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1. Introduction

My research area and classical training lies in Algebraic Combinatorics, and within that I am particularly
fascinated by complex reflection groups. These groups W appear at the intersection of mathematical disciplines,
and the resulting viewpoints suggest a number of natural lines of research. A central motivating theme in our work
has been the study of structural and enumerative properties of the lattice NC(W ) of noncrossing partitions of
W . We pursue this through two main avenues: the representation theory of W (§3), and the algebraic (§2) and
differential (§4) geometry of its space of orbits. We give below, for key mathematical areas, some of their objects,
techniques, or problems, that play an important role in our research:

• In combinatorics:
– W -analogs of the Matrix-Tree theorem and Jucys-Murphy elements (§3.3), of cacti formulas (§2.2).
– Chain enumeration in NC(W ) (§2.2, §3.1, Problem 1); cyclic sieving phenomena (§2.3, Problem 2).
– Hyperplane arrangements (§3.4); polytopal combinatorics (§3.2, Problems 4,5).

• In representation theory:
– Enumeration of factorizations via the Frobenius lemma (§3); Hecke algebras and Coxeter numbers (§3.1).
– The exterior powers of the reflection representation of W (§3.3, Problem 6).

• In singularity theory:
– Braid monodromy of algebraic functions (§2); simple (A-D-E) singularities (§4.1, Problem 9).

• In geometric group theory:
– Geometric construction of cell complexes for generalized braid groups (§2.4, Problem 3).

• In differential geometry:
– The Saito flat coordinates and Frobenius structure on the quotient variety V/W (§4).
– Frobenius manifolds and quasi-Coxeter elements; Algebraic solutions of WDVV equations (Problems 7,8).

Although many results mentioned below appear enumerative in nature, our techniques come from different areas
and may thus reveal non-trivial phenomena or connections between them. In one main project (§3.3) we give a
formula for the weighted enumeration of certain factorizations of Coxeter elements (Thm. 3.5) . Our proof however
also produces a new theorem (Thm. 3.6) on the (well-studied) exterior powers of the reflection representations of
groups W . A uniform proof of the Chapuy-Stump formula (§3.1) brings up a connection between Hurwitz numbers
and transportation polytopes (§3.2) while our interpretation of the numerology associated with quasi-Coxeter
elements leads to new algebraic solutions of the WDVV equations (§4).

An important aspect in the theory of complex reflection groups is their Shephard-Todd classification. This has
propelled the evolution of the subject with many results first proven via case-by-case arguments while a uniform
explanation is pursued by the community. The following statement is a characteristic example.

Theorem 1.1 (Deligne-Arnol’d-Bessis via the classification, [Mic16] for Weyl groups, [Dou18c] in general).
In a (duality) reflection group W of rank n, the set RedW (c) of minimal length factorizations τ1 · · · τn = c of a
Coxeter element c in reflections τi has size given by the Hurwitz number Hur(W ) := hnn!/|W |, where h := |c|.

This theorem and its many interpretations lie in the core of our research. In the symmetric group Sn, the
Hurwitz number Hur(Sn) = nn−2 counts vertex-labeled trees and may be computed by the Matrix-Tree theorem.
We give an analog of the Laplacian and prove a weighted Matrix-Forest theorem for (duality) reflection groups
(§3.3). An important ingredient is a new general formula for hyperplane arrangements (§3.4) that in fact leads to
a second uniform proof of Thm. 1.1 and has further applications on multi-reflection arrangements [CD19a].

A different exegesis of the Hurwitz number, popularized by Arnol’d and further developed by Bessis, is as the
degree of the quasi-homogeneous Lyashko-Looijenga morphism (§2). Building on this, we produce a parabolic
refinement (Thm. 2.2) of Thm. 1.1, prove a cyclic sieving phenomenon for it conjectured in Williams’ thesis
(Thm. 2.3), and via the theory of Frobenius manifolds we propose a version of it for quasi-Coxeter elements (§4).

