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1. Introduction

My research area and classical training lies in Algebraic Combinatorics, and within that I am particularly fascinated
by complex reflection groups. These groupsW appear at the intersection of mathematical disciplines, and the resulting
viewpoints suggest a number of natural lines of research. A central motivating theme in my work has been the study of
structural and enumerative properties of the lattice NC(W ) of noncrossing partitions of W . This is pursued through
several avenues: the combinatorics of hyperplane arrangements (§2), the representation theory of W (§4), and the
algebraic (§5) and differential (§6) geometry of its space of orbits. Listed below, for key mathematical areas, are some
of the objects, techniques, or problems, that play an important role in the research presented in this statement.

• In combinatorics:
– Parking spaces and their W -module structure; enumeration of chains in NC(W ) (§2; Thm.2.1; Problems 1-3).
– Hurwitz numbers and transportation polytopes, and W -analogs (§3; Thm.3.2; Conjectures 4-6; Problems 7,8).
– Matrix-Tree theorem and Jucys-Murphy elements (§4.2; Thm.4.3) and Laplacians (§2) for reflection groups.
– W -analogs of cacti formulas (§5.1; Problem 10); cyclic sieving phenomena (§5.2; Thm.5.3,5.4; Problem 11).

• In representation theory:
– Enumeration of factorizations via the Frobenius lemma (§4); Hecke algebras and Coxeter numbers (§4.1).
– The exterior powers of the reflection representation of W ; the exotic Fourier transform (§4.2; Problem 9).

• In algebraic geometry:
– Braid monodromy of algebraic functions (§5); enumeration via degree counting (Thm.5.2; Problem 10).

• In differential geometry:
– Free multiplicities for hyperplane arrangements and the local-to-global formulas (§6.1; Conjecture 13).
– Frobenius manifolds, quasi-Coxeter elements, algebraic solutions of WDVV equations (§6.2; Conj.14,Prob.15).

• In geometric group theory:
– Geometric construction of cell complexes for generalized braid groups (§5.3; Problem 12).

An important aspect in the theory of complex reflection groups is their Shephard-Todd classification (subsuming
Coxeter’s classification in the real case). This has propelled the evolution of the subject with many results first
proven via case-by-case arguments while a case-free explanation is pursued by the community. In that direction, we
have given type-independent proofs and generalizations of many enumerative results, including the Chapuy-Stump
(§4.1), Deligne-Arnold-Bessis (§2), and Chapoton (§2.2) formulas. Our most important contribution however is on the
W -module structure of parking spaces, which we discuss below.

The module of parking functions of length n under a natural Sn-action, which has orbits indexed by Dyck paths,
has been a central object in Algebraic Combinatorics since the work of Haiman more than 30 years ago. A vast
line of research has spawned around it with the aim of extending the theory to reflection groups, leading to the
introduction of the space of W -noncrossing parking functions as ParkNC

W := ⊕g∈NC(W ) ↑WWg
1 where the set of Dyck

paths was replaced by NC(W ). As in the Sn-case, an algebraic parking space has also been defined as the quotient ring

ParkalgW := C[V ]/(Θ), where V is the ambient space of W and Θ is an appropriate homogeneous system of parameters.
One of the central open problems in the area, since the early 2000’s, has been to give a type-independent proof that
these two spaces are isomorphic and our main contribution is such a proof. We achieve this (in fact we prove the Fuss
generalization) by combining a variety of new techniques described in §2.

Theorem (see §2). For any real reflection group W , the algebraic and combinatorial parking spaces are isomorphic

W -modules; that is, ParkNC
W

∼=W ParkalgW .

Another central line of research in our work involves the study of the Hurwitz numbers Hg(λ). They count many
equivalent objects, including (classes of) branched Riemann surfaces of genus g, and transitive factorizations of permu-
tations with cycle type λ ⊢ n into transpositions ti (meaning that the group ⟨ti⟩ acts transitively on [n] := {1, . . . , n}).
The genus-0 Hurwitz numbers for a partition λ := (λ1, . . . , λk) of n are given by the remarkable product formula

(1) H0(λ) = (n+ k − 2)! · nk−3 ·
k∏

i=1

λλi
i

(λi − 1)!
.

