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Abstract. A prominent line of research in Coxeter combinatorics has been for a better understanding
of the noncrossing lattice NC(W ), associated to a reflection group W . In [ARR15], Armstrong, Reiner
and Rhoades, defined two new Parking Spaces, an isomorphism between which would give uniform
proofs and understanding to many a combinatorial formulae. The purpose of this report is to describe
a rephrasing of their Main Conjecture, due to Gordon and Ripoll [GR12], in terms of the geometric
framework for NC(W ), introduced by Bessis in [Bes15].

1. Introduction

It might be true that there are people who dislike the Catalan numbers. For the rest of us, apart

from featuring 42 as its fifth element, the Catalan sequence Cat(n) =
1

n+ 1

(
2n

n

)
has the uncanny

ability to present itself, again and again, as the answer to many combinatorial riddles and can be a
source of endless imagination.

Of the many attempts to explain the prolificity of Catalan numbers we mention here the humanistic
one: The generating function for Cat(n) is merely the simplest non-trivial function one could think of;
us therefore, as humans, often come up with examples that being barely non-trivial, happen to satisfy
the Catalan recursion.1

Some of the most far-reaching realizations of the Catalan sequence regard objects that are associated
to the symmetric group Sn. It often happens that such objects and phenomena can be generalised to
other reflection groups as well. This is the world of Coxeter-Catalan combinatorics.

A distinguished resident of this world is the noncrossing lattice NC(W ) associated to a reflection
group W (see Defn. 2.1). When W = Sn, its elements are Catalan objects and correspond, among
other things, to Sn-orbits of parking functions:

A classical parking function is a map f : [n] := {1, 2, · · · , n} → N such that the increasing rearrange-
ment (b1, b2, · · · , bn) of the sequence (f(1), f(2), · · · , f(n)) satisfies bi ≤ i. Let Parkn be the set of
parking functions on [n]; below is the set Park3:

111
112 121 211
113 131 311
122 212 221
123 132 213 231 312 321

The group Sn acts on Parkn by permuting positions. Each row of the table corresponds to an orbit
and the increasing orbit representatives are on the left. The permutation action turns Parkn into an
Sn-module which we call the standard parking space (see Section 2.3). The cardinality of Parkn is
(n+ 1)n−1.

Date: August 3, 2017.
1Overheard at FPSAC Chicago, attributed to Doron Zeilberger
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The world of Coxeter-Catalan combinatorics is plagued by a terrible misfortune. Many things are
known about the numerology, structure and properties of its residents, but few are understood. The
classification of complex reflection groups by Shephard and Todd [ST54] made it easy for many proofs
to be carried out case by case. To this day, there is no uniform proof even for the formula that
describes the size of the non-crossing lattice:

|NC(W )| =
n∏
i=1

h+ di
di

=: Cat(W )

where di’s are the fundamental degrees of W (see Defn. 4.1), h the Coxeter number and where we call
Cat(W ) the W -Catalan number.

In [ARR15], Armstrong, Reiner and Rhoades state a conjecture about two new parking spaces that
sheds new light on the situation. A uniform proof of that conjecture would give a better understanding
for the structure of NC(W ), its relation to the nonnesting partitions NN(W ) (see Defn. 2.3) and a
lot of their remarkable numerology (as described for instance in [Arm09]). A significant tool towards
its proof might be the new geometric understanding of NC(W ) introduced by Bessis, [Bes15] as he
tackled the K(π, 1) conjecture for complex reflection groups.

The rest of this report is structured as follows: In Section 2, we recall necessary definitions and
give a historical exposition of the ideas that led to [ARR15]. In Section 3, we build up to their
Main Conjecture and its consequences (see Figure 6). In Sections 4 and 5, we describe the Bessis
interpretation of the noncrossing lattice and give a rephrasing of the Main Conjecture in this new
context. Along the way we do a case study for the dihedral group I2(m).

2. A short story of nearly everything - we’ll need

It is difficult to give a linear narration of the ideas that led to the introduction of Parking Spaces.
Many of the core concepts were developed at the same time and deep connections between them
arose in a parallel fashion, rather than sequentially. In this presentation, we will try to follow three
strands of thought that have been unfolding the last 25 years, but surely we’ll be unable to observe
most of the very beautiful scenery of Coxeter-Catalan Combinatorics, to which they belong. Before
that, we remind the reader of some basic reflection group terminology. For references consult [Kan01]
or [Hum90].

Let W be a real reflection group acting irreducibly on V ∼= Rn and T its set of reflections. It has
an associated root system Φ = {±α} comprised of the normal vectors to its reflecting hyperplanes
{Hα}α∈Φ, which in turn form the Coxeter Arrangement AW . The complement V \ AW is a disjoint
union of connected components called chambers, each of which induces a Coxeter System structure
(W,S) for W .

Choose now a fundamental chamber C0 and let

∆ ⊂ Φ+ ⊂ Φ ⊂ Q ⊂ V
be the simple roots, positive roots, root system and root lattice (only when W is a Weyl group)
respectively. Call S = {s1, · · · sn}, the set of simple reflections associated to C0 and fix for the rest of
this paper a Coxeter element c = s1 · · · sn by ordering S. Let h be the multiplicative order of c and
call it the Coxeter number of W .

Finally, let L be the intersection lattice of AW and recall Steinberg’s theorem (e.g. at [Bro10,
Theorem 4.7] that any element X of L is equal to the fixed space V g for some g ∈W . Therefore, the
action of W on V induces an action on the elements of L (called flats) which can be expressed as:

w ·X = w · V g = V wgw−1

We are ready now to kickstart our narration of how Parking Spaces came to be, by introducing a
classical Catalan object:
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Figure 1. A non-
crossing partition
with blocks {1, 8, 9},
{2, 3, 5, 6, 7}, {4}, and
{10, 11, 12}

2.1. The set of non-crossing partitions of [n] := {1, 2, . . . , n}, denoted
NC(n), was studied by Kreweras in [Kre72]. It contains those set partitions,
for which no two blocks contain elements a, c and b, d respectively, such that
a < b < c < d. It forms a self-dual lattice and has rich enumerative proper-
ties. The term non-crossing comes from the following geometric depiction of a
partition p of [n] (Figure 1).

In the mid 90’s, Reiner was the first to extend the pictorial definition of non-
crossing partitions and study their properties for the reflection groups Bn and
Dn (see [Rei97]); he observed that they are enumerated by a generalization of
Cat(n) which he called the W -Catalan numbers. At that paper he asked for a
natural definition of the lattice of non-crossing partitions for all finite Coxeter
groups.

Quoting [AR04] a few years later, ”the main idea for this may be described
as folklore, but only fairly recently, and in particular after the work of Bessis [Bes03] and Brady and
Watt [BW02a], it became apparent that such a definition is both available and useful.” Recall first
the following about the absolute order of a real reflection group:

For any w ∈ W , call lT (w) the least number k of reflections ti ∈ T needed to write w = t1 · · · tk.
This is the reflection length on W and it defines the absolute order ≤T on W by setting

u ≤T v ⇐⇒ lT (v) = lT (u) + lT (u−1v)

Then Brady and Watt [BW02a] and Bessis [Bes03] introduce the following notion of non-crossing
partitions (which we copy from [ARR15]):

Definition 2.1. Define the poset NC(W ) of W -noncrossing partitions as the interval [1, c]T in abso-
lute order. Brady and Watt [BW02b] showed that this poset embeds into the intersection lattice

NC(W ) ↪→ L
w 7→ V w

We will sometimes identify NC(W ) with its image under this embedding, and refer to the elements of
NC(W ) as the noncrossing flats X ∈ L.

Note that conjugation by w ∈W is a poset isomorphism [1, c]T ∼= [1, wcw−1]T and since all Coxeter
elements are conjugate,2 NC(W ) is well defined up to isomorphism. Furthermore, the subgroup
C = 〈c〉 acts on NC(W ), and one has an action of elements g in C ≤W on a fixed space V w defined

by g(V w) = V g−1wg so that the embedding described above is C-equivariant.
The poset NC(W ) was also very important in Bessis’s work on complex reflection arrangements

[Bes15]. There he observed that NC(W ) can actually be defined for well generated complex reflection
groups W , it is still self-dual, a lattice, and its cardinality is given by the W -Catalan number. Sadly,
there is no uniform proof of the last two statements (but see [BW08] or [Rea11] for the lattice property
in the real case).

