Hurwitz numbers	For Reflection Groups
FPSAC	2021
Theo Douvropoulos Alejandro Morales	UMass Amherst
Soel Lewis =>	· George Washington U.

	Hurwitz	numbers:	A brief	Intro.
Main play or E	ers: Factor Sn in trav	izations times times	τ	of permatations
Property the	definition: f <u>group</u> <t< td=""><td>Factorizatio</td><td>n is called transitively o</td><td>transitive if the set $[n] := \{1, 2,, n\}$</td></t<>	Factorizatio	n is called transitively o	transitive if the set $[n] := \{1, 2,, n\}$
non Example	: (23).(45).(13) =(123)(45)	yes example	(12)·123)·134)·1455/1355 = (1235 (455
	2~3	5		2 3 5

· · · · · · ·	Hurwitz	numbers:	A brief	Intro.	· · · · · · · · ·
Theorew	(Hurwitz, Goulden-	Zackson,]		· · · · · · · · · · · · ·	
tor an of min	element of 6Sn of imam-length transi	f cycle-type tive transpo	J= (AI,,) c) sition Factor	the numb	er ois:
	$H_{o}(\lambda) =$	(n+c-25! .	$n^{-3} \cdot \prod_{i=1}^{c} \overline{l}$	<u>)'-1)7</u>	.
Special	l Cases;		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·
l F	2=(n), we have	$H_o(lns) = (lns)$	n-1)! · h ¹⁻³ · <u>h</u> ¹ (n-	$\frac{n}{(1)!} = n^{n-2}$	
IF]= (1"), we have	H ₀ ((1")) =	(2n-25! • n ⁿ⁻	3	
· · · · · ·					· · · · · · · ·

Hurwitz numbers: A brief Intro.
There exist many proofs of the remarkable product formula
$H_0(\lambda) = (n+c-2)! \cdot n^{c-3} \cdot \prod_{i=1}^{c} \frac{\lambda_i^{\lambda_i}}{(\lambda_i-1)!}$
A) Hurwitz + Strehl : Comparing a combinatorial cut-and-join recursion with the formula.
B Goulden-Jackson: Generating Functionology after the cut-and-join recursion and Lagrange Inversion.
OELSV Formula: Via a degree calculation of an algebraic morphism (defined on a cone over Mon).
(D) Schaeffer-Poulalhon-Duchi: A bijective proof involving trees on the cycles of the permutation.

Why Hurwitz numbers?	
t covering t	
EP'	 stylish bowtie questionable mustache
They count <u>classes</u> of branched coverings of the sphere CP' by surfaces of genus g.	· unlucky first name
We are interested mostly in the g=0 case.	· ·

Hurwitz numbers for Reflection Groups: the setup
O Ambient group: A Weyl group W (later: well-gend complex refl. group)
2) Property definition: tinte = or is called full if <ti,,tr> = W reflections</ti,,tr>
3 Class of elements: o EW is called parabolic quasi-Coxeter if there time tr= o s.H. ti are reflections and k is minimum exists time tr= o s.H Lti,, tr> is a parabolic subgroup.
4) Supporting Combinatorial Object: The Family RGS(W, J) of
Relative Generating Sets contains all sets of reflections {tx;,, tn}
$\tau = (168)(2538)(412)(9,10,11)$ s.th.
$\int \frac{1}{68} \frac{1}{12} \left\{ (14), (29), (34) \right\} \in \operatorname{RGS}(G_{12}, \sigma) $ any shortest Fach of σ

Hurwitz numbers For Reflection Groups: Main Theorem
$F^{\text{Full}}(\sigma) := \# \circ f$ shortest-length, Full reflection factorizations of σ . $F^{\text{red}}(\sigma) := \# \circ f$ shortest-length reflection factorizations of σ .
[DLewis-Morales '20] For a parabolic quasi-Coxeter $\sigma \in W$, with generalized cycle-decomposition $\sigma = \sigma_1 \cdots \sigma_c$, we have:
$F^{Full}(\sigma) = \ell^{Full}(\sigma)! \cdot RGS(W,\sigma) \cdot \frac{I(W_{\sigma})}{I(W)} \cdot \frac{c}{ } \frac{F^{red}(\sigma)}{\ell^{red}(\sigma)!}$
(Wo is the parabolic closure of or and I (w) the connection index of W.) This is a full generalization of the Hurwitz Formula.
$H_{0}(\lambda) = (n+c-2)! \cdot n^{c-3} \cdot \prod_{i=1}^{c} \frac{\lambda_{i}^{2i}}{(\lambda_{i}-1)!}$