We have two main contributions in this area. First, in a large project described in §3.2, we recast the notion of
transitivity of factorizations in a way that makes sense for (complex) reflection groups and give a product formula
that fully generalizes (1). Second, back in the symmetric group case, we give a formula for the generating function of
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the numbers Hg

(
(1n)

)
, where n is fixed and the genus g varies, in terms of the h-vector of a central transportation

polytope and we conjecture a version for arbitrary λ which recovers (1) as a leading term (§3.1).
Although many results mentioned in the following sections appear enumerative in nature, our techniques come

from different areas and may thus reveal non-trivial phenomena or connections between them. One especially telling
example is the Laplacian for a hyperplane arrangement A, which we introduced in [CD22b] generalizing the usual
graph Laplacian. It is a weighted rank 1 operator acting on the ambient space V of the arrangement defined via

(2) LA(ω) :=
∑
H∈A

ωH · (Id− sH),

where Id is the identity on V , sH is an appropriately defined reflection across H, and ω : (ωH)H∈A a collection
of scalar weights. When A is a reflection arrangement and with special in each case choices of the weights ω, the
eigenvalues of LA(ω) may encode (§4: Thm. 4.3) –reduced and of arbitrary length– factorizations of Coxeter elements,
or (§2: Thm. 2.2, Thm. 2.3) identities between the Coxeter numbers of W and its subgroups that eventually describe
the characters of parking spaces, or (§6.1, Probl. 13) the Hilbert series of logarithmic derivation modules associated to
A and its restrictions.

Some of our work in factorization enumeration led us to prove results in the representation theory of complex
reflection groups W ; this includes Thm. 4.4 which is a new structural property of the (well-studied) exterior powers of
the reflection representation of W . Separately, the algebraic geometric study of the Lyashko-Looijenga morphism (§5)
–popularized by Arnold and further developed by Bessis, and whose degree calculation is a different exegesis of the
product structure in formulas counting factorizations of Coxeter elements– helped us produce finer enumerative results
(Thm. 5.2) and prove cyclic sieving phenomena (Thm. 5.3, 5.4), including one conjectured in Williams’ thesis. Finally,
via the theory of Frobenius manifolds we proposed a version of this degree-calculation for quasi-Coxeter elements and,
in fact, our interpretation of the associated numerology led to new algebraic solutions of the WDVV equations (§6.2).

Many of the following sections end with a discussion of problems suggested by the new result; they are often
amenable to division in partial goals and could form projects ranging from the level of a PhD theses to an REU.

2. Coxeter-Catalan combinatorics

Some of the most fascinating results about the symmetric group Sn are special cases of theorems that hold for all
(finite) Coxeter groups W , or more generally complex reflection groups; this is the world of Coxeter combinatorics.
Coxeter-Catalan combinatorics study in particular the poset of W -noncrossing partitions NC(W ) := [1, c]≤R

of el-
ements w ∈ W that lie below a Coxeter element c under the absolute order ≤R of W . It is a lattice, it has many
applications outside of combinatorics –in particular it encodes K(π, 1) spaces for the braid group B(W ), see §5– and
when W = Sn, it is isomorphic to the lattice of noncrossing partitions due to Kreweras which are enumerated by the
Catalan numbers.

The numberMC(W ) of maximal chains of the noncrossing partition lattice NC(W ) is given by the Deligne-Arnold-
Bessis formula MC(W ) = hnn!/|W | where n is the rank and h the Coxeter number of W . In [CD22a] we gave the
first Coxeter theoretic, type-inpendent proof of this formula by solving a recursion on MC(W ) due to Deligne and
Reading, which counted maximal chains with respect to their last element. The success of this approach led us to
apply this idea, of counting chains with respect to their last (or k-th) element, towards a much more general setting.

One of the main open problems in Coxeter-Catalan combinatorics (for more than twenty years [AR04, §7]) has
been to explain, i.e. give type-independent proofs for, the remarkable product formula below for the enumeration of
chains in NC(W ). Our main contribution in the area is the first such proof, for which we developed a framework of
techniques in [Dou22a; DJ22; Dou], and which is finally presented at [DJ].

Theorem 2.1 (Athanasiadis-Reiner [AR04] and Rhoades [Rho17] via the classification, [DJ] uniformly).
For any real reflection group W , the number KrewW,[X](m) of length-m chains in NC(W ) whose first element has
parabolic type [X] (given as a W -orbit of flats [X] ∈ LW /W ) is given by the formula

(3) KrewW,[X](m) =

∏dim(X)
i=1 (mh+ 1− bXi )

[N(X) :WX ]
,

where N(X) and WX are the setwise and pointwise normalizers of X, and bXi its Orlik-Solomon exponents.

