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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t; -+ t,—1 = (12---n) € S, where
the t;'s are transpositions.
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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t; -+ t,—1 = (12---n) € S, where
the t;'s are transpositions.

For example, the 31 factorizations

(12)(23) = (123)  (13)(12) = (123)  (23)(13) = (123).
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The number of reduced reflection factorizations of ¢

Theorem (Hurwitz, 1892)

There are n"~2 (minimal length) factorizations t; -+ - t,—1 = (12---n) € S, where
the t;'s are transpositions.

For example, the 31 factorizations

(12)(23) = (123)  (13)(12) = (123)  (23)(13) = (123).

Theorem (Deligne-Arnol'd-Bessis)

For a well-generated, complex reflection group W, with Coxeter number h, there
h"n!

are W (minimal length) reflection factorizations t - - - t, = c¢ of the Coxeter

element c.
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0

Theorem (Jackson, '88)

Ifc=(12---n) € S, then
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw (N) = #{(t1,--- ,tn) € R" | t1-- - tn = C}.
Now, consider the exponential generating function:
N

FACs, () = 3 Factsmc(N)%.

N>0

Theorem (Jackson, '88)

Ifc=(12---n) € S, then

FACs, o(t) =

Notice that
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw o(N) := #{(t1, -, tn) €ER" | t1-- -ty = c}.

Now, consider the exponential generating function:
N

FACw.o(t) = 3 FactW,c(N)%.

N>0
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Arbitrary length reflection factorizations of ¢

If R denotes the set of reflections of W, we write
Factw o(N) := #{(t1, -, tn) €ER" | t1-- -ty = c}.

Now, consider the exponential generating function:
N

FACw.o(t) = 3 FactW,C(N)%.

N>0

Theorem (Chapuy-Stump, '12)

If W is well-generated, of rank n, and h is the order of the Coxeter element c, then

FACW’C(t) = —
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npl
A brief history of the W-Hurwitz number h_n

W]

Some proofs and some mathematical shadows:

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5/23



npl
A brief history of the W-Hurwitz number h_n

W]

Some proofs and some mathematical shadows:

© Deligne-Tits-Zagier, rediscovered by Reading.
Enumerate factorizations t; - - - t, = ¢ with respect to the c-orbit of t,:

h
Hur(W) = > Z Hur(W())
seS
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npl
A brief history of the W-Hurwitz number h_n

W]

Some proofs and some mathematical shadows:

© Deligne-Tits-Zagier, rediscovered by Reading.
Enumerate factorizations t; - - - t, = ¢ with respect to the c-orbit of t,:

h
Hur(W) = > Z Hur(W())
seS

@ Chapoton. Interpretation as the number of maximal chains of NC(W):

T hX + d;
>,

i=1

Xn
nl

Hur(W) =
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npl
A brief history of the W-Hurwitz number h_n

W]

Some proofs and some mathematical shadows:

© Deligne-Tits-Zagier, rediscovered by Reading.
Enumerate factorizations t; - - - t, = ¢ with respect to the c-orbit of t,:

h
Hur(W) = > Z Hur(W())
seS

@ Chapoton. Interpretation as the number of maximal chains of NC(W):

Xn
nl

T hX + d;
11

Hur(W) = 7

=

© Lyashko-Looijenga and Bessis.
There exist two subgroups G; < G, < B, of the braid group B, on n strands,
with finite indexes 11 and 15 such that:
h"n!

= Wi vy = #{reduced reflection factorizations of c}

V1

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 5/

/23



How to count, the Frobenius way

Consider the central element 9% := . _ t of the group algebra C[W/].

tN

Z#{(tlv"'ytN)ERN|t1~~'thc} N|

N>0
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How to count, the Frobenius way

Consider the central element 9% := . _ t of the group algebra C[W/].

Z #{(tr, -, tn) ERN | t1- -ty = ¢}

N>0
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How to count, the Frobenius way

Consider the central element 9% := . _ t of the group algebra C[W/].

N

Z#{(tlv"'ytN)ERN|t1"'tN:C} %
N>0

N

= I mN L

N%:O [c] i

tN

= [Id] (mN.C—l) m
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How to count, the Frobenius way

Consider the central element 9% := . _ t of the group algebra C[W/].

N
Z#{(tlv"'ytN)ERN|t1~~'thc} %
N>0 !
_ otV
- Z [c] ? NI

N>0
— N —1 tN
- ['d] (m - C ) NI

N>0

[ ]. 1 tN
= 7TrC[W] (m C ) m

November 21, 2018 6/23
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How to count, the Frobenius way

Consider the central element 9% := . _ t of the group algebra C[W/].