We also present in what follows some open problems suggested by our projects which are often amenable to
division in partial goals that could be suitable even for advanced undergraduate students.
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2. Braid monodromy of the discriminant hypersurface

A cornerstone for much of the study of real reflection groups W is the chamber decomposition of the ambient
space V induced by the arrangement of reflection hyperplanes AW :=

⋃
H. Over the complex field, where such a

decomposition cannot exist, a similar role is played by the quotient variety H := W \
⋃
H which is known as the

discriminant hypersurface of W . In the seminal work [Bes15] Bessis exploits the braid monodromy of H (albeit in
the guise of the following ”Trivialization Theorem”) to prove a long-standing conjecture: the complement V \

⋃
H

is a K(π, 1) space (see also §2.4).
The braid monodromy of an algebraic function g is a refinement of its usual monodromy group: it keeps track of

how the function values move around each other, when we vary the coefficients of g, as opposed to just recording their
final permutation. To define it one usually chooses a generic direction z, for which g = zn+a1(y) ·zn−1+ · · ·+an(y)
and treats the variety V (g) as a branched cover over Y := Spec(C[y]). If K is the branch locus, the coefficient map
a(y) determines a representation of π1(Y \ K) into the usual braid group of n strands Bn which we call the braid
monodromy of g as in [Han89; CS97].

For complex reflection groups W , the Shephard-Todd-Chevalley theorem identifies the quotient space V/W as
the affine complex space Cn whose coordinates are given by the fundamental invariants f := (fi)i=1···n of W . In the
subclass of duality groups (which possess Coxeter elements and include all real reflection groups) the highest degree
invariant fn plays a special role; in particular, the equation for the discriminant hypersurface H is monic and of
degree n with respect to fn. Central in Bessis’ work, the Lyashko-Looijenga map LL(y) is essentially the coefficient
map for the braid monodromy of H along the fn direction (with parameter y ∈ Y := Spec

(
C[f1, · · · , fn−1]

)
).

2.1. The noncrossing lattice and the trivialization theorem.
A geometric interpretation of the LL map (and any coefficient map) is that it records the intersections of complex
lines Ly := y×C, parallel to the direction of fn, with the discriminant hypersurface H. Bessis considers loops that
surroundH only inside these lines Ly and constructs in this way well-defined elements of the generalized braid group
B(W ) := π1(V/W −H). Taking advantage of the canonical short exact sequence 1→ P (W )→ B(W )→ W → 1,
he extends this to a labeling map lbl(y) that sends y ∈ Y to a tuple of elements of W .

The topological construction of the labeling map heavily restricts the resulting tuples. The noncrossing lattice
NC(W ) is defined as the set of all w ∈ W that satisfy lR(w) + lR(w−1c) = lR(c) for a given Coxeter element c,
where the reflection length lR(w) is the smallest number k of (any) reflections τi needed to write w = τ1 · · · τk.
Then if e := LL(y) = Ly ∩ H is an image of the LL map, which is by definition a collection of points in C with
total multiplicity n, Bessis proves this remarkable Trivialization Theorem:

Theorem 2.1. [Bes15] The points in a fiber LL−1(e) are in a natural bijection via the labeling map with chains
in the noncrossing lattice whose rank jumps are given by the multiplicities in e.

2.2. Refined chain enumeration by parabolic type.
Chains in the noncrossing lattice NC(W ) correspond to length-additive factorizations of a Coxeter element c, so
that the trivialization theorem suggests a geometric way to enumerate such collections. In particular, maximal
chains correspond precisely to reduced reflection factorizations and thus the Hurwitz number of Thm. 1.1 should
agree with the degree of the LL map (this is in fact needed to prove Thm. 2.1, see [Dou17, Ch. 7]).

To produce refined enumerative results, one must study the restriction of the LL map on the branch locus
K ⊂ Y . The discriminant hypersurface H is stratified by orbits of flats [X] ∈ LAW /W and their projections [X]Y
on the base space Y completely cover K. Define the parabolic type of an element w ∈ W as the orbit [V w] of its
fixed space in the intersection lattice; a statistic that generalizes the cycle type of permutations. By studying the
local behavior of the LL and lbl maps on these constructible sets [X]Y , we refine Thm. 1.1:

Theorem 2.2. [Dou18b] The number of length-additive factorizations of a Coxeter element c ∈ W of the form
w · τ1 · · · τk = c, with τi’s reflections and w of parabolic type [X], is given by the formula hkk!/[NW (X) : WX ].

