n), \text{ then } \chi(c^{-1}) \neq 0 \text{ iff } \chi \text{ is a hook } () .$
- ② If $\chi_k := \chi_{(1^k, n-k)}$, we have (using Jucys-Murphy elements on [

$$\chi_k(1) = \binom{n-1}{k}$$
 $\chi_k(c^{-1}) = (-1)^k$ $\frac{\chi_k(\mathfrak{R})}{\chi_k(1)} = \binom{n}{2} - nk$

$$\mathsf{FAC}_{S_n,c}(t) = \frac{1}{n!} \sum_{\chi \in \widehat{S}_n} \chi(1) \cdot \chi(c^{-1}) \cdot \exp(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- angredients to calculate the above sum: $c = (12\cdots n), \text{ then } \chi(c^{-1}) \neq 0 \text{ iff } \chi \text{ is a hook } ().$
- ② If $\chi_k := \chi_{(1^k, n-k)}$, we have (using Jucys-Murphy elements on $\boxed{0 \mid 1 \mid 2 \mid 3}$

$$\chi_k(1) = \binom{n-1}{k}$$
 $\chi_k(c^{-1}) = (-1)^k$ $\frac{\chi_k(\mathfrak{R})}{\chi_k(1)} = \binom{n}{2} - nk$

Then,

$$\mathsf{FAC}_{S_n,c}(t) = \frac{e^{t\binom{n}{2}}}{n!} \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \cdot (-1)^k \cdot \left(e^{-tn}\right)^k$$

$$\mathsf{FAC}_{S_n,c}(t) = \frac{1}{n!} \sum_{\chi \in \widehat{S}_n} \chi(1) \cdot \chi(c^{-1}) \cdot \exp(t \cdot \frac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- angredients to calculate the above sum: $c = (12\cdots n), \text{ then } \chi(c^{-1}) \neq 0 \text{ iff } \chi \text{ is a hook } ().$
- ② If $\chi_k := \chi_{(1^k, n-k)}$, we have (using Jucys-Murphy elements on

$$\chi_k(1) = \binom{n-1}{k}$$
 $\chi_k(c^{-1}) = (-1)^k$ $\frac{\chi_k(\mathfrak{R})}{\chi_k(1)} = \binom{n}{2} - nk$

Then,

$$\begin{aligned} \mathsf{FAC}_{S_n,c}(t) &= \frac{e^{t\binom{n}{2}}}{n!} \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \cdot (-1)^k \cdot \left(e^{-tn}\right)^k \\ &= \frac{e^{t\binom{n}{2}}}{n!} \cdot \left(1 - e^{-tn}\right)^{n-1}. \end{aligned}$$

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$).

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$). Shephard and Todd have classified (irreducible) complex reflection groups into:

- **1** an infinite 3-parameter family G(r, p, n) of monomial groups
- ② 34 exceptional cases indexed G_4 to G_{37} .

Complex reflection groups and regular elements

A finite subgroup $G \leq GL_n(V)$ is called a *complex reflection group* if it is generated by pseudo-reflections. There are \mathbb{C} -linear maps t that fix a hyperplane (i.e. $\operatorname{codim}(V^t)=1$). Shephard and Todd have classified (irreducible) complex reflection groups into:

- **1** an infinite 3-parameter family G(r, p, n) of monomial groups
- ② 34 exceptional cases indexed G_4 to G_{37} .

Definition

An element $g \in W$ is called ζ -regular if it has a ζ -eigenvector \vec{v} that lies in no reflection hyperplane.

In particular, a *Coxeter element* is defined as a $e^{2\pi i/h}$ -regular element for $h = (|\mathcal{R}| + |\mathcal{A}|)/n$.

You already know this definition of Coxeter elements

Example

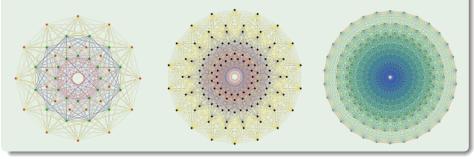
• In S_n , the regular elements are $(12\cdots n)$, $(12\cdots n-1)(n)$, and their powers. Indeed, $(\zeta^{n-1},\zeta^{n-2},\cdots,1)$ with $\zeta=e^{2\pi i/n}$ is an eigenvector for $(12\cdots n)$.