Example 2.2. We’ll start here to develop our running example, which will be the dihedral group I2(m),
the group of symmetries of a regular m-sided polygon. We can represent it as

I2(m) = {r, s|rn = s2 = 1, srs = r−1}
where s acts by reflecting over the y-axis and r is a counter-clockwise rotation by θ = 2π/m:

s : (x, y) 7→ (−x, y)

r : (x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

The hyperplanes {x = 0} and {x = −y tan(θ/2)} bound a chamber and their corresponding reflec-
tions are s and rs. The two different products rss = r and srs = r−1 form a conjugacy class, so are
the only possible Coxeter elements for I2(m). We pick r to define NC(I2(m)).

2For a generalization of the Coxeter elements that still gives isomorphic non-crossing lattices, see [RRS14]
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Figure 2. The non-crossing
lattice for I2(m).

Since it is not a reflection itself, lT (r) = 2. Now, for any reflection rks
of I2(m), we have rks · rk−1s = rks · sr1−k = r. That is, all reflections of
I2(m) (and since lT (r) = 2, by necessity no other elements) lie below r in
NC(I2(m)). (see Figure 2)

Notice that the |NC(I2(m))| = m + 2, which agrees with Bessis’s for-
mula: The Coxeter number h for I2(m) is m (the order of r) and the
fundamental degrees are 2 and m (see Example 4.11), so

Cat(I2(m)) =
n∏
i=1

h+ di
di

=
m+ 2

2
· m+m

m
= m+ 2

2.2. The set of Nonnesting Partitions , denoted NN(n), is the second part of our narration and
is somewhat more recent. They are defined by the restriction that whenever a < b < c < d and a, d
are consecutive elements of a block B, then b, c cannot belong to the same block B′.

1 2 3 4 5 6

Figure 3. A non-nesting
partition with blocks
{1, 3, 6}, {2, 5}, and {4}.

They owe their name to a (different) depiction of partitions of [n] (see
Figure 3). Interestingly, they are not only equinumerous to NC(n) but
they also have the same distribution according to number of blocks.

In the early 90’s, Postnikov (see [Rei97, Remark 2]), gave a definition
of nonnesting partitions that works for all Weyl groups. Again, we copy it
from [ARR15]:

Definition 2.3. Let W be a Weyl group, so that there exists a root poset (Φ+,≤), defined by setting
α ≤ β if and only if β − α ∈ NΦ+. The set NN(W ) of W -nonnesting partitions is the collection of
antichains (sets of pairwise-incomparable elements) in (Φ+,≤).

Postnikov observed a bijection (that had also appeared in Shi’s study [Shi97,Shi87] of the sign types
of affine Weyl groups) between NN(W ) and the set of regions into which the fundamental chamber
C0 is dissected by CatW , a certain deformation of the Coxeter arrangement AW .

Shortly after the introduction of noncrossing partitions, Athanasiades (ref) studied the aforemen-
tioned regions, using the finite field method, and found them, for types A,B,C,D, to be enumerated
by the same W -Catalan numbers. Moreover he defined a notion of block type that extended the block
size statistic in type A, and refining results of Reiner, showed that NN(W ) and NC(W ), for W of
types A,B,C, are equidistributed with respect to type.

Finally, in 2004, Athanasiades and Reiner [AR04], also answering a question of Bessis, completed the
proof of the equidistribution property for all Weyl groups. More importantly, they gave an embedding
NN(W ) ↪→ L, and showed they could replace the case-special block type statistic with the W -orbit of
the corresponding flat X:

Theorem 2.4. [AR04, Thm 6.3] Let W , be a Weyl group and NN(W ) its nonnesting partitions.
There is an embedding

NN(W ) ↪→ L
A 7→ ∩α∈AHα

which defines a partial order on NN(W ). We will sometimes identify NN(W ) with its image under
this embedding and speak about nonnesting flats. Then, NC(W ) and NN(W ) are equidistributed
with respect to W -orbits.

That is, every W -orbit in the intersection lattice L contains the same number of noncrossing and
nonnesting flats.

Sadly, the proof was done case by case for the infinite families and via computer for the remaining
ones. It seems that nonnesting flats don’t enjoy as nice properties as the noncrossing ones. In
particular, even for Weyl groups, NN(W ) is not a lattice under the induced partial order from L.

Example 2.5. Despite the fact that nonnesting partitions can be defined for arbitrary root systems,
the resulting structures only have nice properties in the crystallographic case. That’s why we will only
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present the root system I2(4) here (which is indeed crystallographic and for that matter isomorphic
to B2).

α
β γ

δ

(a) A choice of positive roots for
I2(4).

γ

β

α δ
(b) The root poset for I2(4).

Figure 4. I2(4) is one of the three crystallographic dihedral groups.

We can see a choice of positive roots for the root system of I2(4) in Figure 4a; α, β, γ, δ satisfy
relations γ − β = δ and β − α = δ. These imply γ ≥ β and β ≥ α, β ≥ δ. This explains Figure 4b
which depicts the root poset (Φ+,≤) of I2(4) and from which we can tell that it has exactly 6 antichains:{
∅, {α}, {β}, {γ}, {δ}, {α, δ}

}
. This agrees with the W -Catalan number Cat(I2(4)) = 4 + 2.

Notice finally, that NN(I2(4)) ⊂ L is made up of the 4 reflecting hyperplanes, {0} and all of V ∼= R2

(in this case precisely equal to NC(W ) ⊂ L).

2.3. Haiman’s work is the third part of the story. In [Hai94], he considered the diagonal action
of the symmetric group Sn on the doubly graded ring Q[x1, · · · , xn, y1, · · · , yn]. Haiman studied the
quotient Rn = Q[X,Y]/I where I is the homogeneous ideal generated by all Sn-invariant polynomials
without constant term and made various conjectures on its character, and Hilbert and Frobenius series.

One of them in particular, was that Rn ∼= ε⊗V as an Sn-module, where ε is the sign representation
and V = Znn+1/Zn+1 with the natural Sn-action on coordinates. Haiman (who credits Gessel for the
suggestion) found that the permutation action on the parking functions (that we described in the
introduction) is isomorphic to the Sn-action on V . He called V the parking space module.

Attempting to generalize the above, he considered the diagonal module Q[U ⊕ U ] where U is the
reflection representation of a Weyl group W . He defined RW to be the quotient by a suitably chosen
ideal and conjectured, again, that RW ∼= ε⊗Y where T is the permutation representation on the finite
torus Q/(h+ 1)Q (where Q is the root lattice of W and h its Coxeter number).

He proved that the total number of W -orbits in Q/(h + 1)Q is given by the W -Catalan number
(although the term was not introduced until [Rei97] ). We call Q/(h+1)Q the standard parking space.

Another significant contribution by Haiman, was the use of homogeneous systems of parameters
(h.s.o.p.’s see Defn ref). Many of his conjectures involved quotients of Schur functions that need not
be polynomials (or have positive coefficients). Haiman used h.s.o.p.’s to interpret these quotients as
Hilbert functions of certain rings.

Example 2.6. We test here the formula for the number of orbits of
Q/(h+1)Q. We will only work with I2(4) again. Figure 5 describes
the orbit structure of the action of I2(4) on Q/(h+1)Q, where Q is
the root lattice generated by the simple roots α and δ of Figure 4a
and h = 4. Different shapes correspond to different orbits; there
are 4 orbits of size 4, corresponding to the four reflections, one
orbit of size 8 corresponding to the Coxeter element r and one
orbit of size 1 corresponding to the identity e.

Furthermore, their stabilizers are conjugate (actually the same
in this case) to the stabilizers WX for the corresponding nonnesting
flats X (see discussion above (3.1) ).

Figure 5. The standard parking space of
I2(4).
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3. Parking Spaces

In [ARR15] Armstrong, Reiner and Rhoades describe two generalizations of the standard W -parking
space, called the noncrossing parking space and the algebraic parking space. These are defined
for the larger set of real reflection groups and they carry not just W -actions but W ×C-actions, where
C is the cyclic subgroup of W generated by a Coxeter element c.