Concordance of the Hurwitz Formulas For Gn. Comparing the two formulas one needs to show for $j=(j_1,..,j_c)$ that $|RGS(Sn, jS| = n^{C-2} \cdot \prod_{i=1}^{C-2} i$ $|RGS(S_n, \lambda)| = \sum_{i=1}^{c} \prod_{i=1}^{deg(T_i)} \lambda_i$ $T_{is a tree}$ on [c] = $\lambda_1 \cdots \lambda_c (\lambda_1 + \cdots + \lambda_c)^{c-2}$ by Cayleys theorem. = $\lambda_1 \cdots \lambda_c \cdot n^{c-2}$ trees on [c] := { 1,2,..., c}

Hurwitz numbers For Reflection Groups: The Proof $F^{\text{full}}(\sigma) = \ell^{\text{full}}(\sigma)! \cdot |RGS(W,\sigma)| \cdot \frac{I(W_{\sigma})}{I(W)} \cdot \frac{C}{|I|} \frac{F^{\text{red}}(\sigma)}{\ell^{\text{red}}(\sigma)!}$ Our proof is case-by-case (help us?) and by separately calculating the two sides: (A Combinatorial Families Sue rely on Holds and Hilds. An, Bn, Dn RHS: (relative) tree counting B Exceptional groups S LHS: Representation theory and SAGE 2 RHS: SAGE

Heuristics (Don't worry, they don't work?) $F^{F_{ull}}(\sigma) = l^{F_{ull}}(\sigma)! \cdot |RGS(W,\sigma)| \cdot \frac{I(W_{\sigma})}{I(W)} \cdot \frac{c}{|I|} \frac{F^{red}(\sigma)}{l^{red}(\sigma)!}$ L-> Almost Fred (0) in Redu (=) {two, ..., tu} ERGS (W,=) The existence of such factorizations characterizes par. quasi-Coxeter clements. R No simple way to produce remaining Factorizations but they are all in the same "Hurwitz orbit".

Numerology and Structure For quasi-C	Exeter elements
The quantities Fred (oil always Factor nicely?	· · · · · · · · · · · · · · · · · · ·
• 6: a cycle of length λ_i : Fred $(\sigma_i) = \lambda_i^{\lambda_i - 2}$	· · · · · · · · · · · · · · · · · · ·
• $\overline{\sigma}_i$ a Coxeter element: $F^{red}(\overline{\sigma}_i) = \frac{h^n \cdot n!}{ w }$	(h = Coxeter # of W)
. In general: Fred (5:) is conjecturally the degree	ofa
Lyashro-Looijenga branchings morphism of a related	trobenius manifold.

g	$F^{\rm red}_W(g)$	g	$F_W^{\mathrm{red}}(g)$	g	$F_W^{\mathrm{red}}(g)$	g	$F^{\rm red}_W(g)$
A_n	$(n+1)^{n-1}$	$E_7(a_3)$	$2\cdot 3^4\cdot 5^6$	$E_8(a_7)$	$2^{13}\cdot 3^6\cdot 5\cdot 7$	$H_4(2)$	$3^4 \cdot 5^2$
B_n	n^n	$E_7(a_4)$	$2^4\cdot 3^8\cdot 5\cdot 7$	$E_8(a_8)$	$2^7\cdot 3^9\cdot 5^2\cdot 7$	$H_4(3)$	$2^{6} \cdot 3^{3}$
$I_2(m)$	m	E_8	$2 \cdot 3^5 \cdot 5^7$	F_4	$2^{4} \cdot 3^{3}$	$H_4(4)$	$2^3 \cdot 3 \cdot 5^3$
E_6	$2^{9} \cdot 3^{4}$	$E_8(a_1)$	$2^{18} \cdot 3^5$	$F_4(a_1)$	$2^3 \cdot 3^4$	$H_4(5)$	$2\cdot 3^2\cdot 5^3$
$E_{6}(a_{1})$	3^{10}	$E_8(a_2)$	$2^{10} \cdot 5^{7}$	H_3	$2 \cdot 5^2$	$H_4(6)$	$3^4 \cdot 5^2$
$E_6(a_2)$	$2^6 \cdot 3^5 \cdot 5$	$E_8(a_3)$	$2^{12}\cdot 3^6\cdot 5\cdot 7$	$H_{3}(1)$	$2 \cdot 3^3$	$H_4(7)$	$2^6 \cdot 5^2$
E_7	$2\cdot 3^{12}$	$E_8(a_4)$	$2\cdot 3^{13}\cdot 5\cdot 7$	$H_{3}(2)$	$2 \cdot 5^2$	$H_4(8)$	$2^3 \cdot 3^4 \cdot 5$
$E_7(a_1)$	$2 \cdot 7^7$	$E_8(a_5)$	$3^5 \cdot 5^7 \cdot 7$	H_4	$2 \cdot 3^3 \cdot 5^2$	$H_4(9)$	$2\cdot 3^3\cdot 5^2$
$E_7(a_2)$	$2^9\cdot 3^6\cdot 5$	$E_8(a_6)$	$2^3\cdot 3^2\cdot 5^8\cdot 7$	$H_4(1)$	$2^6 \cdot 5^2$	$H_4(10)$	$2^3 \cdot 3 \cdot 5^3$
	$F_{D_n}^{\mathrm{rec}}$	$(D_n(a,b)) =$	$2 \cdot (n-1) \cdot (a$	$\binom{n-2}{-1,b-1} \cdot a^a \cdot$	b^b with $a + b =$	= n	

TABLE 1. The counts $F_W^{\text{red}}(g)$ for quasi-Coxeter elements g of real reflection groups W.