10/23

You already know this definition of Coxeter elements

Example

- In S_n , the regular elements are $(12\cdots n)$, $(12\cdots n-1)(n)$, and their powers. Indeed, $(\zeta^{n-1},\zeta^{n-2},\cdots,1)$ with $\zeta=e^{2\pi i/n}$ is an eigenvector for $(12\cdots n)$.
- ② For real reflection groups:



The Chapuy-Stump proof

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

The Chapuy-Stump proof

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

• Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .

11/23

The Chapuy-Stump proof

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- Characters of the infinite families are essentially indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.

11/23

The Chapuy-Stump proof

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- Characters of the infinite families are essentially indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.
- All complex reflection groups can be described as permutation groups on a set of roots. GAP can then produce their character tables.

11/23

The Chapuy-Stump proof

$$\mathsf{FAC}_{W,c}(t) = rac{1}{|W|} \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(c^{-1}) \cdot \mathsf{exp}(t \cdot rac{\chi(\mathfrak{R})}{\chi(1)})$$

Ingredients to calculate the above sum:

- Well-generated complex reflection groups are classified into two infinite families G(r, 1, n), G(r, r, n) and some exceptional groups among G_4 to G_{37} .
- Characters of the infinite families are essentially indexed by tuples of Young diagrams. Most of them evaluate to 0 on Coxeter elements.
- All complex reflection groups can be described as permutation groups on a set of roots. GAP can then produce their character tables.

Remark

The fact that there is no uniform construction of the irreducible characters Irr(W) makes it is very difficult to have a uniform proof.

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (\mathbf{1} - t)$. That is,

$$c_\chi := rac{1}{\chi(1)} \cdot ig(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) ig) = |\mathcal{R}| - rac{\chi(\mathfrak{R})}{\chi(1)}.$$

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (1-t)$. That is,

$$c_{\chi} := \frac{1}{\chi(1)} \cdot \big(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) \big) = |\mathcal{R}| - \frac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (1-t)$. That is,

$$c_\chi := rac{1}{\chi(1)} \cdot ig(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) ig) = |\mathcal{R}| - rac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Lemma

For a cpx reflection group W and a **regular** element $g \in W$, the total contribution in (1) of those characters $\chi \in \widehat{W}$ for which c_{χ} is not a multiple of |g| is 0.

[Just a whiff of coffee]

Definition

Given a character $\chi \in \widehat{W}$, we define the Coxeter number c_{χ} as the normalized trace of $\sum_{t \in \mathcal{R}} (\mathbf{1} - t)$. That is,

$$c_\chi := rac{1}{\chi(1)} \cdot ig(|\mathcal{R}| \chi(1) - \chi(\mathfrak{R}) ig) = |\mathcal{R}| - rac{\chi(\mathfrak{R})}{\chi(1)}.$$

The Frobenius Lemma gives then:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}). \tag{1}$$

Lemma

For a cpx reflection group W and a **regular** element $g \in W$, the total contribution in (1) of those characters $\chi \in \widehat{W}$ for which c_{χ} is not a multiple of |g| is 0.

[Just a whiff of coffee] There is a cyclic permutation on the characters, induced by a galois action on the corresponding Hecke characters, that cancels out the contributions in each non-singleton orbit.

Remark

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = rac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_\chi \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi)$$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{C_{\chi} \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

Remark

We write $l_R(g)$ for the reflection length of g, i.e. the smallest number k of (quasi-)reflections t_i needed to write $g = t_1 \cdots t_k$. This forces

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{I_R(g)-1}}{(I_R(g)-1)!} + (something) \cdot \frac{t^{I_R(g)}}{I_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_{\chi} \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

• Write $\tilde{\Phi}(X) = a(\alpha_1 - X)(\alpha_2 - X) \cdots (\alpha_k - X)$.

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_{\chi} \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- Write $\tilde{\Phi}(X) = a(\alpha_1 X)(\alpha_2 X) \cdots (\alpha_k X)$.
- 2 Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$

Remark

We write $l_R(g)$ for the reflection length of g, i.e. the smallest number k of (quasi-)reflections t_i needed to write $g = t_1 \cdots t_k$. This forces

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_\chi \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- Write $\tilde{\Phi}(X) = a(\alpha_1 X)(\alpha_2 X) \cdots (\alpha_k X)$.
- ② Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$ contributes a factor of $\alpha_i 1$ or t|g| on the leading term, depending on whether $\alpha_i = 1$ or not.