3.1. Noncrossing and nonnesting parking functions. We follow their presentation:
Define an equivalence relation on the set of ordered pairs

W × L = {(w,X) : w ∈W,X ∈ L}

by setting (w,X) ∼ (w′, X ′) when one has both

(1) X = X ′, that is, the flats are equal, and
(2) wWX = w′WX′ where WX is the pointwise W -stabilizer of the flat X.

Let [w,X] denote the equivalence class of (w,X), and note that the left-regular action of W on
itself in the first coordinate descends to a W -action on equivalence classes: v · [w,X] := [vw,X].

Definition 3.1. Define the W -nonnesting and W -noncrossing parking functions as the following
W -stable subsets of (W × L)/ ∼:

ParkNNW := {[w,X] : w ∈WandX ∈ NN(W )}

ParkNCW := {[w,X] : w ∈WandX ∈ NC(W )}
Both of these subsets inherit the W -action v · [w,X] = [vw,X], but the second set ParkNCW also has a
W ×C action, defined by letting the cyclic group C =< c > (c being the Coxeter element we fixed) act
on the right:

(v, cd) · [w,Z] := [vwc−d, cd(X)]

As C[W ]-modules, the new parking spaces are by construction, sums of coset representations indexed
by noncrossing and nonnesting flats. Indeed, let

C[W/WX ] ∼= IndWWX
1WX

denote the action of W by left-translation on left cosets {wWx} (equivalently the W -action on the
orbit W ·X) and notice that

ParkNNW
∼=

⊕
X∈NN(W )

C[W/WX ]

ParkNCW
∼=

⊕
X∈NC(W )

C[W/WX ]

This models Haiman’s observation for the original parking space module, where the Sn-orbits were
indexed by Catalan objects.

The Nonnesting parking space is actually isomorphic to Haiman’s standard parking space. Cellini
and Papi [CP00] and separately Shi [Shi97], established a bijection between antichains NN(W ) and W -
orbits onQ/(h+1)Q. Athanasiades [Ath05, Lemma 4.1, Theorem 4.2] showed that this bijection viewed
now from the nonnesting flats NN(W ) ⊂ L to the finite torus, respects stabilizers (up to conjugacy).
Furthermore, our previous discussion on the equidistribution of nonnesting and noncrossing flats with
respect to W -orbits, implies that the newly defined spaces are also isomorphic to each other. Put
together, we have:

Q/(h+ 1)Q ∼=W ParkNNW
∼=W ParkNCW (3.1)
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3.2. The algebraic W -parking space. As we mentioned earlier, one of the important contributions
of Haiman’s work was the use of homogeneous systems of parameters (hsop’s) to interpret various
formulae that appeared in his conjectures. The same object was used to provide conceptual proofs
of cyclic sieving phenomena in the seminal paper [RSW04] by Reiner,Stanton and White. We recall
some definitions:

Definition 3.2. [BR11, Defn 4.1] [ARR15, Section 2.5] Let W be a real reflection group acting on
V = Cn, and C[V ] = Sym(V ∗) the algebra of polynomial functions on V . We say that a collection
Θ = {θ1, · · · , θn} of n homogeneous elements, of degree h+ 1 in C[V ] forms a homogeneous system of
parameters (hsop) carrying the dual reflection representation of W if

(1) they are a system of parameters for C[V ], meaning that they are algebraically independent and
the quotient C[V ]/(Θ) is finite dimensional over C, and

(2) the C-linear isomorphism defined by

V ∗ → Cθ1 + · · ·+ Cθn (3.2)

xi 7→ θi

is W -equivariant. In particular, the linear span Cθ1 + · · · + Cθn carries a copy of the dual3

reflection representation V ∗.

The existence of such systems of parameters is by no means trivial, but nonetheless guaranteed by
the representation theory of rational Cherednik algebras (see [BEG03]). For the infinite families

B/C and D, the naive choice (θ1, · · · , θn) = (xh+1
1 , · · · , xh+1

n ) actually works but even for type A,
although Haiman gave a method, his construction is inductive4 and does not provide us with closed
formulas, see [Hai94, Prop. 2.5.4]. For that matter, there is no known simple construction of hsop’s
for the exceptional real reflection groups.

Similarly to the coinvariant algebra in classical Springer theory (see Prop 4.2), once we have the
homogeneous ideal (Θ), it is natural to consider the quotient ring C[V ]/(Θ). This arises for instance
in the rational Cherednik theory, and in the crystallographic case it is known to be isomorphic to the
representation C[Q/(h+ 1)Q] ∼=C[W ] C[ParkNNW ]. As an affine scheme therefore, C[V ]/(Θ) encodes all
the information of the standard parking space. In order to get a better understanding of its geometry
we consider a slight deformation:

Definition 3.3. [ARR15, Defn 2.10] Let W be a real reflection group, with Θ = (θ1, · · · , θn) and
(x1, · · · , xn) chosen as in 3.2. Consider the ideal

(Θ− x) := (θ1 − x1, · · · , θn − xn)

and define the algebraic W -parking space as the quotient ring

ParkalgW := C[V ]/(Θ− x)

This quotient has the structure of a W × C representation since the ideal (Θ − x) is stable under
the two commuting actions on C[V ] = C[x1, · · · , xn]:

(1) the action of W by linear substitutions, and

(2) the action of C =< c > by scalar substitutions cd(xi) = ω−dxi, with ω := e
2πi
h .

We will only be interested in the C[W × C]-structure of ParkalgW and in that context the choice of
Θ is irrelevant:

Proposition 3.4. [ARR15, Prop. 2.11] For every irreducible real reflection group W , and for any
choice of Θ satisfying 3.2, one has an isomorphism of W × C representations

ParkalgW := C[V ]/(Θ− x) ∼=C[W×C] C[V ]/(Θ)

3In the case of real reflection groups, this is the same as V since we always have a C[W ]-module isomorphism
V ∼=C[W ] V

∗.
4For a non-inductive construction, see [Dun98].
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Example 3.5. We describe here the set of possible hsop’s (Θ) for I2(m) that satisfy 3.2.
After we extend scalars to C and make a change of basis, I2(m) can be shown to act on V = C2 via

r : (x, y)→ (ζx,
y

ζ
)

s : (x, y)→ (y, x)

in other words, s =

[
0 1
1 0

]
, r =

[
ζ 0
0 ζ−1

]
where ζ = e

2πi
m .

Two arbitrary homogeneous polynomials of degree h+ 1 = m+ 1 are given by

θ1 = am+1x
m+1 + amx

my + · · ·+ a1xy
m + a0y

m+1 and

θ2 = bm+1y
m+1 + bmy

mx+ · · ·+ b1yx
m + b0x

m+1

For the C-linear isomorpshism xi → θi (from V ∗ to the linear span of the θi’s) to be W -equivariant,
we need r : (θ1, θ2)→ (ζθ1, θ2ζ

−1) and s : (θ1, θ2)→ (θ2, θ1).
The action of r forces ai = aiζ

iζi−m which can only be true if ai = 0 or 2i −m ≡ 0 modm. This
leaves us with two cases for m:

m odd: θ1 = axm+1 + bxym (3.3)

θ2 = aym+1 + byxm

m = 2k : θ1 = axm+1 + bxk+1yk + cxym (3.4)

θ2 = aym+1 + byk+1xk + cyxm

Not all of these (Θ) are, however, systems of parameters for C[x, y]. An equivalent condition is (ref?
see also next proof) that the only common root of the θi’s is 0. We work out the case m is odd:

In the above equation, θ1 = 0 implies x = 0 or ax + by = 0. Similarly for θ2, we get ay + bx = 0.
This has non-trivial solutions exactly when a = b and a = −b.

3.3. The Parking space conjectures. In Figure 6 we can see a chain of C[W ]-module isomorphisms,

a summary of the ideas that we have described, that connect ParkalgW and ParkNCW . The chain breaks
outside the crystallographic case but even where it works, most proofs are either case by case or not
illuminating. The main conjecture in [ARR15] is an attempt to provide a geometric interpretation, a
missing link to complete that chain.

In [BR11, Question 5.3], Bessis and Reiner, attempting to do exactly that, had asked for a finite set
P , that carries a suitable W × C action. It should consist of (h + 1)n points, its W -orbits should be
naturally indexed by NC(W ) and it should be isomorphic to C[V ]/(Θ) as a C[W × C]-module. The
role of P in [ARR15] is played by nothing else than the zero-set of the ideal (Θ−x) itself; we call the
resulting 0-dimensional variety V Θ. The notation is meant to suggest that one views V Θ as the fixed
points of the polynomial map Θ : V → V that sends an element x with coordinates (x1, · · · , xn) ∈ V
to the element Θ(x) =

(
θ1(x), · · · , θn(x)

)
.