Our techniques are in the same spirit as methods initiated by Arnol’d [Arn96] and used extensively by singularity
theorists thereafter (even to some extent in the celebrated ELSV formula). One tries to lift the restriction of the
map to an affine space, where it becomes quasi-homogeneous and hence its degree can be calculated via Bezout’s
theorem. The term [N(X) : WX ] that appears in our formula is exactly the degree of such a lift.

Now, for any length additive factorization σ := (w1 · · ·wk = c), we define its passport
(
Z
)

:=
(
[Z1, · · · , Zk]

)
as

the tuple of parabolic types [Zi] of the wi. An ambitious task would then be to compute the number FactW [(Z)]
of such factorizations σ with given passport (Z). Lando and Zvonkine [ZL99] derive the Goulden-Jackson formula

(1) FactSn
[
(Z)

]
= nl−1 ·

l∏
i=1

ki!

[N(Zi) : WZi ]
,
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via a geometric analysis of the LL map on the space of monic degree n polynomials (which realizes V/W when W
is the symmetric group). For other reflection groups, (case-by-case) formulas of Krattenthaler and Müller [KM10]
suggest a similar structure for certain passports. We describe in [Dou18b, Sec. 7] a complete stratification of Y by
constructible sets Y{Z} indexed by passports, which are often precisely the intersections of the strata [Zi]Y we used
for Thm. 2.2. We relate the enumeration problem with the local geometry of the LL map on those and ask:

Problem 1. Find a uniform geometric extension, for suitable (Z), of formula (1) to other reflection groups.

2.3. A cyclic sieving phenomenon.
The cyclic sieving phenomenon (CSP) [RSW04] occurs when a polynomial X(q) carries orbital information about
the action of a cyclic group C on a space X. More precisely, and if C is generated by an element c of order n, we
say that the triple (X,X(q), C) exhibits the cyclic sieving phenomenon if for all integers d, the number of elements
of X fixed by cd equals the evaluation X(ζd), where ζ = e2πi/n.

The set RedW (c) of Thm. 1.1 supports many natural cyclic actions. The operation Pro below may be realized
as the Hurwitz action (5) of a particular root of the full twist in the (ordinary) braid group Bn and has order hn:

Pro : (τ1, · · · , τn)→ (cτnc
−1, τ1, · · · , τn−1).

Williams conjectured the following CSP for Pro which we proved by exploiting the geometry of the trivialization
theorem. Via the labeling map lbl, we interpret Pro as a scalar action on fibers LL−1(e) for certain symmetric
point configurations e. The polynomial X(q) arises then as the Hilbert series of the special fiber LL−1(0):

Theorem 2.3. [Dou18a] For a (duality) reflection group W , with invariant degrees d1, · · · , dn and RedW (c) as in

Thm. 1.1, the triple
(

RedW (c),

n∏
i=1

[ih]q
[di]q

, 〈Pro〉
)

, where [m]q :=
1− qm

1− q
, exhibits the cyclic sieving phenomenon.

Some CSP’s are proven by direct calculation of the orbit sizes and perhaps lack a satisfying explanation for the
appearance of the polynomial X(q). In our case, the geometry of the LL map not only resolves this but it also
provides an example where the same polynomial X(q) encodes CSP’s for different cyclic actions on X. By choosing
configurations e with different cyclic symmetries, we obtain for example a CSP with C of order h(n− 1).

For some passports, the enumeration of factorizations is given by the degree of a quasi-homogeneous morphism.
In those cases too this method will work although there are fewer candidates for symmetric fibers. We describe in
[Dou18b, § 5.3.1] what happens for the factorizations of Thm. 2.2 and ask in general:

Problem 2. Extend Thm. 2.3 over sets of block factorizations with prescribed passports (see § 2.2).

2.4. The Brady complex after Bessis.
In his proof of the K(π, 1) conjecture Bessis uses the noncrossing lattice NC(W ) as a combinatorial recipe for
building the universal covering space of the discriminant complement V/W−H. The procedure is quite complicated
and Bessis recently proposed a simplification [Bes16]. The idea is to construct a cell model for V/W −H, via the
trivialization theorem, and hope that its combinatorics leads to a cleaner proof of the K(π, 1) property.