There is a natural way to define parking functions associated to m-chains of NC(W ); they carry a naturalW -action

and the resulting module is called the m-Fuss noncrossing parking space ParkNC
W (m) := ⊕[X] KrewW,[X](m)· ↑WWX

1.

A sibling object to this space is the so called algebraic parking space ParkalgW (m) := C[V ]/(Θ) introduced in [ARR15]
as the quotient of the ambient polynomial ring over a system of parameters Θ := (θ1, . . . , θn) of homogeneous degrees
deg(θi) = mh+1 that carry the reflection representation of W (the existence of such h.s.o.p. relies on Rouquier’s shift
functors for rational Cherednik algebras). The numbers given by the product formula of Theorem 2.1 are naturally
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structure coefficients for C[V ]/(Θ) so that the theorem can be equivalently phrased as the W -isomorphism between

the two parking spaces; that is, we prove that ParkNC
W (m) ∼=W ParkalgW (m).

2.1. A comparison of recursions. We prove Theorem 2.1 by expanding the ideas of [CD22a]. There is a natural
recursion on the numbers KrewW,[X](m) if one counts length-m chains with respect to the parabolic type of their k-th
element. The main ingredient of our proof is to show that the same recursion is satisfied by the right hand side of (3).
Phrased in terms of the algebraic parking spaces, this becomes the following theorem, which we prove by comparing
the characters of the two representations.

Theorem 2.2 ([Dou]). For any natural numbers m, k, r such that m = k + r, we have the expansion formula

(4) ParkalgW (m) =
⊕

[X]∈LW /W

KrewW,[X](k) ·
xW

WX
ParkalgWX

(r).

The proof of Theorem 2.2 relies on our work on arrangement Laplacians (2) and their spectrum. We showed in
[CD22b] that the characteristic polynomial of the A-Laplacian LA(ω), for arbitrary weights ω, is given in terms of
the Laplacians of the localizations AY :

(5) det
(
t · Id+LA(ω)

)
=

∑
Y ∈LA

qdet
(
LAY

(ωY )
)
· tdim(Y ).

In the setting of Theorem 2.2, we considered the restricted reflection arrangements AX and a special selection of
weights. For any hyperplane Z ∈ AX , the relative Coxeter number h(X,Z) is defined as the Coxeter number of the
unique irreducible component of WZ that does not belong to WX . We prove in [Dou] that the recursion (5) for the
arrangement AX with weights ωZ := h(X,Z), gives essentially the equality of characters for the two sides of (4).

From a different perspective, the equality between the structure coefficients in the two sides of (4) can be seen as a
relation between Coxeter numbers and Orlik-Solomon exponents of a reflection arrangement A and its flats. We prove
that the following positive expansion theorem is equivalent to the parking space recursion of Theorem 2.2. In §6.1 we
give a conjectural interpretation for it in terms of special multi-derivation modules for the arrangements AX .

Theorem 2.3 ([Dou]). For an irreducible real reflection arrangement A and a flat X ∈ LA, we have that

dim(X)∏
i=1

(t+mh+ bXi ) =
∑

Y ∈LAX

tdim(Y ) ·
dim(X)−dim(Y )∏

i=1

(
mhi(X,Y ) + bX,Y

i

)
,

where h and hi(X,Y ) are Coxeter numbers and bXi , b
X,Y
i Orlik-Solomon exponents for A, AX , and AX

Y .

2.2. The linear term. The recursion that we described in §2.1 has a significant drawback: assuming knowledge of the
chain counts KrewW ′,[X′](m) for all previously considered intervals, it can determine all coefficients of the polynomial
(in m) KrewW,[X](m) apart from its linear term. To remedy this we give a separate argument in which we show that
the linear term is as prescribed by formula (3). This is technically difficult and combines our work in [DJ22] which
relates the chain counts of Theorem 2.1 with a type-refined face enumeration in the cluster complex, with the following
theorem (its formula is essentially the linear term in question) which we proved in a previous work by a double counting
argument involving Crapo’s beta invariant for matroids. The special case of the theorem for X = V gives in fact the
first type-independent proof of Chapoton’s formula [Cha06] for the number of reflections of full support.

Theorem 2.4 ([Dou22a]). In an irreducible real reflection group W , the set Gse

(
[X]

)
of parabolic subgroups of full

support, that are simple extensions of some standard parabolic subgroup of type [X], has size given by the formula∣∣∣Gse

(
[X]

)∣∣∣ = 2 · |AX |
[N(X) :WX ]

·
dim(X)∏
i=2

(bXi − 1),

where |AX | is the number of hyperplanes in AX and bXi the Orlik-Solomon exponents of X.