Notice that the definition of V Θ as the zero set of (Θ− x) implies that it carries a natural W × C
action as well. Furthermore, Proposition 3.4 indicates that the variety V Θ has at most (h+1)n distinct
points (and exactly that many when counted with multiplicity).

Main Conjecture. [ARR15] Let W be an irreducible real reflection group.

(weak version) The spaces C[ParkalgW ] and C[ParkNCW ] are isomorphic as C[W × C]-modules.
(intermediate version) There exists a choice of Θ as in (3.2) such that...
(strong version) For all choices of Θ as in (3.2), one has that...

.. the subvariety V Θ inside V consists of (h + 1)n distinct points, that have a W × C-equivariant
bijection to the set ParkNCW , that is, V ⊃ V Θ ∼=W×C ParkNCW .

3.4. Known cases. There is quite a lot of evidence for the Main Conjecture. We present here a few
results.



ORAL EXAMINATION PAPER 9

Define the dimension of a point p ∈ V Θ to be the dimension of the flat X ∈ L that contains p.
Then we can decompose the variety V Θ as

V Θ = V Θ(0) ] V Θ(1) ] · · · ] V Θ(n)

where V Θ(i) is the set of points p ∈ V Θ of dimension i and ] denotes disjoint union.

Proposition 3.6. [ARR15, Prop. 2.13] For W an irreducible real reflection group of rank n, and
for all choices of Θ as in (3.2), one has the following.

(1) The set V Θ(0) = {0} of 0-dimensional points in V Θ is the unique W ×C-orbit in V Θ carrying
the trivial W × C-representation.

(2) There exists a W ×C-equivariant injection V Θ(1) ↪→ ParkNCW whose image is precisely the set
of noncrossing parking functions of the form [w,X] with dim(X) = 1.

(3) The set V Θ(n) of n-dimensional points in the unique W -regular orbit of points in V Θ.

Furthermore, every point in the subsets V Θ(0), V Θ(1), and V Θ(n) is reduced in V Θ, that is, it is
cut out by the ideal (Θ− x) with multiplicity 1.

This in particular implies:

Corollary 3.7. The strong version of the Main Conjecture holds in rank ≤ 2.

Much of [ARR15] is devoted to proving different versions of the Main Conjecture for the infinite
families A,B/C,D. The current status is summarized in the following table [ARR15, Table 1, p.662]:

Reflection group W Strongest version of the Main Conjecture proven for W
rank ≤ 2 Strong; Corollary 3.7
type A3 Strong; Brendon Rhoades writeup in progress
type An−1 Intermediate; Brendon Rhoades writeup in progress
type Dn Intermediate; [ARR15, Section 7]
type H3, H4, F4, E6 Weak; computer verification
type E7, E8 Open

3.5. Applications of the Main Conjecture.
Even the weak form of the Main Conjecture has remarkable applications for Coxeter-Catalan com-

binatorics:

3.5.1. The W -action gives ParkNNW
∼=W ParkNCW .

The W -set isomorphism between the noncrossing and nonnesting parking spaces is the weakest link
in Figure 6; that is, it is the only part that still has no uniform proof.5 Even the weak form of the
main conjecture provides a C[W ]-module isomorphism between the two spaces. In this particular case,
this is enough to give a W -set isomorphism because of the following proposition.

Proposition 3.8. [ARR15, Prop. 3.1] [Mil, Thm. 1] For real reflection groups W and finite sets A1,
A2 whose W -orbits are all W -equivariant to W -orbits {W ·X} of flats X in L, one has C[A1] ∼=C[W ]

C[A2] if and only if A1
∼=W A2.

3.5.2. The C-action is a cyclic sieving phenomenon.
We recall the definition of the cyclic sieving phenomenon, introduced in [RSW04]:

Definition 3.9. [RSW14] Let C be a cyclic group generated by an element c of order n acting on a
finite set X. Given a polynomial X(q) with integer coefficients in a variable q, we say that the triple
(X,X(q), C) exhibits the cyclic sieving phenomenon (CSP) if for all integers d, the number of elements
fixed by cd equals the evaluation X(ζd) where ζ = exp(2πi/n).

5 For an attempt to a uniform bijection between NC(W ) and NN(W ) that sadly does not respect block type (or
W -orbits), see [AST13]
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In [BR11], Bessis and Reiner showed that the triple
(
NC(W ),Cat(W, q), C

)
exhibits the cyclic

sieving phenomenon where Cat(W, q) was defined to be the following q-Catalan number for W

Cat(W, q) =
n∏
i=1

1− qh+di

1− qdi

The weak conjecture provides a conceptual proof for this CSP, as Cat(W, q) may be interpreted as
the Hilbert series in q for (C[V ]/(Θ))W (and then the theorem follows by classical techniques in the
style of [RSW04]). The original proof of [BR11, Theorem 1.1] relied on certain facts proved case by
case and a counting argument. If nothing else, this would be a suggestion that Cat(W, q) is the correct
q-version of the W -Catalan numbers.

3.5.3. Kirkman and Narayana numbers for W .
The C[W ]-module isomorphism between the noncrossing and nonnesting parking spaces (which only

has a case by case proof as we described before (3.1) gives an interesting interpretation to the Kirkman
and Narayana numbers. These can be defined by:

NarW (t) :=
∑

X∈NC(W )

tdimC(X) =
∑

w∈[1,c]T

tdimV w

KirkW (t) := NarW (t+ 1)

where the Kirkman numbers are the generating functions for the face numbers of the cluster complexes
of finite type, or the Cambrian fan associated to W .

Let V be the reflection representation of W . Recall that the exterior powers
∧k V for k = 0, 1, · · · , n

are irreducible and pairwise inequivalent. In the case of the symmetric group, they correspond to hook-
shaped partitions (m − k, 1k) ` n. If we denote by Park(W ) either of the isomorphic C[W ]-modules

C[ParkNCW ] ∼=C[W ] C[ParkalgW ], we have the following interpretation for kirkw(t):

Corollary 3.10. [ARR15, Cor. 3.3] The Kirkman numbers are the multiplicities of the exterior

powers
∧k V in the irreducible decomposition of the parking space Park(W ). That is, for W irreducible,

one has

KirkW (t) =
n∑
k=0

〈χ∧k V , χPark(W )〉W · tk

We close this section with a depiction that summarizes the relations between the various players so
far.

V Θ

ParkalgW

C[V ]/(Θ) Q/(h+ 1)Q

ParkNN
W

ParkNC
W

The triple
(NC(W ),Cat(W, q), C)

exhibits the cyclic
sieving phenomenon.

NC(W ) ∼= NN(W )

The Kirkman numbers
are structure con-

stants in the decom-
position of Park(W ).

1. This is just the Spec operator if C[V ]/(Θ− x) is reduced.

2. Recall that parkalgW := C[V ]/(Θ−x). This is then, Proposition
2.11 in [ARR15].

3. This was just a character calculation, known to Gordon and
Haiman, see [BR11, Prop. 5.4], uniform.

4. Athanasiadis [Ath05], see discussion before (3.1), uniform.

5. Athanasiadis and Reiner, [AR04, Thm. 6.3] in a case by case
fashion; see discussion before Theorem 2.3 .

6. The Parking Space Conjecture.

1

2

3

4

56

Figure 6. A chain of C[W ]-isomorphisms between various parking spaces, the Main Conjecture and
its applications.
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4. Braid groups, discriminants and the Lyashko-Looijenga morphism.

4.1. Invariant theory of reflection groups. Let G be a finite group acting on the vector space
V = Cn via linear transformations. This induces an action of G on the coordinate ring C[V ] :=
C[x1, · · · , xn] of V ; call C[V ]G the ring of invariants.

It is a famous result by Noether that C[V ]G is generated by finitely many polynomials, that is, it
is the coordinate ring of some affine variety X. Moreover, each point of X corresponds to an orbit in
V in a way that makes X homeomorphic to the quotient G\V and the projection map V 7→ G\V a
morphism of affine varieties.