13/23

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_\chi \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- Write $\tilde{\Phi}(X) = a(\alpha_1 X)(\alpha_2 X) \cdots (\alpha_k X)$.
- ② Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$ contributes a factor of $\alpha_i 1$ or t|g| on the leading term, depending on whether $\alpha_i = 1$ or not.
- **3** $0 \le c_{\chi} \le |\mathcal{R}| + |\mathcal{R}^*|$

Remark

$$\mathsf{FAC}_{W,g}(t) = 0 + 0 \cdot \frac{t}{1} + 0 \cdot \frac{t^2}{2!} + \dots + 0 \cdot \frac{t^{l_R(g)-1}}{(l_R(g)-1)!} + (something) \cdot \frac{t^{l_R(g)}}{l_R(g)!} + \dots$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{c_\chi \mid |g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi) = \frac{e^{t|\mathcal{R}|}}{|W|} \Big[\tilde{\Phi}(X) \Big] \Big|_{X = e^{-t|g|}}$$

- Write $\tilde{\Phi}(X) = a(\alpha_1 X)(\alpha_2 X) \cdots (\alpha_k X)$.
- ② Each part $\alpha_i X = \alpha_i e^{-t|g|} = \alpha_i 1 + t|g| \cdots$ contributes a factor of $\alpha_i 1$ or t|g| on the leading term, depending on whether $\alpha_i = 1$ or not.
- **3** $0 \le c_{\chi} \le |\mathcal{R}| + |\mathcal{R}^*|$

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{A}|}{|g|} - I_R(g)$, with $\Phi(0) = 1$, and $(1-X) \not| \Phi(X)$.

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{A}|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not\mid \Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{A}|)/|g| - I_R(g)$ is sometimes 0, we have:

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{A}|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not\mid \Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{A}|)/|g| - I_R(g)$ is sometimes 0, we have:

Corollary

When W is a complex reflection group and $g \in W$ a regular element, then

• If $|g| = d_n$ (includes Coxeter elements) $FAC_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot (1 - e^{-t|g|})^{l_R(g)}$

Theorem

For a complex reflection group W, and a regular element $g \in W$:

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \left[(1 - X)^{l_R(g)} \cdot \Phi(X) \right] \Big|_{X = e^{-t|g|}}$$

Here $\Phi(X)$ is of degree $\frac{|\mathcal{R}|+|\mathcal{A}|}{|g|}-I_R(g)$, with $\Phi(0)=1$, and $(1-X)\not\mid \Phi(X)$.

Because $deg(\Phi(X)) = (|\mathcal{R}| + |\mathcal{A}|)/|g| - I_R(g)$ is sometimes 0, we have:

Corollary

When W is a complex reflection group and $g \in W$ a regular element, then

- **3** Generally, we have that $RedFact_W(g) = multiple$ of $\frac{|g|^{l_R(g)}(l_R(g))!}{|W|}$

Example

Below are the polynomials $\tilde{\Phi}(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- **1** S₄:
 - $(1234) : (1-X)^3$

Example

Below are the polynomials $\tilde{\Phi}(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24):(1-X)^2(1+2X+2X^3+X^4)$

Example

Below are the polynomials $\tilde{\Phi}(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- \bullet S_4 :
 - \bullet (1234) : $(1-X)^3$
 - (13)(24): $(1-X)^2(1+2X+2X^3+X^4)$ (123)(4): $(1-X)^2(1+X)^2$

Example

Below are the polynomials $\tilde{\Phi}(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24):(1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :

Example

Below are the polynomials $\tilde{\Phi}(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - \bullet (12345) : $(1-X)^4$
 - $(1234)(5) : (1-X)^3(1+3X+X^2)$

Example

Below are the polynomials $\Phi(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - **2** $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4):(1-X)^2(1+X)^2$
- **2** S_5 :
 - \bullet (12345) : $(1-X)^4$
 - ② (1234)(5) : $(1-X)^3(1+3X+X^2)$
 - $(13)(24)(5): (1-X)^2(1+2X+3X^2+4X^3+10X^4+4X^5+3X^6+2X^7+X^8)$

Example

Below are the polynomials $\Phi(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - (1234)(5) : $(1-X)^3(1+3X+X^2)$
- **3** S_6 :
 - **1** (123456) : $(1-X)^5$

Example

Below are the polynomials $\Phi(X)$ for $W = S_n$, $n = 4 \cdots 6$ and all regular classes

- **1** S_4 :
 - **1** (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :
 - **1** (123456) : $(1-X)^5$
 - **Q** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.