2.3. Future directions. The two theorems in §2.1 are very suggestive of further research. Our proof of Theorem 2.2
did not make use of the graded module structure of the parking spaces. It is natural to ask for a q-version:

Problem 1. Give a q-version of Theorem 2.2, for instance via Rouquier’s shift functors for Cherednik algebras, or by
generalizing the Lie-theoretic q-Kreweras numbers of [RS18], or via the freeness conjecture of §6.1.

In Theorem 2.3 and when the flat X is the whole ambient space V , the left hand side agrees with the Poincare
polynomial of the m-Fuss-Catalan deformation A[−m,m] of A (which is non central and adds for each hyperplane
H ∈ A an extra 2m-many, parallel, equally spaced copies of it). In [Dou] we give a separate Ehrhart theoretic proof of
Theorem 2.3 for X = V relying on reciprocity theorems of Athanasiadis [Ath10]. The following problem would form
an excellent PhD thesis while special cases of it (for instance restricting to the symmetric or hyperoctahedral groups
Sn, Bn) would be great for senior or master projects. It is particularly amenable to computer experimentation.
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Problem 2. In Weyl groups W , generalize Athanasiadis’ works [Ath04; Ath10] and construct deformations AX,m of
the restricted arrangements AX so that their resulting Poincare polynomials are given by the formulas

P (AX,m, t) =

dim(X)∏
i=1

(t+mh+ bXi ).

In recent work [Gal+22] a rational version of W -noncrossing partitions has been introduced, resolving another old
open problem in the area. The authors gave type-independent proofs for the enumeration of these objects that recover
the special case X = V of our Theorem 2.1 (but their proof naturally produced a q-version for that case as well).
The algebraic recursions we prove in Theorem 2.2 do generalize to that setting and it seems likely that the rational
noncrossing partitions also satisfy combinatorial recursions analogous to the chain decomposition we described in §2.1.
A natural next project is to combine the two techniques.

Problem 3. Refine the combinatorial models for rational Catalan objects and generalize Theorem 2.1 in that setting.

3. Hurwitz numbers in the symmetric group and in reflection groups

The Hurwitz numbers Hg(λ) described in the introduction and enumerated by the product formula (1), have formed
a very popular object of study in the last decades; the community has developed connections to representation theory,
algebraic geometry, and combinatorics, but still there is much that is not understood. Our work focuses on two major
questions; first in §3.1 for a generalization of the beautiful product formula (1) from genus g = 0 to the arbitrary genus
case (we answer this partially), and in §3.2 for a generalization of (1) to reflection groups (we give here, in a manner,
a complete answer).

3.1. Hurwitz numbers in the symmetric group and transportation polytopes.

The ELSV formula [Eke+01] gives the Hurwitz numbers Hg(λ) as integrals over the moduli spaces of stable curves

Mg,n. This is a remarkable connection but still, in some sense, it fails to give a proper generalization of the product
formula (1) (the ELSV integrals are computable only for small values of g). We proceed in a different direction, that
views the numbers Hg(λ) for all values of g simultaneously, by considering their generating function:

(6) F(λ; t) :=
∑
g≥0

Hg(λ) ·
tn+k+2g−2

(n+ k + 2g − 2)!
.

The interpretation of Hurwitz numbers as counting transitive transposition factorizations in the symmetric group, along
with standard techniques in representation theory, implies that the generating function F(λ; t) above is expressible as a
finite sum of exponentials emt with integer exponents m; i.e. as a Laurent polynomial on et. Our work in [Dou22c] and
computer experimentation had suggested that these polynomials might have rigid expressions and that they exhibit a
sort of unimodality on their coefficients.

With the following theorem, we explain this behavior for the cycle type λ = (1n) and in Problems 4, 5 we give
explicit conjectures for the general case. The polynomials in question are the h-polynomials for certain simple polytopes
(hence they are unimodal). The transportation polytope [DK14] denoted T (p, q) is the set of all real p × q matrices
with non-negative entries, all row sums equal to q, and all column sums equal to p; it is simple when (p, q) = 1.

Theorem 3.1 ([CDL]). The generating function F
(
(1n); t

)
of (6) for the Hurwitz numbers Hg

(
(1n)

)
is given as

F
(
(1n); t) =

et(
n
2)

n!
· (1− e−t)2n−2 · Φn(e

−t),

where Φn(X) is the h-polynomial of the transportation polytope T (n, n− 1).