N

Z#{(tlv"'ytN)ERN|t1~~'thc} m

N>0 !

N

= [C} mN R

sz;) NI

N

=Y [id] (®V.ct)

NZ;O NI

! 1 N -1 tN

= — Tr R .- ¢ —

o Wl i { ) N!

1 . N1 N

= ﬁ'zd'm(x)-x(m Y -
N>0 xGW
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].
N

= Z ﬁ Z dim(X)-X(iﬁN e N

N>0 xEW
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

_NZN Wi 2 dm00 () Wi
R tN
g PIL) (((1))) e
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

= Z ﬁ . Zdim(x) . X(%N e %
N>0 xEW
_ 1 X(R)\N -1 tV
=2 W -Xezwx(l)- Cy) X
1 . X(R)
= H)§WX(1) x(c™h) exp (- m)
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How to count, the Frobenius way

Consider the central element R := ), _ t of the group algebra C[W].

= Z ﬁ Zdim(x)-x(f)‘{’v . c_1)~ %
N20 XEW

1 R)\ N iyt

=3 e S () e

Remark (Hurwitz 1901)

Exponential generating functions that enumerate factorizations of the form
a---ay = g, where all a;’s belong to a set C closed under conjugation,
are finite (weighted) sums of (scaled) exponentials.

November 21, 2018 7/23
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The type-A calculation

FACs, o(t) = — Zx(l x(c7t) - exp(t - (( ))

XES

)
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The type-A calculation

FACs, o(t) = — Zx(l x(c7t) - exp(t - (( ))

XES

)

Ingredients to calculate the above sum: E
@ c=(12---n), then x(c™1) # 0 iff x is a hook ( CLITT11).
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The type-A calculation

FACs, o(t) = — Z x(1) - x(c7Y) - exp(t - (( )))
XES
Ingredients to calculate the above sum: E 3]
@ c=(12---n), then x(c™1) # 0 iff x is a hook ( CLITT11). z

Q If Xk 1= X(1¥,n—k), We have (using Jucys-Murphy elements on [0]1[2]3]4]5])

wm= (") e = M)
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Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is

generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) =1).
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Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is
generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) = 1).Shephard and Todd have classified (irreducible) complex
reflection groups into:

@ an infinite 3-parameter family G(r, p, n) of monomial groups

@ 34 exceptional cases indexed G4 to Gsy.

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations

November 21, 2018 9/23



Complex reflection groups and regular elements

A finite subgroup G < GL,(V) is called a complex reflection group if it is
generated by pseudo-reflections. There are C-linear maps t that fix a hyperplane
(i.e. codim(V*) = 1).Shephard and Todd have classified (irreducible) complex
reflection groups into:

@ an infinite 3-parameter family G(r, p, n) of monomial groups

@ 34 exceptional cases indexed G4 to Gsy.

Definition

An element g € W is called (-regular if it has a (-eigenvector v that lies in no
reflection hyperplane.
In particular, a Coxeter element is defined as a e2™/h-regular element for

h= (IR] + |A])/n.
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You already know this definition of Coxeter elements

Example

@ In S, the regular elements are (12---n), (12---n— 1)(n), and their powers.
Indeed, (¢"~1,¢"2,---,1) with { = e*™/" is an eigenvector for (12--- n).
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You already know this definition of Coxeter elements

@ In S, the regular elements are (12---n), (12---n— 1)(n), and their powers.
Indeed, (¢"~1,¢"2,---,1) with { = e*™/" is an eigenvector for (12--- n).

@ For real reflection groups:
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

XEW
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.
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The Chapuy-Stump proof

FACw <() = i 30 x(1)- x(e™) - exale- X)

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.
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The Chapuy-Stump proof

FACw (t) = ﬁ ORORICORTE S

xXEW

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.

@ All complex reflection groups can be described as permutation groups on a
set of roots. GAP can then produce their character tables.
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The Chapuy-Stump proof

Ingredients to calculate the above sum:

@ Well-generated complex reflection groups are classified into two infinite
families G(r,1,n), G(r, r,n) and some exceptional groups among G, to Gs7.

@ Characters of the infinite families are essentially indexed by tuples of Young
diagrams. Most of them evaluate to 0 on Coxeter elements.

@ All complex reflection groups can be described as permutation groups on a
set of roots. GAP can then produce their character tables.