Example

Below are the polynomials $\ddot{\Phi}(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- **1** S_4 :
 - \bullet (1234) : $(1-X)^3$
 - **2** $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
 - $(13)(24)(5): (1-X)^2(1+2X+3X^2+4X^3+10X^4+4X^5+3X^6+2X^7+X^8)$
- \circ S_6 :
 - **1** (123456) : $(1-X)^5$
 - **a** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36)
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$

Example

Below are the polynomials $\ddot{\Phi}(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- **1** S_4 :
 - **1** (1234) : $(1-X)^3$
 - **2** $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :
 - **1** (123456) : $(1-X)^5$
 - **a** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36)
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$

How to count reflection factorizations

 $(12345)(6) : (1-X)^4(1+4X+X^2)$

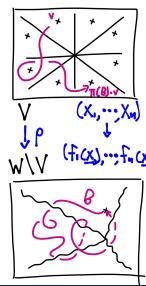
Example

Below are the polynomials $\ddot{\Phi}(X)$ for $W=S_n$, $n=4\cdots 6$ and all regular classes

- **1** S_4 :
 - **1** (1234) : $(1-X)^3$
 - ② $(13)(24): (1-X)^2(1+2X+2X^3+X^4)$
 - $(123)(4): (1-X)^2(1+X)^2$
- **2** S_5 :
 - **1** (12345) : $(1-X)^4$
 - **2** (1234)(5) : $(1-X)^3(1+3X+X^2)$
- \circ S_6 :

 - **a** (135)(246) : $(1-X)^4(1+4X+5X^2+5X^4+4X^5+X^6)$.
 - **3** (14)(25)(36)
 - $(1-X)^3(1+3X+6X^2+5X^3+18X^5+24X^6+18X^7+5X^9+6X^{10}+3X^{11}+X^{12})$
 - $(12345)(6) : (1-X)^4(1+4X+X^2)$

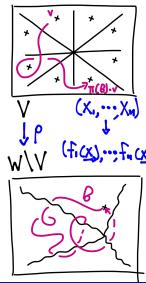
The topological braid group B(W)



Theorem (Steinberg)

W acts freely on the complement of the hyperplane arrangement $V^{\text{reg}} := V \setminus \bigcup H$. That is, $\rho: V^{\text{reg}} \to W \setminus V^{\text{reg}}$ is a covering map.

The topological braid group B(W)



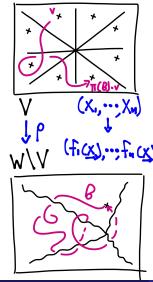
Theorem (Steinberg)

W acts freely on the complement of the hyperplane arrangement $V^{\text{reg}} := V \setminus \bigcup H$. That is, $\rho: V^{\text{reg}} \to W \setminus V^{\text{reg}}$ is a covering map.

$$1 \hookrightarrow \pi_1(V^{\mathsf{reg}}) \xrightarrow{\rho_*} \pi_1(W \backslash V^{\mathsf{reg}}) \xrightarrow{\pi} W \to 1$$

$$\vdots \qquad \qquad \vdots \\ P(W) \qquad \qquad B(W)$$

The topological braid group B(W)



Theorem (Steinberg)

W acts freely on the complement of the hyperplane arrangement $V^{\text{reg}} := V \setminus \bigcup H$. That is, $\rho: V^{\text{reg}} \to W \setminus V^{\text{reg}}$ is a covering map.

$$egin{aligned} 1 \hookrightarrow \pi_1(V^{\mathsf{reg}}) & \stackrel{
ho_*}{\longrightarrow} \pi_1(W ackslash V^{\mathsf{reg}}) & \stackrel{\pi}{\longrightarrow} W
ightarrow 1 \ & dash \& P(W) & B(W) \end{aligned}$$

Theorem (Shephard-Todd-Chevalley, GIT)

W is realized as the group of deck transformations of a covering map ρ which is **explicitly** given via the fundamental invariants f_i .