The case of a reflection group W acting via its reflection representation is particularly nice. The
Chevalley-Shephard-Todd theorem states that this is exactly the case when the ring of invariants is
polynomial. Now the extension C[V ]W ⊂ C[V ] is finite so C[V ]W will also have dimension n:

Definition 4.1. We call a set f = {f1, · · · , fn} of homogeneous generators for C[V ]W , a system of basic
invariants for W . We order it so that deg fi ≤ deg fi+1.

A system of basic invariants f encodes quite a lot of information about the group W and the Coxeter
arrangement AW . The degrees di := deg(fi) are independent of f and their product equals the size
of the group |W |. In fact (see [ST54] and [Sol63]) we have the following stronger result, known as the
Shephard-Todd formula: ∑

w∈W
qdim(V w) =

n∏
i=1

(q + (di − 1))

where V w = {v ∈ V = Cn : w(v) = v}. Also, the highest degree dn is the Coxeter number h for W .
In the context of classical Springer theory it is natural to consider the quotient C[V ]/(f):

Proposition 4.2. [ST54] [Che55] [Spr74] The coinvariant algebra C[V ]/(f) carries the regular rep-
resentation of W . Let C = 〈c〉 be generated by a Coxeter element c and ζ one of the eigenvalues of c.
Then we actually have the stronger isomorphism of C[W × C]-modules

S/(f) ∼=C[W×C] C[W ]

A somewhat dual version of basic invariants exists:
The space C[V ]⊗ V corresponds to the vector fields of V ; its arbitrary element φ can be written as

φ =
∑l

k=1 gk ∂/∂xi, where gk ∈ C[V ]. Such an element φ is called homogeneous of degree p if all gk
have the same degree p. This gives a grading for C[V ]⊗ V .

Theorem 4.3. [OT92, Lemma 6.48] The space
(
C[V ]⊗V

)W
is a free, homogeneous C[f1, f2, · · · , fn]-

module of rank n.

Definition 4.4. We call a homogeneous basis {ξ} = (ξ1, ξ2, · · · , ξn) of
(
C[V ]⊗ V

)W
a system of basic

derivations for W .

Basic derivations correspond to W -invariant vector fields of V . For j ∈ {1, 2, · · · , n} the vector field
ξi defines a vector field ξi of the quotient variety W/V . The degrees d∗i of the ξi’s are also independent
of the choice of ξ and are called the co-degrees of W . We order them in decreasing order.

Degrees and codegrees satisfy a sort of duality in the case of real reflection groups.6 For all i ∈
{1, 2, · · · , n} we have di + d∗i = dn = h, see [Bes15, Thm 2.4].

6Actually more generally, for well-generated complex reflection groups, that is, those generated by dim(V ) reflections.
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4.2. Braid Groups and the Discriminant Hypersurface. Choosing a system of basic invariants
for W is tantamount to choosing a graded isomorphism between C[V ]W and C[y1, · · · , yn]. Geometri-
cally, this means choosing a way to identify W\V with the affine space Cn. The induced morphism

V −−−−−→ Cn ∼= W\V
x = (x1, · · · , xn) 7→

(
f1(x), · · · , fn(x)

)
realizes (the affine space) Cn as the quotientW\V . That is, the preimage of the point

(
f1(x), · · · , fn(x)

)
is exactly the orbit W · x.

Now, let AW be the hyperplane arrangement associated to W and set

V reg := V −
⋃

H∈AW

H

to be its complement. It is a classical theorem due to Steinberg that for any point x ∈ V , the subgroup
Wx of W that fixes x is generated by the reflections that fix x. This means that the action of W on
V reg is free.

In particular, because the map
(
x 7→ f(x)

)
is continuous, the action W y V reg is a covering space

action. This means that if p : V � W\V is the quotient map and we choose a basepoint v0 ∈ V reg,
the following sequence is exact:

1→ p∗
(
π1(V reg, v0)

)
→ π1

(
W\V reg, p(v0)

)
→W → 1

Definition 4.5. We callB(W ) := π1

(
W\V reg, p(v0)

)
the braid group ofW and P (W ) := p∗

(
π1(V reg, v0)

)
the pure braid group.

Later, we will update the definition of B(W ), substituting v0 with a fat basepoint (see Section ??).

The surjection B(W ) � W will be crucial to Bessis’ new, geometric interpretation of NC(W ). In
order to understand it better, we return to the hyperplane arrangement AW .

For each H ∈ AW , let αH ∈ V ∗ be a linear form with kernel H. The product
∏

H∈AW

αH is a

homogeneous polynomial whose zero-set is AW . It is however not W -invariant; whenever x′ = sH · x
(so x′ is in the same orbit as x), it is not very difficult to see that∏

H∈AW

αH(x) = −
∏

H∈AW

αH(x′)

This leads us to consider its square:

Definition 4.6. Given a basic system of invariants f , we can express
∏

H∈AW

αH(x)2 as a polynomial in

the fi’s. We write that polynomial as ∆(W,f) and call it the discriminant of W with respect to f .
Notice that because it is homogeneous on the xi’s, as a polynomial on the fi’s, ∆(W,f) is weighted
homogeneous for weights deg(fi) = di.

Now, the zero set ∆(W,f) = 0 in SpecC[f1, f2, · · · , fn] ∼= W\V is called the discriminant hy-
persurface H and is precisely the image of the Coxeter arrangement AW under the quotient map
p : V →W\V .

The braid group B(W ) is therefore realised as the fundamental group of the complement of an alge-
braic variety in Cn. Such fundamental groups are generated by particular elements called generators-
of-the-monodromy or meridians [?, Section 2]; those correspond to small loops wrapping once around
smooth points of the variety.

For a braid group B(W ), all meridians come from small paths around the hyperplanes H in V that
connect a point x close to H with the image sH · x. These paths map to loops (meridians) in the
quotient space W\V that we call braid reflections. For future reference, we record this as:

Proposition 4.7. [Bro10, Thm. 4.15] The braid group B(W ) is generated by the meridians of H
which we call braid reflections.
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4.3. Discriminant stratification. The intersection lattice L of AW describes a stratification S of
the space V via its flats. The action of W on L defines a quotient stratification S on W\V which we
call the discriminant stratification.

The discriminant stratification has been studied extensively (e.g. [Orl89] ) and is intimately related
to the invariant theory of W . We assemble here a few results we will need:

Proposition 4.8. [OT92, Corol. 6.114] Let v ∈ V with image v ∈ W\V . The tangent space to the
stratum of S containing v is spanned by the vectors ξ1(v), · · · , ξn(v) (where ξ = (ξ1, ξ2, · · · , ξn) is a
system of basic derivations for W ). The tangent space to the stratum of S containing v is spanned by
the vectors ξ1(v), · · · , ξn(v).

Proposition 4.9. [Bes15, Lem 5.4] Let v be as above and set

Vv :=
⋂

H∈AW , v∈H
H

The multiplicity of the discriminant hypersurface H at v is dimC V/Vv.

Steinberg’s theorem [Bro10, Theorem 4.6] gives a natural bijection between the set of flats in V and
the set of parabolic subgroups of W . Each flat L is mapped to its fixator which is always a parabolic
subgroup of W generated by those reflections that fix L. Taking the quotient by W (which acts on
the parabolic subgroups by conjugation), this gives yet another decription of the stratification S:

Proposition 4.10. [Rip12, Prop. 3.4] The set S is in canonical bijection with:

(1) the set of conjugacy classes of parabolic subgroups of W ;
(2) the set of conjugacy classes of parabolic Coxeter elements (i.e. Coxeter elements of parabolic

subgroups);
(3) the set of conjugacy classes of elements of NC(W )

Through these bijections, the codimension of a stratum L corresponds to the rank of the associated
parabolic subgroup and to the reflection length of the parabolic coxeter element.