The fact that there is no uniform construction of the irreducible characters lrr(W)
makes it is very difficult to have a uniform proof.
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

1
e (IRIx(1) = x(®) =IR| - -
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

- 1 _ — R~ XR)
The Frobenius Lemma gives then:
et\R|
FACw 5(t) = T > x(1)-x(g™h) -exp(—t - cy). (1)

xEW
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

- 1 _ — R~ XR)
The Frobenius Lemma gives then:
et\R|
FACw 5(t) = T > x(1)-x(g™h) -exp(—t - cy). (1)

xEW

For a cpx reflection group W and a regular element g € W, the total contribution
in (1) of those characters x € W for which c, is not a multiple of |g| is 0.

[Just a whiff of coffee]
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A uniform argument; the decaf version

Definition

Given a character x € W we define the Coxeter number ¢, as the normalized
trace of . (1 —t). That is,

1
Cx = Ol (IRIx(1) = x(R)) = IR| - )

The Frobenius Lemma gives then:

otIR|

> x(1) - x(g7h) exp(—t - cy). (1)

xEW

For a cpx reflection group W and a regular element g € W, the total contribution
in (1) of those characters x € W for which c, is not a multiple of |g| is 0.

[Just a whiff of coffee] There is a cyclic permutation on the characters, induced by
a galois action on the corresponding Hecke characters, that cancels out the
contributions in each non-singleton orbit.
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - t.
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

¢ 2 t/R(g)*l t/R(g)

t
F0e=Fr=coq:0- something) - ———+- - -
(i (somethine) - 1 gy

FACw ¢(t) =0+0- 1 o0 W-‘r
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

¢ 2 t/R(g)*l t/R(g)

t
F0e=Fr=coq:0- something) - ———+- - -
(i (somethine) - 1 gy

FACw ¢(t) =0+0- 1 o0 W-‘r

otIRI

FACW’g(t) - W .

> x(1) - x(g™) - exp(—t - cy)
o gl
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

FAC 0+0-fq0.5 0. M7 hing) . o8
t) = . . e ...
w.g(t) AF 1 + 1 +-o 4 Ur(g) = 1) + (something) ne)] 4
etIR] » etIRI [
R S R R L
o | gl
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

FAC 0+0-fq0.5 0. M7 hing) . o8
t) = . . e ...
w.g(t) AF 1 + 1 +-o 4 Ur(g) = 1) + (something) ne)] 4
etIR] » etIRI [
R S R R L
o | gl

Q@ Write ®(X) = a(ay — X)(az — X) - - - (ax — X).
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

FAC 0+0-fq0.5 0. M7 hing) . o8
t) = . . e ...
w.g(t) AF 1 + 1 +-o 4 Ur(g) = 1) + (something) ne)] 4
etIR] » etIRI [
R S R R L
o | gl

Q@ Write ®(X) = a(ay — X)(az — X) - - - (ax — X).
@ Eachpart aj — X =aj — e tlel =q; — 1+ t|g| — - --
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

FAC 0+0-fq0.5 0. M7 hing) . o8
t) = . . e ...
w.g(t) AF 1 + 1 +-o 4 Ur(g) = 1) + (something) ne)] 4
etIR] » etIRI [
R S R R L
o | gl

Q@ Write ®(X) = a(ay — X)(az — X) - - - (ax — X).
@ Eachparta;,— X =a;j—e tlel =q; — 1+ t|g| — - -+ contributes a factor of
a; — 1 or t|g| on the leading term, depending on whether a; = 1 or not.
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A uniform argument; the decaf version

We write Ir(g) for the reflection length of g, i.e. the smallest number k of
(quasi-)reflections t; needed to write g =ty - - - ty. This forces

FAC 0+0-fq0.5 0. M7 hing) . o8
t) = . . e ...
w.g(t) AF 1 + 1 +-o 4 Ur(g) = 1) + (something) ne)] 4
etIR] » etIRI [
R S R R L
o | gl

Q@ Write ®(X) = a(ay — X)(az — X) - - - (ax — X).