16 / 23

Hecke algebras for complex reflection groups

Consider a set of parameters $\boldsymbol{u}:=(u_{\mathcal{C},j})_{(\mathcal{C}\in\mathcal{A}/W,\ 0\leq j\leq e_{\mathcal{C}}-1)}$ where $\mathcal{A}:=\bigcup H$ is the reflection arrangement, \mathcal{C} an orbit of hyperplanes, and $e_{\mathcal{C}}$ the common order of the pointwise stabilizers W_H $(H\in\mathcal{C})$.

Hecke algebras for complex reflection groups

Consider a set of parameters $\mathbf{u} := (u_{\mathcal{C},j})_{(\mathcal{C} \in \mathcal{A}/W, \ 0 \le j \le e_{\mathcal{C}} - 1)}$ where $\mathcal{A} := \bigcup H$ is the reflection arrangement, \mathcal{C} an orbit of hyperplanes, and $e_{\mathcal{C}}$ the common order of the pointwise stabilizers W_H $(H \in \mathcal{C})$.

Definition

The generic Hecke algebra $\mathcal{H}(W)$ associated to W is the quotient of the group ring $\mathbb{Z}[\boldsymbol{u},\boldsymbol{u}^{-1}]B(W)$, over the ideal generated by the elements of the form

$$(\mathbf{s}-u_{\mathcal{C},0})(\mathbf{s}-u_{\mathcal{C},1})\cdots(\mathbf{s}-u_{\mathcal{C},e_{\mathcal{C}}-1}),$$

which we call deformed order relations. Here s runs over all possible generators of the monodromy around the stratum $\mathcal C$ of $\mathcal H$.

Hecke algebras for complex reflection groups

Consider a set of parameters $\boldsymbol{u}:=(u_{\mathcal{C},j})_{(\mathcal{C}\in\mathcal{A}/W,\ 0\leq j\leq e_{\mathcal{C}}-1)}$ where $\mathcal{A}:=\bigcup H$ is the reflection arrangement, \mathcal{C} an orbit of hyperplanes, and $e_{\mathcal{C}}$ the common order of the pointwise stabilizers W_H $(H\in\mathcal{C})$.

Definition

The generic Hecke algebra $\mathcal{H}(W)$ associated to W is the quotient of the group ring $\mathbb{Z}[\boldsymbol{u},\boldsymbol{u}^{-1}]B(W)$, over the ideal generated by the elements of the form

$$(\mathbf{s}-u_{\mathcal{C},0})(\mathbf{s}-u_{\mathcal{C},1})\cdots(\mathbf{s}-u_{\mathcal{C},e_{\mathcal{C}}-1}),$$

which we call deformed order relations. Here s runs over all possible generators of the monodromy around the stratum C of H.

Theorem (Formerly known as "The BMR-freeness conjecture")

The generic Hecke algebra is free over $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ of rank |W|.

Example

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}])$ is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu,$$

Example

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}])$ is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu, (s - x_0)(s - x_1) = 0 (t - y_0)(t - y_1)(t - y_2) = 0 (u - y_0)(u - y_1)(u - y_2) = 0 \rangle$$

Example

The generic Hecke algebra of G_{26} (over the ring $\mathbb{Z}[x_0^{\pm 1}, \cdots y_2^{\pm 1}])$ is:

$$\mathcal{H}(G_{26}) = \langle s, t, u \mid stst = tsts, su = us, tut = utu, (s - x_0)(s - x_1) = 0 (t - y_0)(t - y_1)(t - y_2) = 0 (u - y_0)(u - y_1)(u - y_2) = 0 \rangle$$

After the specializations $(x_0, x_1) = (1, -1)$, $(y_0, y_1, y_2) = (1, \zeta_3, \zeta_3^2)$, we obtain the following Coxeter-like presentation of G_{26} :

$$G_{26} = \langle s, t, u \mid stst = tsts, su = us, tut = utu, s^2 = t^3 = u^3 = 1 \rangle.$$

Splitting fields for Hecke algebras

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for parameters $\mathbf{v} := (v_{\mathcal{C},j})_{(\mathcal{C} \in \mathcal{A}/W, \ 0 \le j \le e_{\mathcal{C}} - 1)}$, which satisfy

$$v_{\mathcal{C},j}^{N} = \exp(2\pi i/e_{\mathcal{C}})u_{\mathcal{C},j}$$

the algebra $K(\mathbf{v}, \mathbf{v}^{-1})\mathcal{H}(W)$ is split.