Bessis’ model involves first a retraction that pushes the configurations of points inside a fixed circle and then
proceeds by lifting the natural cell structure there to V/W−H via the LL map. On the other hand, there is already
a combinatorial K(π, 1) model for the braid group B(W ) defined by Brady (but which is not a priori homeomorphic
to V/W − H). It is the quotient of the order complex of NC(W ) where we identify the chains (w1, · · · , wk) and
(e, w−11 w2, · · · , w−11 wk). The labeling map lbl is compatible with Bessis’ retraction in a way that suggests:

Problem 3. Bessis’ cell complex for the discriminant complement V/W −H is isomorphic to the Brady complex.

3. Representation theoretic techniques in enumeration

In the case of the symmetric group Sn, Thm. 1.1 was first proven by Hurwitz who came to it after identifying
length-additive factorizations in Sn with genus-0 (branched) coverings of the sphere. In this setting, it is natural
to consider factorizations with arbitrary many terms as they correspond to higher genus coverings. Moreover, it is
actually easier to study the whole exponential generating function (with respect to genus or, equivalently, number
of terms). Returning to reflection groups W with set of reflections R and for an arbitrary element g ∈W , we wish
to understand the function

(2) FACW,g(t) :=
∑
`≥0

#
{

(τ1, · · · , τ`) ∈ R` : τ1 · · · τ` = g
}
· t
`

`!
.

Hurwitz also observed that a Lemma of Frobenius, from newly introduced representation theory, could be used
to turn expressions like (2) into a finite sum of character evaluations (see Prop. 3.2). This idea was rediscovered
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and popularized in the 80’s by Stanley, Jackson, and others, who exploited it in the context of Sn. Recently it
proved effective for all reflection groups in this beautiful generalization, due to Chapuy and Stump, of Thm. 1.1:

Theorem 3.1. [CS14] For a (duality) rank n reflection group W and a Coxeter element c ∈W of order h,

FACW,c(t) =
et|R|

|W |
· (1− e−th)n.

3.1. A uniform proof and generalization of the Chapuy-Stump formula. The original proof of Thm. 3.1
proceeded based on the Frobenius lemma but had to rely on the classification of complex reflection groups and
their characters. Both because it implies Thm. 1.1 and due to its intrinsic elegance, there was an effort in the
community to produce a case-free proof with a first success only for Weyl groups [Mic16].

Proposition 3.2. [CS14, Frobenius Lemma] The function FACW,g(t) of (2) is given as the finite sum

FACW,g(t) =
1

|W |
·
∑
χ∈Ŵ

χ(1) · χ(g−1) · exp
(
t · χ̃(R)

)
,

where Ŵ denotes the set of irreducible characters of W and χ̃(R) is the normalized trace
∑
τ∈R χ(τ)/χ(1).

The difficulty to apply this lemma uniformly stems from the case-by-case construction of the irreducible charac-
ters of W . To circumvent this we group the characters with respect to an integer invariant cχ, related to Lusztig’s
c-function, called the Coxeter number of χ. Then we prove a theorem in the Hecke algebra that allows us to discard

from the summation in Prop. 3.2 those χ ∈ Ŵ for which cχ is not a multiple of h := |c|.
Our argument relies only on the fact that the Coxeter element c lifts to a root of the full twist in the braid

group B(W ) and hence can be applied to all regular elements g ∈W . The previous construction in conjuction with
combinatorial restrictions on the leading term of FACW,c(t) allows us to prove the following structural result which
recovers and extends the Chapuy-Stump formula (Thm. 3.1) and with little more effort [Dou18c, § 5] also gives a
uniform proof for the weighted case studied in [dHR18].

Theorem 3.3. [Dou18c] For a complex reflection group W and any regular element g ∈W , one has

FACW,g(t) =
et|R|

|W |
·
[
(1−X)lR(g) · Φg(X)

]∣∣∣
X=e−t|g|

,

where Φg(X) is a polynomial in X of degree |R|+|A||g| − lR(g) and constant term equal to 1.

