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Hurwitz numbers : A brief Intro.

Main players : Factorizations titi - - - •↳ =o- of permutations
0 C- Sn in transpositions ti .

Property definition: A factorization is called transitive if

the group-t.tl , . . . ,tr> acts transitively on the set In] :={1,2. ..ir}

hen yes: (23114541135--4235145)
example

: (125.1235134%1454135)
example

= ( 12351455

i
• 4 !

• 42.mn?z Is 2.L.gr/-k5



Hurwitz numbers : A brief Intro.

Theorem [Hurwitz
,
Goulden - Laursen

. . . .
]

For an element o- C- Sn of cycle - type 7=41. . -its the number

of minimum- length, transitive, transposition factorizations of o- is :

Holds -_ (n-ic-25.l.nc-3.TT
i = , 1) i - 1)!

Special Cases :

If 7-- Ins , we have Hollins ) = In-11 ! • n'→ °
_Ñ
In-1s!

= yh-2

If 7=11
")
,
we have Hollins ) = 12h-25 ! .hn-3



Hurwitz numbers : A brief Intro.

There exist many proofs of the remarkable product formula

Holds = In+c-25 ! • nc-3.TT
i = , 1) i - 1)!

⑧ Hurwitz +Strehl : Comparing a combinatorial cut- and-join
recursion with the formula .

⑧ Goulden -Searson : GeneratingFunctionology after the
cut - and-join recursion and Lagrange Inversion .

⑥ ELSV Formula : Via a degree calculation of an algebraic
morphism (defined on a cone over jv-o.nl .
⑨ Schaeffer- Poulalhon - Buchi : A bijective proof involving

trees on the cycles of the permutation .



Why Hurwitz numbers ?
branched

→*

covering
I *

☒

GplIg • stylish bowtie
• questionable mustache
• unlucky first name

They count classes of branched coverings
of the sphere GIP ' by surfaces of genus g.
We are interested mostly in the g- 0 case.



Hurwitz numbers for Reflection Groups : the setup
① Ambient group :

A Weyl group W ( later : well-genial complex reft . group)

② Property definition : ÷÷¥=o- is called full if <ti, - .,trs=W
③ Class of elements :O- EW is called parabolic quasi -Coxeter
if there t , . . . . .fr = o-s.tk .

• ti are reflections and he is minimum

exists • Lt ,
,
. .

,
this is a parabolic subgroup .

④ Supporting Combinatorial Object : The family RGSIW.rs of
roup of

W
.

Relative Generating Sets contains all sets of reflections { then , . . . .tn}
29

9

to it 0=(168/1253811412119,1911) Sotho
7- 25 3 34

"
n { 11411291,134s} c- RGSCG,of

4th
. - ..tv

,
thru

,
. . . .tn > = W

-

618
"

any shortest facts of o



Hurwitz numbers for Reflection Groups : Main Theorem

f-
""
lol := #of shortest- length , full Fred to) : = # of shortest- length
reflection factorizations off. reflection factorizations of it.

[D.- Lewis -Morales '
20] For a parabolic quasi - Coxeter 0GW, with

generalized cycle -decomposition 0=0, . - - . . or , we have :

Ffa"(o)=L
""(of ! . IRGSCW.ojf.I-WI.IT

I. (w) in Dred Lois !

(Wo is the parabolic closure of o and ICWS the connection index of W. )

This is a full generalization of the Hurwitz formula.

Holds = In+c-25 ! • nc-3.TT
i = , 1) i - 1)!



Concordance of the Hurwitz Formulas for Gn
.

Comparing the two formulas one needs to show for 7=171 . . . ,7c)

that IRGSCSn.IS/--hc-!iT7i
i -4

ti
9

2 10 " 72 IRGSG.n.gs/=ITIdide9
""

7- 3
5 t2

Tisa tree
" "

4
12 73 on Ic]Ji I ts

68 ⇒i - -Y:(7 , -1--1-7<5
"

by Cayley's theorem .

74
=/i - -7, • hc

-2

trees on (c) :={ 1,2. . .,c}



Hurwitz numbers for Reflection Groups : The Proof

F
" "
lol =L
" "
cos ! • IRGSLW.rs/.-t-=Ywj-.TF-tili-.ilredlo;) !