We proved this Theorem by comparing two recursions (on the index n) that are satisfied by F
(
(1n); t

)
and Φn(x); the

first due to Okounkov and Dubrovin-Yang-Zagier [DYZ17] and the second due to Pak [Pak00]. Remarkably, extended
calculations have suggested that the transportation polytope T (n, n−1) in fact encodes all generating functions F(λ; t).

The relation is through the Sn-equivariant Ehrhart theory [Sta11] of the associated polytope T ◦
c (n, n − 1), which

is defined as the polar of the centered (at the origin) transportation polytope Tc(n, n − 1). While the usual Ehrhart
theory studies the number L(P, s) of lattice points in the s-th dilation of a polytope P , the equivariant Ehrhart theory
keeps track of the permutation representation χsP induced by the action of some group on those lattice points in
sP . In our case, the symmetric group Sn acts by permuting the rows of the matrices that form T (n, n − 1) and the
equivariant Ehrhart series is formally defined as

(7) EhrSn,T◦
c (n,n−1)(X) :=

∑
s≥0

χsX
s,
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where χs is the permutation representation of Sn on the lattice points of s ·T ◦
c (n, n−1). The coefficients of this formal

power series are characters of Sn and can be evaluated on cycle types λ, so that (7) encodes in fact a different power
series for each partition λ ⊢ n. In the following statement we conjecture that they essentially agree with the generating
functions F(λ; t) (note how the form of the denominator in (8) matches Stapledon’s [Sta11] set-up of the theory).

Conjecture 4. The generating functions F(λ; t) of (6) for the Hurwitz numbers Hg(λ) are given via

(8) EhrSn,T◦
c (n,n−1)

(
λ;X

)
=

n! ·X(n2) · F(λ; logX)

(1−X) · det
(
Id−X · ρ(λ)

) ,
where ρ : Sn → GL

(
Cn·(n−1)

)
is induced by the Sn action on the ambient space of T (n, n− 1) described earlier.

Understanding the Sn-equivariant theory of the polytope T ◦
c (n, n − 1) is equivalent to understanding the usual

Ehrhart theory of its fixed subpolytopes
(
T ◦
c (n, n− 1)

)g
by elements g ∈ Sn. These are also related to transportation

polytopes and often have unimodular triangulations so that their Ehrhart theory is completely encoded in their
(topological) h-vectors; in particular, this is how our Theorem 3.1 becomes a special case of Conj. 4. In the equal
cycles case λ = (dk) this gives a simpler version of the previous conjecture.

Conjecture 5. The generating functions F
(
(dk); t

)
of (6) for the Hurwitz numbers Hg

(
(dk)

)
are given via

(9) F
(
(dk); t) =

et(
n
2)

n!
· (1− e−td)n+k−2 · Φk,d(e

−td),

where Φk,d(X) is the h-polynomial of the (simple, central) transportation polytope T (k, kd− 1).

Theorem 3.1 above and the following two conjectures generalize the Hurwitz formula (1) in a novel and meaningful
way. The transportation polytopes that appear have vertices indexed by certain labeled trees and taking the leading
terms of the (proven or claimed) expressions for F(λ; t) comes down to product formulas involving the number of such
trees (since the h-vectors are statistics on the vertices). On the other hand, Duchi-Poulalhon-Schaeffer [DPS14] have
proven the genus-0 Hurwitz formula via a bijective argument that relates the factorization counts with exactly such
collections of labeled trees.

Apart from the remarkable connection they reveal between Hurwitz numbers and transportation polytopes, the
polynomials Φn(X) of Theorem 3.1 have a very interesting root behavior. In a different project [DLM22a], we made
the following conjecture for them. It can possibly be reduced to the quadratic recursion satisfied by Φn(X) but, even
so, any conceptual justification for it would be highly desirable.

Conjecture 6 ([DLM22a]). As n approaches infinity, the roots of the polynomial Φn(X) tend to the unit circle.

3.2. Hurwitz numbers for complex reflection groups. The combinatorial interpretation of the Hurwitz numbers
Hg(λ) as counting transposition factorizations in Sn invites the problem of finding a generalization for Coxeter groups
W , where transpositions are replaced by reflections. This question became particularly popular after Chapuy-Stump
[CS14] who showed that the reflection factorizations of Coxeter elements c ∈ W have a similar enumerative structure
with the transitive transposition factorizations of the long cycle (12 · · ·n) ∈ Sn, for any genus g.