Example 4.11. Assume I2(m) acts on V = C2 as in Example 3.5.
A choice of a system of basic invariants for I2(m) is given by the polynomials f1 = xy and f2 =

xm + ym. Therefore, W\V ∼= C2, with parameters (f1, f2). The hyperplane corresponding to the
reflection rks (for k = 1, 2, · · · ,m) is the zero-set of the form x− ζky. The discriminant is then given
by

∆(I2(m),f) =
m∏
k=1

(x− ζky)2 = (xm − ym)2 = (xm + ym)2 − 4(xy)m = f2
2 − 4fm1

The following Figure 7 shows the discriminant hypersurfaces ∆(I2(m),f) = 0 for m = 3, 4. Both
images depict only the real coordinate of f2, that is, they live in

[0, 1]3 = [0, 1]2 × [0, 1] ⊂ C× Re(C) ⊂ C× C (= {(f1, f2)}).
The lines of self-intersection disappear in C2; the only singular point of both surfaces is the origin.
Notice that, as expected by the formula f2

2 = 4fm1 , the surfaces wrap around the origin with rotational
speed m/2.

The visual information is enough to reconstruct the stratification. In Figure 7a, removing the origin
leaves two disconnected components; I2(4) has two different strata of (co-)dimension 1, because its
reflecting hyperplanes form two orbits under W . This is not the case in Figure 7b, where there is a
single 1-dimensional stratum.

4.4. The generalised Lyashko-Looijenga covering. It is known [Bes15, Thm 2.4 part (v)] that
when W is a real reflection group,7 the discriminant ∆(W,f), viewed as a polynomial in fn is monic

7This is actually true for all well-generated complex reflection groups W .
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(a) The reflections in I2(4) form two separate orbits. (b) All reflections in I2(3) are conjugate.

Figure 7. The discriminant hypersurfaces for I2(3) and I2(4).

of degree n. Making an extra substitution, we can eliminate the coefficient of fn−1
n resulting in an

equation:
∆(W,f) = fnn + α2f

n−2
n + α3f

n−3
n + · · ·+ αn

with αi ∈ C[f1, · · · , fn−2]. Notice that since ∆(W,f) is weighted homogeneous, so are the αi’s, of
weighted degree ndn − (n − i)dn = ih. The fact that the discriminant is monic with respect to fn
implies that fixing y = (f1, f2, · · · , fn−1) ∈ Cn−1, the equation ∆(W,f) = 0 has exactly n solutions
for the unknown fn, counted with multiplicity.

Recall that we have identifiedW\V with SpecC[f1, f2, · · · , fn]. Let us now define Y := SpecC[f1, f2, · · · , fn−1],
so that W\V ∼= Y × C, with coordinates written (y, t), or sometimes (y, z). Then, for a fixed
y = (f1, f2, · · · , fn−1), the solutions of ∆(W,f) = 0 correspond to the intersections of the discriminant
hypersurface H and the line {(y, t) : t ∈ C}. This allows us, following [Rip12], to give the subsequent
definition:

Definition 4.12. We denote by En the set of centered8 configurations of n unordered, not necessarily
distinct points in C, i.e.,

En := Sn\H0, where H0 =
{

(x1, x2, · · · , xn) ∈ Cn|
n∑
i=1

xi = 0
}
∼= Cn−1

The Lyashko-Looijenga map of type W is defined by

Y
LL−−−−−→ En

y = (f1, · · ·, fn−1)→ multiset of roots of
(
∆(W,f); fn

)
= 0

Notice there is a simple description of LL as an algebraic morphism. Indeed the coordinate ring
of En is polynomial and generated by the (n − 1) elementary symmetric functions {e2, e3, · · · , en}.9
Now, the elementary symmetric polynomials evaluated at the roots of

(
∆(W,f); fn

)
= 0 will give,

according to Vieta’s formulas the coefficients αi (up to sign). Therefore, we can express LL as the
map

Y ∼= Cn−1 LL−−−−−−−→ En ∼= Cn−1

y = (f1, · · · , fn−1) −−−−−−−→
(
(−1)2α2(f1, · · · , fn−1), · · · , (−1)nαn(f1, · · · , fn−1)

)
8The configurations will be centered, exactly because we eliminated the coefficient of fn−1

n in the discriminant equation(
∆(W,f); fn

)
= 0

9This is also a special case of our previous discussion for geometric invariants, since En is the quotient of V under the
action of the complex reflection group Sn.
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The generic point (f1, f2, · · · , fn−1) ∈ Y is mapped via LL to a configuration of n distinct points.
We call Eregn ⊂ En the space of such configurations and define the bifurcation locus to be the inverse
image K := LL−1(En − Eregn ). Notice that K is the zero-set of the LL-discriminant:

Disc(∆(W,f); fn) = 0

The Lyashko-Looijenga morphism behaves particularly nicely outside K:

Proposition 4.13. [Bes15, Thm 5.3] The restriction of LL : Y −K� Eregn is a topological covering
of degree

n!hn

|W |
Proof. The morphism LL is quasi-homogeneous between the spaces Y ∼= En ∼= Cn−1; algebraically,
it describes a graded extension C[α2, · · · , αn] ⊂ C[f1, · · · , fn−1]. Under this setting, the extension is
finite if and only if LL−1(0) = {0} (where 0 is the origin (0, 0, · · · , 0)). To see that,10 notice that

LL−1(0) = 0 ⇐⇒
√

(α1, α2, · · · , αn) = (f1, f2, · · · , fn−2)

⇐⇒ (f1, f2, · · · , fn−1)N ⊂ (α2, α3, · · · , αn)

for a suitably large N which is precisely the definition for (α2, α3, · · · , αn) being a homogeneous system
of parameters. This in turn implies that the extension is finite; in particular (α2, α3, · · · , αn) have to
be algebraically independent (so that the two rings have the same dimension).

Now, C[f1, f2, · · · , fn−1] is Cohen-Macaulay, therefore its extension over the polynomial ring C[α2, α3, · · · , αn],
has to be free. The rank can be computed by a Hilbert series calculation. Since deg fi = di, the Hilbert
series of the first ring is given by

∏n−1
i=1

1
1−tdi ; since degαi = ih, the second ring has Hilbert series∏n

i=2
1

1−tih . The rank of the free extension is the limit as t → 1 of the quotient of these series, equal
to

lim
t→1

n−1∏
i=1

1− t(i+1)h

1− tdi =
n−1∏
i=1

(i+ 1)h

di
=

n!(hn−1

d1 · · · dn−1
=
n!hn

|W |
The following two lemmas complete the proof:

Lemma 4.14. [Bes15, Lemma 5.6] LL−1(0) = {0}
sketch. The proof is non-trivial; it comes down to comparing the multiplicity m(y,0)(H) of H at an

element (y, 0) ∈ LL−1(0) with the intersection multiplicity i
(
(y, 0), Ly · H;Cn

)
of H and Ly at (y, 0)

The latter is by definition equal to n, the order of 0 as a root of (∆(W,f); fn) = 0. A refined Bezout
theorem gives

i
(
(y, 0), Ly · H;Cn

)
= m(y,0)(H (4.1)

that is, my,0(H) should be n but this can only happen at the origin 0 (by Prop. 4.9). �

Lemma 4.15. LL is unramified on Y −K.

sketch. The proof uses systems of basic derivations to describe tangent hyperplanes to the discriminant
hypersurface H. Now, a result of Looijenga [Loo74] implies it is enough to check that the hyperplanes
are in general position. The calculation is done in [Bes15, Lemma 5.7] and in more detail in [Rip12,
Section 4.1]. �

This completes the proof of Proposition 4.13; the first important property of the morphism LL.
�

10For a different approach using Bezout’s theorem see [LZ04, Thm 5.1.5]
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4.5. The stratification compatibility. The configuration LL(y) defines a partition of n via the
multiplicities of the elements xi ∈ LL(y). Each of the points (y, xi) has its own multiplicity as an
element of the variety H. To be complete, we mention that these are compatible:

Proposition 4.16. [Bes15, Corol. 5.9] Let v ∈ V . Denote by (y, z) ∈ Y × C (identified with W\V )
the image of v. The following integers coincide:

(1) the multiplicity of z in LL(y);
(2) the intersection multiplicity of Ly with H at (y, z);
(3) the multiplicity of H at (y, z);
(4) the rank dimC V/Vv of the parabolic subgroup Wv.

In fact, the equivalence (ii)↔(iii) is nontrivial, given by a refined Bezout theorem as in (4.1).