@ Eachparta;,— X =a;j—e tlel =q; — 1+ t|g| — - -+ contributes a factor of
a; — 1 or t|g| on the leading term, depending on whether a; = 1 or not.
Q 0<c < [R|+|R
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

etIR|

FACW’g(t) = W

. [(1 X)) . q;(x)”

X=e—tlgl
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

FACw . (t) = G [(1 — X)E) . ¢ (X)”

|W| X=e~tlsl

Here ®(X) is of degree \R||+||A| Ir(g), with ®(0) =1, and (1 — X) Jo(X).
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A uniform argument; the decaf version

For a complex reflection group W, and a regular element g € W:

etIR|

FACwo(t) = Ty [(1 — X)E) . ¢ (X)”

X=e—tlgl

Here ®(X) is of degree \R||+||A| Ir(g), with ®(0) =1, and (1 — X) Jo(X).

Because deg(®(X)) = (|R| + |A])/|g| — Ir(g) is sometimes 0, we have:
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A uniform argument; the decaf version

Theorem

For a complex reflection group W, and a regular element g € W:
t|R|

FACW’g(t) = W

: [(1 _ X)/R(g) . q;(x)} )

X=e—tlgl

Here ®(X) is of degree % — Ir(g), with ®(0) =1, and (1 — X) fP(X).

Because deg(®(X)) = (|R| + |A])/|g| — Ir(g) is sometimes 0, we have:

Corollary

When W is a complex reflection group and g € W a regular element, then
e!® (&)
(11— e—t\gl) W

Q If|g| = d, (includes Coxeter elements) FACyy g(t) = Wl

A\
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A uniform argument; the decaf version

Theorem

For a complex reflection group W, and a regular element g € W:

etIR|

[(1 ~ X))@ . q;(x)} )

X=e—tlgl

Here ®(X) is of degree *{HAL — Ip(g), with ©(0) =1, and (1 — X) [&(X).

Because deg(®(X)) = (|R| + |A])/|g| — Ir(g) is sometimes 0, we have:

Corollary

When W is a complex reflection group and g € W a regular element, then

tIR|
@ If|g| = d, (includes Coxeter elements) FACyy 4(t) = TW (1- e‘t‘g|)IR(g)
Ir(&) (] I
@ Generally, we have that RedFactw/(g) = multiple of |g|||/(\/T(g))
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
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Can anyone guess what is happening?

Example

Below are the polynomials @(X) for W =S5, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
@ (123)(4) : (1 — X)*(1+ X)?
e 552
@ (12345) :(1-X)*
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018 15/23



Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o S4Z
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes

o S4Z

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

o (123)(4): (1 — X)*(1 + X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)*(1 42X +3X? +4X3 +10X* +4X° +3X° +2X" 4 X8)
e 56:

O (123456) (1 - X)°
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Can anyone guess what is happening?

Example

Below are the polynomials @(X) for W =S5, n=4---6 and all regular classes

o 541

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

@ (123)(4) : (1 — X)*(1+ X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:

O (123456) (1 - X)°

@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes

o 541

o (1234) :(1-X)?

@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)

o (123)(4): (1 — X)*(1 + X)?
e 552

@ (12345) :(1-X)*

@ (1234)(5) :(1—X)}(1+3X+X?)

0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:

O (123456) (1 - X)°

@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).

@ (14)(25)(36)

(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X0 43X 4 X1?)

4
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o 541
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:
O (123456) (1 - X)°
@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
@ (14)(25)(36)
(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X10 43X 4 X1?)
0 (12345)(6) :(1— X)*(1+4X+X?)

4
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Can anyone guess what is happening?

Example

Below are the polynomials ®(X) for W = S,, n=4---6 and all regular classes
o 541
o (1234) :(1-X)?
@ (13)(24) : (1 — X)*(1 +2X +2X3 + X*)
o (123)(4): (1 — X)*(1 + X)?
e 552
@ (12345) :(1-X)*
@ (1234)(5) :(1—X)}(1+3X+X?)
0 (13)(24)(5) : (1 — X)?(14+2X +3X2 +4X3 +10X* +4X° +3X° 4+ 2X" + X®)
e 56:
O (123456) (1 - X)°
@ (135)(246)  :(1— X)*(1+4X +5X>+5X* +4X° + X°).
@ (14)(25)(36)
(1=X)3(143X+6X2+5X3+18X°+24X° +18X7 +5X°+6X10 43X 4 X1?)
0 (12345)(6) :(1— X)*(1+4X+X?)

4
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W acts freely on the complement of the
hyperplane arrangement V"8 := V/ \ | JH. That
is, p: V™ — W\ V' js a covering map.
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Theorem (Steinberg)

W acts freely on the complement of the
hyperplane arrangement V"8 := V/ \ | JH. That
is, p: V™ — W\ V' js a covering map.