Despite many attempts [BGJ08; PR21; LM21] there was no satisfying answer outside the combinatorial families
(types Sn = An−1, Bn, Dn or G(m, p, n) in the complex case). A main difficulty was that for an arbitrary reflection
group W , there does not always exist a set on which W acts and that plays the role of [n] = {1, 2, . . . , n} in Sn, and
therefore there is no natural way to define transitive factorizations. In [DLM22a] we resolved this issue by defining full
factorizations as those reflection factorizations t1 · · · tk = g in W whose terms generate the full group (i.e. ⟨ti⟩ =W );
the two notions are equivalent in the symmetric group.

In a series of papers [DLM22a] and [DLM22b] and [DLM], joint with Lewis-Morales, we prove the following theorem
which can be seen as an almost term by term generalization of the Hurwitz formula (1). It addresses the wide class of
parabolic Coxeter elements (we also prove a version for the quasi-Coxeter case) which includes all the elements in the
symmetric group Sn. One factor in the formula is the cardinality of the collection RGS(W, g) of relative generating
sets of W with respect to g; these are sets of reflections that when combined with a reduced factorization of g give a
system of rank(W )-many reflections that generate W . The combinatorial object RGS(W, g) generalizes the tree-like
structures that appear in the work of Duchi-Poulalhon-Schaeffer [DPS14] for the usual Hurwitz numbers H0(λ).

Theorem 3.2 ([DLM21]). Let W be a Weyl group and g ∈W a parabolic Coxeter element fixing a flat X ∈ LW , and
let WX = W1 × · · · ×Wk be the decomposition into irreducibles. If RGS(W, g) is the set of reflection generating sets
relative to g, then the number F full

W (g) of minimum-length full reflection factorizations of g is given as

(10) F full
W (g) = (2n−

k∑
i=1

ni)! ·
∣∣RGS(W, g)

∣∣ · ∏k
i=1 I(Wi)

I(W )
·

k∏
i=1

hni
i ni!

|Wi|
,

where hi and ni are respectively the Coxeter numbers and ranks of Wi and I(W ) denotes the connection index of W .
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We prove this theorem in a type-by-type fashion and by separately computing the two sides of (10). For the
combinatorial types, we first [DLM22a] give the left side in terms of the Hurwitz numbers of Sn and then [DLM22b]
we calculate the right side by enumerating the tree-like structures that form the sets RGS(W, g). The exceptional
types are dealt with via (very heavy) computer calculations. In [DLM] we in fact prove a version of Theorem 3.2 for
(well generated) complex reflection groups. The connection indices I(W ), I(Wg) are replaced in the general formula
by a Grammian statistic on the relative generating sets that is only constant in Weyl groups.

The main open problem arising in this work is to give a conceptual explanation of this remarkable product structure
in (10). We develop in [DLM] analogs of the cut and join combinatorics of Hurwitz and Goulden-Jackson that
could possibly be used towards a uniform proof. Moreover, in [DL22] we prove a Hurwitz transitivity result for full
factorizations that might help explain formula (10) via a k-to-1 map over a special collection of factorizations that are
essentially shuffles of reduced factorizations of an element g and the factors in an element of RGS(W, g).

Problem 7. Give a case-free proof of Thm. 3.2 or its generalizations (to complex types and quasi-Coxeter elements).

Another highly interesting pursuit related to this project is to generalize the setting of 3.1 to reflection groups. In
[DLM22a] we listed analogs of the generating function F

(
(1n); t

)
for all reflection groups W (with (1n) replaced by

the identity element of W ). In all cases, the expression was very similar to Theorem 3.1.

Problem 8. Construct a geometric object analogous to T (n, n− 1) that generalizes Theorem 3.1 to reflection groups.

4. Representation theory: techniques and interaction with enumeration

A standard approach in the enumeration of factorizations in groups is via applying a representation theoretic lemma
that goes back to Frobenius and was in fact used already by Hurwitz. We are still working with reflection groups W ,
with set of reflections R, and for an arbitrary element g ∈W we wish to understand the generating function

(11) FACW,g(t) :=
∑
ℓ≥0

#
{
(τ1, · · · , τℓ) ∈ Rℓ : τ1 · · · τℓ = g

}
· t

ℓ

ℓ!
.