In the case of a Coxeter element c, the polynomials Φc(X) are forced to have degree 0 by combinatorial consid-
erations. This holds further whenever |g| = dn, which produces explicit formulas that do not appear in [CS14] or
[dHR18]. In general it seems difficult to control the Φg(X) but we have some success with Sn in the next section.

3.2. Higher genus Hurwitz formulas for transitive factorizations in Sn.
Hurwitz studied in particular minimal transitive factorizations of elements g ∈ Sn in transpositions; that is,
factorizations whose terms generate the whole group Sn. If we write TR-FACSn,g(t) for their generating function
when allowing arbitrary length then, because regular elements g ∈ Sn remain regular in all Young subgroups that
contain them, the following is a direct corollary of [Dou18c]:

Proposition 3.4 (Douvropoulos). The transitive factorizations of a regular element g ∈ Sn are counted by

TR-FACSn,g(t) =
et(

n
2)

n!
·
[
(1−X)lTr(g) · ΦTr

g (X)
]∣∣∣
X=e−t|g|

,

where lTr(g) is the minimum length of such a factorization for g and ΦTr
g (X) a suitable polynomial.

Computer experiments have suggested the following remarkable conjecture for the polynomials ΦTr
g (X). The

central transportation polytope [DK14] denoted T (p, q) is the set of all real p×q matrices with non-negative entries,
all row sums equal to q, and all column sums equal to p; it is simple when (p, q) = 1. The conjecture is proven by
direct calculation when k = 2 (and for arbitrary d) and for the general case we find the interpretation in [KM16]
of such h-polynomials as plethystic coefficients to be promising.

Problem 4. For a regular element g ∈ Skd of cycle type (d)k, the polynomial ΦTr
g (X) agrees with the h-polynomial

of the dual of the (central) transportation polytope T (k, kd− 1).

This same enumerative question is reduced via the ELSV formula to computing (highly non-trivial) integrals
over the spacesMg,n; we hope that our interpretation may lead to more explicit formulas. Moreover, even though
Thm. 3.3 does not apply for non-regular classes, experiments suggest that the following is worth pursuing in Sn:

Problem 5. Extend this interpretation of higher genus Hurwitz formulas to arbitrary classes λ ⊂ Sn.
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3.3. Weighted factorizations with generalized Jucys-Murphy weights.
The derivation of the type-A Hurwitz number H(Sn) = nn−2 of Thm. 1.1 by calculating the Laplacian of the
complete graph Kn can be extended to allow assigning weights ωij on the transpositions (ij). Burman and
Zvonkine [BZ10] proved a striking higher-genus analog of this by providing a product formula for the weighted
generating function that involved the eigenvalues of the (weighted) Laplacian.

With Chapuy we extend their work to all (duality) reflection groups W with Thm. 3.5. Unfortunately, it turns
out that arbitrary weight assignments do not lead to product formulas; we consider instead special weight functions
wT : R → ω := (ωi)

n
i=1 indexed by towers of parabolic subgroups T :=

(
{1} = W0 < W1 < · · · < Wn = W

)
.

These wT are defined by the filtration of R by T ; that is, for a reflection τ ∈ R we have wT (τ) = ωi if and

only if τ ∈Wi \Wi−1. We are interested in the exponential generating function FACTW (t,ω) of weighted reflection
factorizations of any element c of the Coxeter class C, an analog of (2):

(3) FACTW (t,ω) :=
∑
`≥0

t`

`!
·
( ∑

(τ1,··· ,τ`,c)∈R`×C
τ1···τ`=c

wT (τ1) · · ·wT (τ`)
)
.

Thm. 3.5 gives a product formula for (3) which generalizes the Chapuy-Stump formula of Thm. 3.1. If we write
ρV for the reflection representation of W , the matrix LTW (ω) :=

∑
τ∈RwT (τ)

(
id−ρV (τ)

)
is a W -analog of the

Laplacian of Kn and its eigenvalues weighted analogs of the Coxeter number h. In this sense, the equality of the
two leading terms below may be considered as a (weighted) Matrix-Tree theorem for W :

Theorem 3.5. [CD19b] For a (duality) reflection group W the weighted enumeration (3) is given by

FACTW (t,ω) =
etwT (R)

h
·
n∏
i=1

(
1− e−tλ

T
i (ω)

)
,

where wT (R) :=
∑
τ∈RwT (τ), and the λTi (ω) are the eigenvalues of the W -Laplacian LTW (ω).