5. Geometric factorizations

Let W be an irreducible real reflection group acting on the complexified space V = Cn and B(W ) =
π1

(
W/V − H

)
= π1

(
V reg

)
its associated braid group. As we mentioned earlier, Bessis [Bes15] used

the surjection π : B(W ) �W to build a geometric framework for NC(W ).
In order to make use of the Lyashko-Looijenga morphism, we will parametrize the quotient W/V

as Y × C =
⋃
y∈Y Ly where Y is the subspace of the first n − 1 coordinates (f1, · · · , fn−1) and Ly is

the vertical complex line (y, t) : t ∈ C. Notice that the image of the LL morphism is given by

LL(y) = Ly ∩H

5.0.1. The fat basepoint trick. In general, there is no canonical projection π : B(W ) �W . Every such
map depends on the choices of a basepoint in W/V reg, and one of its |W |-many preimages in V reg. In
order to simplify notations, Bessis introduced the following contractible subset U ∈W/V reg:

Definition 5.1. [Bes15, Defn. 6.2] For each y ∈ Y , let Uy be the complement in Ly of the vertical
imaginary half-lines below the points of LL(y) (see Figure 8). Then, the fat basepoint of W/V reg is
the subset U defined by

U :=
⋃
y∈Y

Uy

or equivalently by

U := {(y, z) ∈ Y × C | ∀x ∈ LL(y), re(z) = re(x)⇒ im(z) > im(x)}

(a) The points in LL(y) might all
be distinct...

(b) ...or some of them might have
the same real part

(c) ...or they may appear with mul-
tiplicity > 1.

Figure 8. The complement Uy for various cases of LL(y).

The proof that U is open and contractible and therefore can be used ’as if’ it was an actual basepoint
is given in [Bes15, Lemma 6.3]. Notice now, that U lifts to |W |-many disjoint fat points in V reg. Make,
once and for all, a choice of one of the preimages of U and consider the unigue surjection B(W ) �W
it defines.
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5.1. Tunnels and the Hurwitz rule. Bessis describes a canonical way to construct factorizations
of Coxeter elements, geometrically from the discriminant hypersurface H. The starting point is the
following map (following [Rip12] and [Bes15, Section 6])

ρ : H →W (5.1)

(y, x) 7→ cy,x

that is constructed thus:
(1) Consider a small loop in W/V − H, which always stays in the line Ly and which turns once

around x (but not any other x′ in LL(y)).
(2) This loop determines an element by,x of the braid group B(W ) = π

(
W/V −H

)
of W .

(3) Send by,x to an element cy,x in W via the fixed surjection π : B(W ) �W .

In view of the fat basepoint U , these loops can be encoded via the following semi-algebraic object:

Definition 5.2. A tunnel is a triple T = (y, z, L) ∈ Y ×C×R≥0 such that (y, z) and (y, z+L) are both
in U and the affine segment [(y, z), (y, z+L)] lies completely in W/V reg. Each tunnel T represents an
element bT ∈ π1

(
W/V reg,U

)
Figure 9 shows how we can identify various kinds of loops with products of tunnels. Notice that we

will picture the fat basepoint as lying somewhere in the i · ∞ direction, in all lines Ly.
The concept of tunnels allows us to be more specific about the loop by,xi described above. That is,

if (y, xi) has real part different than the other elements of LL(y), by,xi is just bTi where Ti is a tunnel
crossing the interval below xi but no other. If not, then say (y, xi+1) is the point in LL(y) immediately
above (y, xi); then by,xi is exactly bTi · b−1

Ti+1
(as in Figure 9b).

*

T1

T2
T3

bT1

bT2

bT3

(a) Each tunnel Ti represents a loop
bti in B(W ).

*

T1

T2

bT1

γ

(b) Here the loop γ is represented

by bT2 · b−1
T1

.

*

T4

T1 T2 T3

γ

(c) A tunnel can be equal to a prod-
uct of tunnels: γ = bT4 = bT1 · bT3 .

Figure 9. Tunnels and loops.

Definition 5.3. [Bes15, Defn 6.7] An element b ∈ B(W ) is simple if b = bT for some tunnel T . The
set of simple elements is denoted by S.

Remark 5.4. The set S will be shown to be finite and eventually will biject to the noncrossing par-
tition lattice (see §5.2.1) This is the geometric interpretation of NC(W ) that we mentioned in the
introduction.

The next definition associates a tuple of simple elements of B(W ) to y ∈ Y . We will show that this
is always a factorization of a Coxeter element c.

Definition 5.5. If (x1, · · · , xp) is the ordered support of LL(y) (for the lexicographical order on C ∼=
R2), we call the sequence rlbl(y) := (by,x1 , · · · , by,xp), the reduced label of y.11

Remark 5.6. When y is generic, there are precisely n points in LL(y), all smooth in H, therefore rlbl y
is an n-tuple of braid reflections (see Prop. 4.7).

The loops and tunnels we consider always lie in a single complex line Ly. However, loops in different
lines Ly and L′y can definitely be homotopic. We have the following rule:

11We have kept the terminology from [Bes15] where Bessis initially used a slightly different assignment lbl(y) based
more on tunnels.
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Proposition 5.7. [Bes15, Lemma 6.14 (The Hurwitz rule)] A continuous family of loops {γt} that
each lie in a single line Lyt, and whose basepoints all lie in U

γt = (yt, xt) : [0, 1]→W/V −H ⊂ Y × C
s 7→ (yt, xt(s))

is a homotopy if the configurations LL(yt) never intersect the loop xt : [0, 1]→ C.

In particular, given a starting point y0, a continuous deformation of the central configuration LL(y)
lifts to a path in Y (that is unique if we stay in Eregn ). This is a consequence of the finiteness of LL
(Prop. 4.13) and gives us an easy way to describe homotopies (see Figure 10).12

*

(a) As the points in LL(y) move, ...

*

(b) ...they are allowed to merge and
unmerge

*

(c) ...and the loop might change
shape as well.

Figure 10. A pictorial description of a homotopy

5.1.1. The geometric interpretation for the Coxeter element.

Definition 5.8. [Bes15, Defn 6.11] We denote by δ the simple element such that rlbl(0) = δ. Here
0 = (0, 0, · · · , 0) is the origin in Y = Cn−1; recall also that the Lyashko-Looijenga map LL(0) is 0 in
L0
∼= C with multiplicity n (as in Lemma 4.14).

Given a point v ∈ L0 (the complex line above 0), we can parametrize δ as the loop in W/V reg:

[0, 1]→W/V reg

t 7→ v exp(2πit)

Its galois action on V reg rotates any element v ∈ p−1(v) to v ·ζh where ζh := exp(2πi/h). Therefore,
the image π(δ) in W is ζh-regular in the sense of Springer (see [Bes15, Lem. 6.13]). We have now:

Lemma 5.9. [Bes15, Lem 7.3] When W is irreducible, the element c := π(δ) is a Coxeter element
of W .

The other Coxeter elements, which are conjugates of c, appear when considering other basepoints
over U .

The map rlbl : Y → B(W )n gives us factorizations of δ (and therefore of π(δ) = c as well):

Proposition 5.10. [Bes15, Corol. 6.18] Let y ∈ Y . Let (by,x1 , · · · , by,xk) be the reduced label of y.
We have by,x1 · · · by,xk = δ

Proof. We need only describe a homotopy between the loops δ and
by,x1 · · · by,xk . The latter one corresponds to a loop that encloses all
points xi. Since the arrangement is central, we can safely assume
that the origin lies inside the loop as well. Now, according to our
discussion after Prop 5.7, we can move all the points xi, keeping
them inside the loop until they all merge in a single point at the
origin (see Figure 11). �

*

Figure 11. A homotopy from
by,x1 · · · by,xk to δ.

12Actually [Bes15, Remark 7.21] implies that if we are only allowed to merge but not unmerge points in the configu-
ration, then the lift is still unique.
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5.1.2. The Hurwitz action. In Prop. 5.10, we showed that to each y ∈ Y we can associate a factorization
of δ (and hence of the Coxeter element c = π(δ)). We wish to know how that factorization may change
as y moves in Y . As in Prop. 5.7, we will juxtapose movement in Y with movement in the space En
of central configurations, via the LL mapping. First we recall the following:

Definition 5.11. [Bes15, Defn 6.19 (The Hurwitz action)] Let G be a group, and let Bn be the braid
group on n strings with its usual system of generators σ1, · · · ,σn−1. The Hurwitz action of Bn on
Gn, denoted as a multiplication on the right, is the unique (right) group action such that

(g1, · · · , gn) · σi = (g1, · · · , gi−1, gi+1, g
−1
i+1gigi+1, gi+1, · · · , gn)

The following allows us to compare the (reduced) labels of two points y and y′ in Y , given a path
β in En that connects LL(y) and LL(y′):

Proposition 5.12. [Bes15, Cor. 6.20] Let x ∈ Eregn . Let β ∈ π1(Eregn , x),13 y ∈ LL−1(x) and
y′ := y · β (the galois action of β). Let (b1, · · · , bn) be the label of y and (b′1, · · · , b′n) be the label of y′.
Then

(b′1, · · · , b′n) = (b1, · · · , bn) · β
where β acts by right Hurwitz action.