The Lemma of Frobenius states that we can express this function as a finite sum of character evaluations:

(12) FACW,g(t) =
1

|W |
·
∑
χ∈Ŵ

χ(1) · χ(g−1) · exp
(
t · χ̃(R)

)
,

where Ŵ denotes the set of irreducible characters of W and χ̃(R) is the normalized trace
∑

τ∈R χ(τ)/χ(1). Recently,
this technique proved effective for enumerating Coxeter factorizations in this beautiful theorem due to Chapuy-Stump.

Theorem 4.1. [CS14] For a (duality) rank n reflection group W and a Coxeter element c ∈W of order h,

FACW,c(t) =
et|R|

|W |
· (1− e−th)n.

4.1. A uniform proof and generalization of the Chapuy-Stump formula. The original proof of Thm. 4.1
proceeded based on the Frobenius lemma (12) but had to rely on the classification of complex reflection groups and
their characters. Both because it implies the Deligne-Arnold-Bessis formula of §2 and due to its intrinsic elegance,
there was an effort in the community to produce a case-free proof with a first success only for Weyl groups [Mic16],
while we do the general case in [Dou22c]. The difficulty to apply the lemma of Frobenius (12) in a type-independent
manner stems from the case-by-case construction of the irreducible characters ofW . To circumvent this, we use Malle’s

cyclic action on Ŵ that is induced by a Galois automorphism in the Hecke algebra, to group together characters that
share an integer invariant cχ, related to Lusztig’s c-function, called the Coxeter number of χ. This allows us to discard

from the summation in (12) those χ ∈ Ŵ for which cχ is not a multiple of h := |c|.
Our argument relies only on the fact that the Coxeter element c lifts to a root of the full twist in the braid

group B(W ) and hence can be applied to all regular elements g ∈ W . The previous construction in conjuction with
combinatorial restrictions on the leading term of FACW,c(t) allows us to prove the following structural result which
recovers and extends the Chapuy-Stump formula (Thm. 4.1) and with little more effort [Dou22c, § 5] also gives a
uniform proof for the weighted case studied in [dHR18].

Theorem 4.2. [Dou22c] For a complex reflection group W and any regular element g ∈W , one has

FACW,g(t) =
et|R|

|W |
·
[
(1−X)lR(g) · Φg(X)

]∣∣∣
X=e−t|g|

,

where Φg(X) is a polynomial in X of degree |R|+|A|
|g| − lR(g) and constant term equal to 1.
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In the case of a Coxeter element c, the polynomials Φc(X) are forced to have degree 0 by combinatorial considerations.
This holds further whenever |g| = dn, which produces explicit formulas that do not appear in [CS14] or [dHR18]. In
general it seems difficult to control the Φg(X) but we have had some success with Sn, as we discussed in §3.1.

4.2. Weighted factorizations with generalized Jucys-Murphy weights.
There is a beautiful derivation of the type-A Hurwitz number H0

(
(n)

)
= nn−2 –a special case of (1)– which is due

to Dénes and proceeds by relating transposition factorizations of the long cycle (12 . . . n) ∈ Sn to labeled trees. Of
the many ways to count trees, the approach using the Matrix-Tree theorem and the Laplacian of the complete graph
Kn allows us to assign weights ωij on each edge (i, j); in the factorization side, this means assigning weights on the
transpositions (ij). Burman and Zvonkine [BZ10] proved a striking higher-genus analog of this by providing a product
formula for the generating function of weighted factorizations that involved the eigenvalues of the (weighted) Laplacian.

With Chapuy we extended their work to all (duality) reflection groups W with Thm. 4.3. Unfortunately, it turned
out that arbitrary weight assignments did not lead to product formulas; we considered instead special weight functions
wT : R → ω := (ωi)

n
i=1 indexed by towers of parabolic subgroups T :=

(
{1} =W0 < W1 < · · · < Wn =W

)
.

These wT are defined by the filtration of R by T ; that is, for a reflection τ ∈ R we have wT (τ) = ωi if and

only if τ ∈ Wi \Wi−1. We are interested in the exponential generating function FACT
W (t,ω) of weighted reflection

factorizations of any element c of the Coxeter class C, an analog of (11):

(13) FACT
W (t,ω) :=

∑
ℓ≥0

tℓ

ℓ!
·
( ∑

(τ1,··· ,τℓ,c)∈Rℓ×C
τ1···τℓ=c

wT (τ1) · · ·wT (τℓ)
)
.