Splitting fields for Hecke algebras

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for parameters $\mathbf{v} := (v_{\mathcal{C},j})_{(\mathcal{C} \in \mathcal{A}/W, \ 0 \le j \le e_{\mathcal{C}} - 1)}$, which satisfy

$$v_{\mathcal{C},j}^{N} = \exp(2\pi i/e_{\mathcal{C}})u_{\mathcal{C},j}$$

the algebra $K(\mathbf{v}, \mathbf{v}^{-1})\mathcal{H}(W)$ is split.

Definition

We consider the 1-parameter specialization $u_{\mathcal{C},0} \to x$ and $u_{\mathcal{C},j} \to \exp(2\pi i j/e_{\mathcal{C}})$. Then, if y is such that $y^N = x$, $K(y)\mathcal{H}_x(W)$ is split.

Splitting fields for Hecke algebras

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for parameters $\mathbf{v} := (v_{\mathcal{C},i})_{(\mathcal{C} \in \mathcal{A}/W, \ 0 \le i \le \mathbf{e}_{\mathcal{C}}-1)}$, which satisfy

$$v_{\mathcal{C},j}^{N} = \exp(2\pi i/e_{\mathcal{C}})u_{\mathcal{C},j}$$

the algebra $K(\mathbf{v}, \mathbf{v}^{-1})\mathcal{H}(W)$ is split.

Definition

We consider the 1-parameter specialization $u_{C,0} \to x$ and $u_{C,i} \to \exp(2\pi i j/e_C)$. Then, if y is such that $y^N = x$, $K(y)\mathcal{H}_x(W)$ is split.

Definition (Malle's Permutation Ψ)

We write Ψ for the permutation of the irreducible modules of $\mathcal{H}_{x}(W)$ induced by the galois conjugation $y \to e^{2\pi i/N} \cdot y \in \text{Gal}(K(y)/K(x))$.

Fake degree palindromicity \(\frac{1}{2}\)

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$).

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Definition

The fake degree $P_{\chi}(q) := \sum q^{e_i(\chi)}$ of a character $\chi \in \widehat{W}$ is a polynomial that records the *exponents* $e_i(\chi)$ of χ . These are the degrees of the graded components of $\operatorname{co}(W)$ that contain copies of χ .

Let (f_1, \dots, f_n) be homogeneous generators of the invariant algebra $\mathbb{C}[V]^W$ (so they satisfy $f_i(g^{-1}\mathbf{v}) = f_i(\mathbf{v}) \ \forall \mathbf{v} \in V$). We define the *coinvariant algebra* of W as the quotient

$$co(W) := \mathbb{C}[V]/\langle \mathbb{C}[V]^W \rangle = \mathbb{C}[V]/\langle f_1, \cdots, f_n \rangle \cong \mathbb{C}[W].$$

Definition

The fake degree $P_{\chi}(q) := \sum q^{e_i(\chi)}$ of a character $\chi \in \widehat{W}$ is a polynomial that records the *exponents* $e_i(\chi)$ of χ . These are the degrees of the graded components of $\operatorname{co}(W)$ that contain copies of χ .

Theorem (Beynon-Lusztig, Malle, Opdam)

The fake degrees $P_{\chi}(q)$ satisfy the following palindromicity property:

$$P_{\chi}(q)=q^{c_{\chi}}P_{\Psi(\chi^*)}(q^{-1}),$$

where c_{χ} are the Coxeter numbers and Ψ is Malle's permutation on Irr(W).

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ c_\chi ||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_\chi).$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ c_{\chi}||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_{\chi}).$$

• There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ c_{\chi}||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- **②** Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π' .

- $\mathsf{FAC}_{W,g}(t) = \frac{e^{\tau_{|\mathcal{N}|}}}{|\mathcal{W}|} \cdot \sum_{\chi \in \widehat{\mathcal{W}}, \ c_{\chi}||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}).$ $\bullet \text{ There is a special element } \pi \in P(W) = \pi_1(V^{\mathrm{reg}}, x_0) \text{ called } \textit{full twist}, \text{ central in the braid group } B(W). \text{ It is the geometric circle } [0, 1] \ni t \to e^{2\pi i t} \cdot x_0.$
- **②** Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)



- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{x}(T_{w}) = \chi(w) \cdot x^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}.$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ c_{\chi}||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \mathsf{exp}(-t \cdot c_{\chi}).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{\mathsf{x}}(T_{\mathsf{w}}) = \chi(\mathsf{w}) \cdot \mathsf{x}^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}$$