Our proof is case-by-case l help us?) and by separately
calculating the two sides :
④ Combinatorial families J

> LHS : Projection to G. and
we rely on Holy and Hills .

An
,
Bn

,
Dn 2- RHS :( relatives tree counting

⑧ Exceptional groups→ LHS : Representation theory and SAGE
2s RHS : SAGE



Heuristics (Don't worry , they don't www.H

F
" "
/of =L

""
cos ! • IRGSLW.rs/.t--W-.TF-tilIlwti=,lredlo;) !
-
↳ Almost Fred log

⑧ Combining f-
"dlos and RGSCW.rs we produce full factorizations .
t , . . - ^ . tr.fr, , • true - - - • tn.tn = 0 is full ?

¥É TEFERGSCW.rs

⑧ The existence of such factorizations characterizes par. quasi - Coxeter
elements .

⑧ No simple way to produce remaining factorizations
but they are all in the same

"Hurwitz orbit"
.



Numerology and structure for quasi -Coxeter elements
The quantities FredLois always factor nicely?
• Gi a cycle of length Ji : Fred Lois =) ,?i

-2

• Oi a Coxeter element : Fred Lois = !
1h = Coxeter # of WJ

• In general : Fred Lois is conjecturally the degree of a
Lyashro - Looijenga (branchings morphism of a related Frobenius manifold.

This also comes

with a dual- braid

theoryBaumeister-Neaime-Rees]



The case of well-generated complex reflection groups

F
" "
lol =L
" "
cos ! • IRGSLW.rs/.t--W-.TF-tilIlwti=,lredlo;) !

I l l t

Ff""coke"
"

lost .!É?¥ ) .[ €Dett_-GramDetltuto)
tc-RGSLW.rs

I
B.roue- Corran - Michel define root systems roots in a shortest
for complex reflection groups where length reflection
such Gramm ions behave live the connection index . factorization of o



The higher genus case

Ffw%;z) :-. -2 # { It, . . ..tn ) ER s.thti.tn -- o and Lt,
. . .tw>=W} . _÷:

NIO reflections of W

Theorem (structural]
.

The generating function Ftw"" to:D is always a
finite sum of exponentials .

In fact
,

Ifa"(g)
.

1-Ffw"" to ; logzb-i-w.tw/oiZJ.lZ- 1) zlAwl

where 0W to 's 2-b is a monic polynomial in 2- of degree b. n - l
""

Los
.

Ex : QG
,

Cid ; 2-5=2-6-1 62-5 + 212-4 + 402-3 + 212-2 + 62-+1

but %
,
,
,
,,
lid; 7) = Z

" +22-3 + 32-2 + 22--2



26 REFERENCES

A.2. Roots of the polynomials �W (id;X) for all exceptional complex reflection groups. We give below
the plot of roots of the polynomials �W (id;X) in the complex plane. For the polynomials themselves, see the data
file attached as a supplementary file to this arXiv submission.

Rank 2.

G4 G5 G6

G7 G8 G9

G10 G11 G12

G13 G14 G15
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G16 G17 G18 G19

G20 G21 G22

Rank 3.

G23 = H3 G24 G25

G26 G27
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Rank 4.

G28 = F4 G29

G30 = H4 G31 G32

Ranks 5 and 6.

G33 G34

E-series.

G35 = E6 G36 = E7 G37 = E8



The higher genus case

Ffw%;z) :-. -2 # { It, . . ..tw ) ER s.thti.tn -- o and Lt,
. . .tw>=W} . _÷:

NIO reflections of W

Theorem (enumerative for Gimp.ms . For an element 066hm, pins with
K cycles of colors ai

,
. . .

.
air and with d-- geol Lai, - . ,Qr, PS we have :

Fm! nco;zS=¥ .fm?Y.,l5niH;n.zt#ylrt-rh+hr-?FjYlnm,.1os;-m-.2-If-- I
GCm.p.IS I

21
number- theoretic

cyclic group of order mlp My bias function
a projection Glm.P.nl

Ern



Thanr You
and a happy 2022

With Joel B
.
Lewis and

Alejandro H
. Morales :

Hurwitz numbers for Reflection groups :
Part I : Generatingfunctionology arxiv : 2112.03427

Part II : Parabolic quasi -Coxeter elements } soon, * I promise :

Part III. : Uniform formulas There are only nine
greer letters left?