In the process of proving Thm. 3.5 we produce a generalization of the Frobenius Lemma (Prop. 3.2) for any group
G where the elements of a generating conjugacy class G are weighted via an arbitrary tower of subgroups. Heavily
influenced by the work of Okounkov and Vershik [OV96], we consider in the group algebra C[W ] generalized Jucys-
Murphy elements Ji :=

∑
τ∈R∩Wi\Wi−1

τ . For any parabolic tower T , they generate a commutative subalgebra

C[JT ] and the weighted enumeration is given in terms of its spectrum.
The product structure of the formula comes down to a connection with the exterior powers of the reflection

representation Vref . We say that two virtual characters χ and ψ are tower-equivalent if they agree on the subalgebras
C[JT ] for any choice of parabolic tower T . Then Thm. 3.5 is equivalent with the following:

Theorem 3.6. [CD19b] The virtual characters
∑
χ∈Ŵ χ(c−1) · χ and

∑n
k=0(−1)k

∧k
(Vref) are tower-equivalent.

We prove this theorem by computer calculation for the exceptional types and an inductive argument, which
involves working out some non-trivial Littlewood-Richardson coefficients, for the infinite families. In the work
of Michel [Mic16] for Weyl groups, and in a much weaker sense, it is the unipotent characters Uχ indexed by

χ =
∧k

(Vref) that are related to the virtual sum
∑
χ∈Ŵ χ(c−1) ·χ. Either by building on this or otherwise, we ask:

Problem 6. Give a uniform proof of Thm. 3.6.

3.4. A new formula for hyperplane arrangements and the Deligne-Reading recursion.
In [CD19b] we in fact give a W -Matrix-Forest theorem for the whole characteristic polynomial of LTW (ω). This
is done by combining Thm. 3.5 with the following general formula for hyperplane arrangements A, where the
A-Laplacian is the sum of rank 1 operators LA(ω) :=

∑
H∈A ωH(Id−sH) with weights ω = (ωH)H∈A.

Theorem 3.7. [CD19b] The characteristic polynomial of the A-Laplacian LA(ω) is given by

det
(
t · Id +LA(ω)

)
=
∑
X∈LA

qdet
(
LAX (ωX)

)
· tdim(X).

This formula produces some very interesting numerology for reflection arrangements AW . For instance, identify-
ing all weights to 1, it implies the following relation for (the multiset {hi(WX)} of) Coxeter numbers of parabolics:

(4) (t+ h)n =
∑

X∈LW

tdim(X) ·
rk(WX)∏
i=1

hi(WX).

Comparing the coefficients of tn−1 in the two sides of this equation, and with some known results on noncrossing
lines L ∈ NCn−1(W ), this gives [CD19a] a uniform derivation of Thm. 1.1 from the Deligne-Reading recursion
Hur(W ) =

∑
L∈NCn−1(W ) Hur(WL) (which so far had only led to case-by-case proofs).
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4. Frobenius manifolds and Quasi-Coxeter elements

The theory of Frobenius manifolds was developed by Dubrovin to give a coordinate-free formulation of the WDVV
equations from 2D topological field theory. In it, a Frobenius algebra structure is specified on any tangent plane
TxM of a manifold M and its structure coefficients encode the WDVV associativity equations for a prepotential F .

The quotient varieties V/W for real reflection groups W form an important class of Frobenius manifolds. For
them the algebra structure is defined via a special choice of fundamental invariants, known as Saito flat coordinates
that provide an Euclidean metric for the orbit space V/W . Dubrovin conjectured [Dub99] and Hertling later proved
that, in fact, these are the only examples of Frobenius manifolds with associated polynomial prepotentials.

In his classification [Dub99, Lect. 4] of massive Frobenius manifolds Dubrovin encodes the local algebra structure
in a Stokes matrix or equivalently a tuple of euclidean reflections τ := (τ1, · · · , τn), while he describes its analytic
continuation via the Hurwitz action of the Braid group Bn on τ :

(5) Bn 3 σi ∗ (τ1, · · · , τn) = (τ1, · · · , τi−1, τi+1, τ
−1
i+1τiτi+1, · · · , τn).