1 If w is a regular element of order d and χ any character we have:

$$\Psi(\chi)(w) = \exp\left(2\pi i \cdot \frac{lc_{\chi}}{d}\right) \cdot \chi(w)$$

$$\mathsf{FAC}_{W,g}(t) = \frac{e^{t|\mathcal{R}|}}{|W|} \cdot \sum_{\chi \in \widehat{W}, \ c_{\chi}||g|} \chi(1) \cdot \chi(g^{-1}) \cdot \exp(-t \cdot c_{\chi}).$$

- There is a special element $\pi \in P(W) = \pi_1(V^{\text{reg}}, x_0)$ called *full twist*, central in the braid group B(W). It is the geometric circle $[0, 1] \ni t \to e^{2\pi i t} \cdot x_0$.
- ② Every ζ -regular element w, with $\zeta = e^{2\pi i l/d}$, lifts to a d-th root of π^l . (i.e. there exists $\mathbf{w} \in B(W)$ with $\mathbf{w}^d = \pi^l$ and $\mathbf{w} \to w$ under $B(W) \to W$)
- **③** [Broue-Michel] The value of a character χ_x that corresponds to $\chi \in \widehat{W}$ (after Tits' deformation theorem) is given on roots of the full twist by:

$$\chi_{x}(T_{\mathbf{w}}) = \chi(\mathbf{w}) \cdot x^{(|\mathcal{R}| + |\mathcal{A}| - c_{\chi})I/d}.$$

• If w is a regular element of order d and χ any character we have:

$$\Psi(\chi)(w) = \exp\left(2\pi i \cdot \frac{lc_{\chi}}{d}\right) \cdot \chi(w)$$

Weighted enumeration

Definition

Consider a set of variables ${m w}:=(w_{\mathcal C})_{({\mathcal C}\in{\mathcal A}/W)}$ and the weight function

$$\mathsf{wt}: \mathcal{R} \to \{ w_{\mathcal{C}} \mid \mathcal{C} \in \mathcal{A}/W \}, \quad t \to w_{[V^t]}$$

Weighted enumeration

Definition

Consider a set of variables $\mathbf{w} := (w_{\mathcal{C}})_{(\mathcal{C} \in \mathcal{A}/W)}$ and the weight function

$$\operatorname{wt}:\mathcal{R}\to\{w_{\mathcal{C}}\mid \mathcal{C}\in\mathcal{A}/W\},\quad t\to w_{[V^t]}$$

and the exponential generating funtion of weighted reflection factorizations:

$$\mathsf{FAC}_{W,g}(oldsymbol{w},z) := \sum_{\substack{(t_1,\cdots,t_N) \in \mathcal{R}^N \ t_1\cdots t_N = g}} \mathsf{wt}(t_1)\cdots \mathsf{wt}(t_N) \cdot \frac{z^N}{N!}.$$

Weighted enumeration

Definition

Consider a set of variables $\mathbf{w} := (w_{\mathcal{C}})_{(\mathcal{C} \in \mathcal{A}/W)}$ and the weight function

$$\operatorname{wt}:\mathcal{R}\to\{w_{\mathcal{C}}\mid \mathcal{C}\in\mathcal{A}/W\},\quad t\to w_{[V^t]}$$

and the exponential generating funtion of weighted reflection factorizations:

$$\mathsf{FAC}_{W,g}(oldsymbol{w},z) := \sum_{\substack{(t_1,\cdots,t_N) \in \mathcal{R}^N \ t_1\cdots t_N = g}} \mathsf{wt}(t_1)\cdots \mathsf{wt}(t_N) \cdot \frac{z^N}{N!}.$$

Theorem

For a regular element $g \in W$, the weighted generating function takes the form:

$$\mathsf{FAC}_{W,g}(\boldsymbol{w},z) = \frac{\mathrm{e}^{z \cdot \mathsf{wt}(\mathcal{R})}}{|W|} \cdot \left[\Phi(\boldsymbol{X}) \cdot \prod_{\mathcal{C} \in \mathcal{A}/W} (1 - X_{\mathcal{C}})^{n_{\mathcal{C}}} \right]_{X_{\mathcal{C}} = \mathrm{e}^{-zw_{\mathcal{C}}|g|}}.$$

The exponents n_C are equal to the smallest number of reflections from C necessary in any reflection factorization of g.

Thank you!