1o m(vee) Lo mmwves) Low 1
Il I
P(W) B(wW)
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Theorem (Steinberg)

W acts freely on the complement of the
hyperplane arrangement V"8 := V/ \ | JH. That
is, p: V™ — W\ V' js a covering map.

1o m(vee) Lo mmwves) Low 1
Il I

Theorem (Shephard-Todd-Chevalley, GIT)

W is realized as the group of deck
transformations of a covering map p which is
explicitly given via the fundamental invariants f;.

16 /23
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Hecke algebras for complex reflection groups

Consider a set of parameters u := (uc j)cea/w, o<j<ec—1) Where A :=J H is the
reflection arrangement, C an orbit of hyperplanes, and ez the common order of
the pointwise stabilizers Wy (H € C).
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Hecke algebras for complex reflection groups <&

Consider a set of parameters u := (uc j)cea/w, o<j<ec—1) Where A :=J H is the
reflection arrangement, C an orbit of hyperplanes, and ez the common order of
the pointwise stabilizers Wy (H € C).

Definition

The generic Hecke algebra H (W) associated to W is the quotient of the group
ring Z[u, u=1]B(W), over the ideal generated by the elements of the form

(s —uco)(s —uc1) (s — uce—1),

which we call deformed order relations. Here s runs over all possible generators of
the monodromy around the stratum C of H.

v
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Hecke algebras for complex reflection groups <&

Consider a set of parameters u := (uc j)cea/w, o<j<ec—1) Where A :=J H is the
reflection arrangement, C an orbit of hyperplanes, and ez the common order of
the pointwise stabilizers Wy (H € C).

Definition

The generic Hecke algebra H (W) associated to W is the quotient of the group
ring Z[u, u=1]B(W), over the ideal generated by the elements of the form

(s —uco)(s —uc1) (s — uce—1),

which we call deformed order relations. Here s runs over all possible generators of
the monodromy around the stratum C of H.

v

Theorem (Formerly known as “The BMR-freeness conjecture”)

The generic Hecke algebra is free over Z[u, u™1] of rank |W/|.
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Hecke algebras , an example &

The generic Hecke algebra of Gys (over the ring Z[x;, - - - yitl]) is:

H(Gx) = (s,t,u| stst = tsts, su= us, tut = utu,
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Hecke algebras , an example &

The generic Hecke algebra of Gys (over the ring Z[x;, - - - yitl]) is:

H(Gx) = (s,t,u| stst = tsts, su= us, tut = utu,
(s—x)(s—x1)=0
(t —y0)(t — y1)(t —y2) =0
(v = yo)(u—y1)(u—y)=0)

Theo Douvropoulos (Paris VII, IRIF) How to count reflection factorizations November 21, 2018



Hecke algebras , an example &

The generic Hecke algebra of Gys (over the ring Z[x;, - - - yitl]) is:

H(Gx) = (s,t,u| stst = tsts, su= us, tut = utu,
(s—x)(s—x1)=0
(t —y0)(t — y1)(t —y2) =0
(v = yo)(u—y1)(u—y)=0)

After the specializations (xo, x1) = (1, —1), (0, y1,¥2) = (1,3, (3), we obtain the
following Coxeter-like presentation of Gog:

Gy = (s,t,u|stst=tsts, su=us, tut=utu, s>=t>=u>=1).
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Splitting fields for Hecke algebras &

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for
parameters v := (Vcj)(ceA/w, 0<j<ec—1), Which satisfy

vé\fj = exp(2mi/ec)uc

the algebra K (v, v=1)H(W) is split.
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Splitting fields for Hecke algebras &

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for
parameters v := (Vcj)(ceA/w, 0<j<ec—1), Which satisfy

vé\fj = exp(2mi/ec)uc

the algebra K (v, v=1)H(W) is split.

| \

Definition

We consider the 1-parameter specialization uc g — x and uc j — exp(2mij/ec).
Then, if y is such that yV = x, K(y)H.(W) is split.
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Splitting fields for Hecke algebras &

Theorem (Malle)

Let K be the field of definition of W. There is a number N such that for
parameters v := (Ve j)(ceA/w, 0<j<ec—1), Which satisfy

vé\fj = exp(2mi/ec)uc

the algebra K (v, v=1)H(W) is split.

| \

Definition
We consider the 1-parameter specialization uc g — x and uc j — exp(2mij/ec).
Then, if y is such that yV = x, K(y)H.(W) is split.