Then algebraic prepotentials correspond to tuples τ with finite Hurwitz orbits and Dubrovin asks for the construc-
tion of the corresponding Frobenius manifolds. After work of Michel [Mic06] however, finite Hurwitz orbits occur
if and only if τ generates a reflection group, so that the problem of algebraic Frobenius manifolds in some sense
lives entirely in the world of finite Coxeter groups.

From a different viewpoint [Bau+17] studies the Hurwitz action of Bn on the set RedW (g) of reduced reflection
factorizations of an element g ∈W and shows that when g is quasi-Coxeter, i.e. when there is no proper reflection
subgroup W ′ � W that contains it, then the action is transitive. Reduced tuples τ always determine a quasi-
Coxeter element g :=

∏n
i=1 τi of the group W ′ = 〈τ 〉 so that we can index the possible corresponding Frobenius

manifold by g (and write Fg as opposed to Fτ ).
Stump calculated the sizes of the (single orbit) sets RedW (g) for quasi-Coxeter elemenets g and discovered

that they always factor in small primes. He asked if there is an explanation for this or even a generalization of
Thm. 1.1. In fact, a lot of the relevant geometric objects of §2 appear in the theory of Frobenius manifolds and in
particular the LL map, which relates two natural coordinate systems of Fg. It sends the flat coordinates, on which
the prepotential is given, to (the elementary symmetric polynomials of) the canonical coordinates, which are the
eigenvalues in the algebra structure of the multiplication by the Euler field. Given the prepotential, it is easy to
calculate the degree of the LL map; this and Dubrovin’s construction described previously suggest the following:

Problem 7. For a quasi-Coxeter element g, assuming Fg exists, the degree of the map LL(Fg) equals |RedW (g)|.
In the case of Weyl groups, there are deep reasons [Pav00; Din13] that the weights of the flat coordinates of Fg

should be given by (ei(g) + 1)/|g|, where the exponents ei(g) determine the eigenvalues e2πiei(g)/|g| of g. Because
the LL map is weighted-homogeneous, this would give its degree as the right hand side of (6) where dg is the
algebraicity degree of the Frobenius prepotential.

Observation 4.1 (Douvropoulos). For a regular quasi-Coxeter element g in a crystallographic W we have that

(6) |RedW (g)| = |g|nn!∏n
i=1(ei(g) + 1)

· dg,

where the exponents ei(g) are defined as above and dg is a small integer given (using Carter’s notation) by:

g ∈W D2n(n− 1) F4(1) E6(1) E6(2) E7(1) E7(4) E8(1) E8(2) E8(3) E8(5) E8(6) E8(8)
dg n 3 2 5 2 2 · 32 2 3 23 7 22 · 5 33 · 5

Indeed, in all the cases that algebraic Frobenius manifolds have been constructed our interpretation of the
numbers dg is confirmed. Applied in the opposite direction, this enumerative data can be exploited to guess
solutions to the WDVV equations. Sekiguchi [Sek19] has been succesful in doing so in small dimensions using the
information from our calculations with Stump. We state here Dubrovin’s refinement of his original conjecture:

Problem 8 (Dubrovin). Construct an algebraic Frobenius manifold Fg for any quasi-Coxeter element g.

4.1. Applications on the trivialization theorem. For the symmetric group Sn, the trivialization theorem
(Thm. 2.1) is equivalent to Riemann’s existence theorem while more generally for types A-D-E the LL map may be
interpreted as the morphism that sends a deformation of a simple singularity to its set of critical values. Currently
the proof of Thm. 2.1 relies on the numerological coincidence between the degree of the LL map and the Hurwitz
number Hur(W ) [Dou17, Ch. 7]. However, Hertling and Roucairol [HR18] prove an equivalent version for simple
singularities by exploiting the Frobenius structure. We ask to extend their approach to (duality) reflection groups:

Problem 9. Give a case-free conceptual proof of Thm. 2.1 that does not rely on the numerological coincidence.
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