••••	SThis	also	comes	
5	with	a dua	l-braid	\sum
78	Baumei	ster-Ne	ry caime-Re	cs
2	\sim)

The case of well-generated complex reflection groups $F^{\text{Full}}(\sigma) = R^{\text{Full}}(\sigma)! \cdot |RGS(W,\sigma)| \cdot \frac{I(W_{\sigma})}{I(W)} \cdot \prod_{i=1}^{C} \frac{F^{\text{red}}(\sigma_i)}{R^{\text{red}}(\sigma_i)!}$ $F^{\text{full}}(\sigma) = l^{\text{full}}(\sigma)! \left(\prod_{i=1}^{c} \frac{F^{\text{red}}(\sigma_i)}{l^{\text{red}}(\sigma_i)!} \right) \cdot \sum_{\substack{t \in \mathbb{R} \in S(W,\sigma)}} \frac{\text{Gram Det}(t\sigma)}{\text{Gram Det}(t\sigma)}$ Broue-Corran-Michel define root systems roots in a shortest For complex reflection groups where such Grammians behave like the connection index. length reflection factorization of o

The higher genus case
$ \mathcal{F}_{W}^{\text{full}}(\sigma_{j};z) := \sum_{N \neq 0} \# \left\{ (t_{1},, t_{N}) \in \mathbb{R}^{N} \text{ s.th } t_{1} = \sigma \text{ and } (t_{1},, t_{N}) = W \right\} \cdot \frac{z^{N}}{N!} $ $ \text{ reflections of W} $
Theorem (structural). The generating function $\mathcal{F}_{w}^{\text{full}}(\sigma; z)$ is always a finite sum of exponentiale. In fact, $\mathcal{F}_{w}^{\text{full}}(\sigma; \log z) = \frac{1}{ w } \cdot \mathcal{P}_{w}(\sigma; z) \cdot (z-1)^{ \mathcal{F}_{w} }(\sigma) \cdot \frac{1}{ z ^{ \mathcal{I}_{w} }}$
where $P_w(\sigma;z)$ is a monic polynomial in z of degree h.n.l. $f_u''(\sigma)$.
$e_{X}: \qquad \Phi_{G_{4}}(id_{j}z_{j}) = z^{6} + 6z^{5} + 2 z^{4} + 40z^{3} + 2 z^{2} + 6z + 1$
but $\Phi_{G(6,1,1)}(id; 2) = 2^4 + 22^3 + 32^2 + 22 - 2$

A.2. Roots of the polynomials $\Phi_W(\operatorname{id}; X)$ for all exceptional complex reflection groups. We give below the plot of roots of the polynomials $\Phi_W(\operatorname{id}; X)$ in the complex plane. For the polynomials themselves, see the data file attached as a supplementary file to this arXiv submission.

Rank 2.

REFERENCES

Rank 3.

 G_{26}

Rank 4.

 G_{31}

Ranks 5 and 6.

 G_{32}

E-series.

The higher genus case
Theorem (enumerative for G(m.p.n.) S. For an element of 6 G(m.p.n.) with K cycles of colors a.,, are and with d=gcd(a.,, ar, P) we have:
$ \begin{aligned} \mathcal{F}_{m,p,n}^{\text{full}} \left(\overline{\sigma}_{j} z \right) &= \frac{1}{m^{n-1}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,1}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,1}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,1}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,1}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,n}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,1}^{\text{full}}}{\mathcal{F}_{m,p,n}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,n}^{\text{full}}}{\mathcal{F}_{m,p,n}^{\text{n-1}}} \cdot \frac{\mathcal{F}_{m,p,n}^{\text{full}}}{\mathcal{F}_{m,p,n}^{\text{full}}} \cdot \frac{\mathcal{F}_{m,p,n}^{ful$

Thank You	
and a happy 202	22*
With Joel B. Lewis and Alejandro H. Morales:	· ·
Hurwitz numbers For Reflection groups: Part I: Generating Functionology arxiv: 2112.03427	
Part II: Parabolic quasi-Coxeter elements } soon?	l promise: There are only nine greek letters left?