Definition (Malle's Permutation V)

We write W for the permutation of the irreducible modules of H, (W) induced by
the galois conjugation y — e*™/N .y € Gal (K(y)/K(x)).
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g~1v) = fi(v) Vv € V).
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) := C[V]/(C[V]"™)
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) := C[V]/(C[V]™) = C[VI/{f, -+, fa)
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].

Definition

The fake degree P, (q) := 3" g% of a character y € Wis a polynomial that
records the exponents e;(x) of x. These are the degrees of the graded
components of co(W) that contain copies of x.
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¢

Fake degree palindromicity <

Let (f,--- ,f,) be homogeneous generators of the invariant algebra C[V]" (so
they satisfy fi(g71v) = fi(v) Vv € V). We define the coinvariant algebra of W as
the quotient

co(W) = C[V]/(CIVI™) = C[VI/(f, -~ . f) = C[W].

Definition

The fake degree P, (q) := 3" g% of a character y € Wis a polynomial that
records the exponents e;(x) of x. These are the degrees of the graded
components of co(W) that contain copies of x.

Theorem (Beynon-Lusztig, Malle, Opdam)

The fake degrees P, (q) satisfy the following palindromicity property:

P.(q) = Py (a71),

where c, are the Coxeter numbers and V is Malle's permutation on lrr(W).
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¢

The proof of the technical lemma &

et\R| B
FACw g(t) = W[ Z x(1) - x(g™1) - exp(—t - c).
XEW, c|lgl
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The proof of the technical lemma &

et\R| B
FACw g(t) = W[ Z x(1) - x(g™1) - exp(—t - c).
XEW, c|lgl

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.
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The proof of the technical lemma &

et\R| B
FACw g(t) = W[ Z x(1) - x(g™1) - exp(—t - c).
XEW, c|lgl

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
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The proof of the technical lemma &

et\R| B
FACw g(t) = W[ Z x(1) - x(g™1) - exp(—t - c).
XEW, c|lgl

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)
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The proof of the technical lemma &

et\R| B
FACw g(t) = W[ Z x(1) - x(g™1) - exp(—t - c).
XEW, c|lgl

@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™ - xq.

@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)

@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d
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The proof of the technical lemma &

etIR| B
FACw.s(t) = T > x(1) x(g™h) exp(—t-cy).
XEW, cllg]
@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™t - xq.
@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/

(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)

@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d

Q@ If wis a regular element of order d and x any character we have:

V(0(w) = exp (25712 - y(w)
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The proof of the technical lemma &

etIR| B
FACw.s(t) = T > x(1) x(g™h) exp(—t-cy).
XEW, cllg]
@ There is a special element w € P(W) = 71 (V"™&, xo) called full twist, central
in the braid group B(W). It is the geometric circle [0,1] > t — €™t - xq.
@ Every (-regular element w, with ¢ = e2™/9 lifts to a d-th root of 7/
(i.e. there exists w € B(W) with w? = 7t/ and w — w under B(W) — W)
@ [Broue-Michel] The value of a character x, that corresponds to x € w
(after Tits' deformation theorem) is given on roots of the full twist by:

X Tw) = x(w) - x(IRIFAI=e)l/d

Q@ If wis a regular element of order d and x any character we have:

V(0(w) = exp (25712 - y(w)

d S
(5] Ifkfmgél, we have ;\U (x)(w) =0.
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Weighted enumeration

Consider a set of variables w := (w¢)ce.a/w) and the weight function

wt:R = {we |[C € A/W}E,  t— wyy
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Weighted enumeration

Consider a set of variables w := (w¢)ce.a/w) and the weight function

wt:R = {we |[C € A/W}E,  t— wyy

and the exponential generating funtion of weighted reflection factorizations:

N
z
FACW,g(WvZ) = E Wt(tl) .- -wt(tN) N
(t1, ty)ERY
tytn=g
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Weighted enumeration

Consider a set of variables w := (w¢)ce.a/w) and the weight function
wt:R = {we |[C € A/W}E,  t— wyy

and the exponential generating funtion of weighted reflection factorizations:

N
V4
FACWag(sz) = Z Wt(tl)-~-wt(tN). m
(t1,,tn)ERN
ti--tn=g

Theorem

For a regular element g € W, the weighted generating function takes the form:
ez-wt('R)

i .[cb(X). T =Xy mern
CeA/W

The exponents n¢ are equal to the smallest number of reflections from C
necessary in any reflection factorization of g.

FACw g(w, z) =
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Thank you!
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