Proof. It is enough to show it for a path β that interchanges xi and xi+1 in the lexicographic order
in C (this would be exactly the Galois action of σi). Figures 12a and 12b describe the path β from y
to y′ and a homotopy between the corresponding loops. However, since x′i and x′i+1 have exchanged
positions, the map rlbl will first assign a label to x′i+1 and then to x′i. Figure 12c describes why

b′i+1 = b−1
i+1bibi+1.

*bi

xi

xi+1

bi+1

(a) As we move xi and xi+1 around
each other...

*

xi

xi+1

bi

bi+1

= b′i

b′i+1

(b) ...the loop bi streches to avoid
bi+1.

*

b−1
i+1

bi+1

bi

(c) The loop b−1
i+1bibi+1 is homo-

topic to b′i+1.

Figure 12. The Hurwitz action.

�

5.2. The Gordon-Ripoll interpretation of the Main Conjecture. One of the most important
consequences of the Hurwitz rule, is that it identifies the set of simple elements S with the non-crossing
lattice NC(W ). We will only need the following to state the Main Conjecture:

Proposition 5.13. Let s be a simple element. There exists y ∈ Y reg and i ∈ {1, · · · , n} such that
s = s1 · · · si, where (s1, · · · , sn) := rlbl(y).

Proof. Let T be a tunnel representing s (that is, bT = s) in the line Ly0 . We can always deform the
configuration LL(y0) slightly so that we get one with n distinct points. Now, as shown in figures a and
b we can also move the points around, always in a central arrangement, so that in the end, the points
enclosed in the loop bT ′ , homotopic to bT , are first in lexicographical order in the set LL(y′). �

Corollary 5.14. For every simple element s, the projection π(s) ∈W is an element of the noncrossing
lattice NC(W ).

13Since Eregn is just W/V reg for W = Sn, we can consider the fat basepoint U here as well, and β need not be a
closed loop, rather, just a path in Eregn between points in U
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Proof. Pick a y ∈ Y reg as in Prop. 5.13 and call w = π(s1 · · · si) and u = π(si+1 · · · sn). Now, Prop. 5.10
implies that w ·u = c, the coxeter element. Evenmore, because all the xi’s in LL(y) are of multiplicity
1, the points (y, xi) are of multiplicity 1 in H (by Prop. 4.16), which means the loops si are meridians.
The discussion before Prop. 4.7 implies that these map to reflections in W .

Therefore lR(w) ≤ i and lR(u) ≤ n− i, but since lR(c) = n both equalities hold, so w ≤R c and w
is an element of [1, c]T = NC(W ). �

We return to the context of the Main Conjecture. Let Θ be a hsop as in 3.2 and V Θ the (finite)
variety cut out by (Θ − x). Since V Θ carries a W × C action, we can consider its quotient W/V Θ

in W/V ∼= Y × C. Prop. 3.6, part(i) implies that only one point of W/V Θ lies outside H; call it
(y, x)Θ,reg.

Recall now from (5.1) that each of the points (y, x) ∈ V Θ∩H lives in the configuration {y}×LL(y)
and is therefore assigned a simple element by,x by the map ρ. We can extend this definition and
naturally set Label

(
(y, x)Θ,reg

)
= e, the identity element.14

We can finally ask for:

Main Conjecture. [GR12] The map ρ : W/V Θ → NC(W ) is a bijection.

5.2.1. Elaboration on the simple elements. In fact, quite more is known about the structure of the set
S of simple elements. It has an order ≤ that is given by a natural length function defined in terms of
Braid reflections (Thm. 4.7) that makes it isomorphic to NC(W ):

Proposition 5.15. [Bes15, Prop. 8.5]. The map π : B(W ) � W restricts to an isomorphism

(S,≤)
∼−→ ([1, c],≤T ).

The proof of this fact depends mainly on the Hurwitz action, Propositions 4.10 and 4.9 and the
following enumerative result on the size of the set RedR(c), of reduced decompositions of c.

Proposition 5.16. [Bes15, Prop. 7.6] Let W be a real (actually, well-generated complex) reflection
group. Let c be a Coxeter element in W . The Hurwitz action is transitive on RedR(c). When W is
irreducible, one has |RedR(c)| = n!hn/|W |.

Indeed, recall that the map rlbl between the Galois orbit y · B(W ) and the Hurwitz orbit rlbl(y) ·
B(W ) is B(W )-equivariant (Prop. 5.12). Now surjectivity is implied by the transitivity of the Hurwitz
action on RedR(c) and injectivity by the fact that |RedR(c)| is ”big enough”; as big as the generic
fiber of the LL-covering (Prop. 4.13).

Sadly, the proof of Prop. 5.16 involves quite a lot of case-by-case computations. The transitivity
part is however uniform, see [Bes03, Prop. 1.6.1].15

6. Future Work

6.0.1. The trivialization theorem. The Hurwitz action and Prop. 5.16 have yet another fundamental
consequence.

Definition 6.1. [Bes15, Defn. 7.10] Let k be a positive integer. We set

Dk(c) := {(w1, w2, · · · , wk) ∈W k|c = w1 · · ·wk and lT (c) =
∑
i

lT (wi)},

D•(c) := (Dk(c))k∈Z≥0

and call D•(c) the set of block-factorizations of the Coxeter element c.

Theorem 6.2. [Bes15, Thm 7.20 (trivialization of Y ] The map LL× rlbl induces a bijection

LL× rlbl : Y
∼−−→ En �D•(c)

14This is compatible with our notion of ”small loop around (y, x)” since (y, x)Θ,reg is outside H, so a small loop
around it will be contractible, hence the identity element in B(W ).

15Recently we have a uniform proof [Mic14] for the size of RedR(c) in the Weyl case.
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where � indicates a compatibility between the two partitions of n defined by the multiplicities in En,
and the length function lT in D•(c).

The trivialization theorem allows us to consider an interesting stratification ofH, where each stratum
has a constant image under the map ρ : H → W . To prove the Main Conjecture, we would have to
show that there exists exactly one point of V Θ in each stratum. This approach can be used to give
a simpler proof of the (difficult) part (ii) of Prop. 3.6; in particular this proves the Gordon-Ripoll
conjecture for I2(m).

6.0.2. Chapoton’s formula. Chapoton observed the following formula for counting multichains in the
noncrossing lattice:

Proposition 6.3. [Rip12, Chapoton’s formula] Let W be an irreducible, well-generated complex re-
flection group of rank n. Then, for any p ∈ N, the number of multichains w1 ≤ · · · ≤ wp in the poset
NC(W ) is equal to

Cat(p)(W ) =
n∏
i=1

di + ph

di

Again, our only understanding of this formula is case by case computation. Ripoll in [Rip12]
used the Bessis-framework for NC(W ) to give a more geometric explanation to some special cases of
Chapoton’s formula. His techniques do not seem to generalize though and he mentions that ”a more
promising approach would be to understand globally Chapoton’s formula as some ramification formula
for the morphism LL”.

6.0.3. The Fuss case. Recently [Rho14], Rhoades generalised the Main conjecture for the Fuss-Catalan
case. He defined W × Zkh actions on the sets of chains of length k in NC(W ) and the corresponding
k-algebraic parking space and k-noncrossing parking space. A proof of Rhoades’ Fuss version
will imply the Main Conjecture (with all its applications) and Chapoton’s formula.

However, a Gordon-Ripoll style interpretation of the Main Conjecture in the Fuss case seems more
complicated at this point. In particular it seems to be strongly connected with the ”cyclic” C× action
on V (as in [Bes15, Section 11]) that encompasses (via the Hurwitz action) all Zkh actions on the
Fuss-parking spaces Park(k).
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