Thm. 4.3 gives a product formula for (13) which generalizes the Chapuy-Stump formula of Thm. 4.1. If LT
W (ω) denotes

the Laplacian (2) with weights wT , its eigenvalues are weighted analogs of the Coxeter number h. In this sense, the
equality of the two leading terms below may be considered as a (weighted) version of the Deligne-Arnold-Bessis formula
of §2 and thus as a Matrix-Tree theorem for W .

Theorem 4.3. [CD22b] For a (duality) reflection group W the weighted enumeration (13) is given by

FACT
W (t,ω) =

etwT (R)

h
·

n∏
i=1

(
1− e−tλT

i (ω)
)
,

where wT (R) :=
∑

τ∈R wT (τ), and the λTi (ω) are the eigenvalues of the Laplacian LT
W (ω).

In the process of proving Thm. 4.3 we produce a generalization of the Frobenius Lemma (12) for any group G where
the elements of a generating conjugacy class G are weighted via an arbitrary tower of subgroups. Heavily influenced by
the work of Okounkov and Vershik [OV96], we consider in the group algebra C[W ] generalized Jucys-Murphy elements
Ji :=

∑
τ∈R∩Wi\Wi−1

τ . For any parabolic tower T , they generate a commutative subalgebra C[JT ] and the weighted

enumeration is given in terms of its spectrum.
The product structure of the formula comes down to a connection with the exterior powers of the reflection repre-

sentation Vref . We say that two virtual characters χ and ψ are tower-equivalent if they agree on the subalgebras C[JT ]
for any choice of parabolic tower T . Then Thm. 4.3 is equivalent with the following:

Theorem 4.4. [CD22b] The virtual characters
∑

χ∈Ŵ
χ(c−1) · χ and

∑n
k=0(−1)k

∧k
(Vref) are tower-equivalent.

We prove this theorem by computer calculation for the exceptional types and an inductive argument, which involves
working out some non-trivial Littlewood-Richardson coefficients, for the infinite families. Michel [Mic22] later gave
a remarkable proof for it for Weyl groups; he showed that the (truncated) exotic Fourier transform of any virtual
character χ is tower-equivalent to χ and that the exterior algebra of Vref is precisely the transform of

∑
χ∈Ŵ

χ(c−1) ·χ.
Remarkably our notion of Tower equivalence seems to agree precisely with the kernel of the exotic Fourier transform
in Weyl groups. Given the importance of this construct also in the recent work [Gal+22] (see Problem 3) a natural
question is as follows.

Problem 9. Further explore the relation between tower equivalence and the Fourier transform; give a type-independent
proof of Thm. 4.4 for all duality groups W .

In [CD22b] we in fact give a W -Matrix-Forest theorem for the whole characteristic polynomial of LT
W (ω). This is

done by combining Thm. 4.3 with the parabolic recursions for Laplacians discussed in (5). In this way, the eigen-
values of the Laplacian encode simultaneously arbitrary length factorizations of Coxeter elements and reduced length
factorizations of parabolic Coxeter elements.
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5. Braid monodromy of discriminant hypersurfaces

A cornerstone for much of the study of real reflection groups W is the chamber decomposition of the ambient
space V induced by the arrangement of reflection hyperplanes AW :=

⋃
H. Over the complex field, where such a

decomposition cannot exist, a similar role is played by the quotient variety H := W \
⋃
H which is known as the

discriminant hypersurface of W . In the seminal work [Bes15] Bessis exploits the braid monodromy of H (albeit in the
guise of the following ”Trivialization Theorem”) to prove a long-standing conjecture: the complement V \

⋃
H is a

K(π, 1) space (see also §5.3).
The braid monodromy of an algebraic function g is a refinement of its usual monodromy group: it keeps track of

how the function values move around each other, when we vary the coefficients of g, as opposed to just recording their
final permutation. To define it one usually chooses a generic direction z, for which g = zn + a1(y) · zn−1 + · · ·+ an(y)
and treats the variety V (g) as a branched cover over Y := Spec(C[y]). If K is the branch locus, the coefficient map
a(y) determines a representation of π1(Y \ K) into the usual braid group of n strands Bn which we call the braid
monodromy of g as in [Han89; CS97].

For complex reflection groups W , the Shephard-Todd-Chevalley theorem identifies the quotient space V/W as the
affine complex space Cn whose coordinates are given by the fundamental invariants f := (fi)i=1···n of W . In the
subclass of duality groups (which possess Coxeter elements and include all real reflection groups) the highest degree
invariant fn plays a special role; in particular, the equation for the discriminant hypersurface H is monic and of degree
n with respect to fn. Central in Bessis’ work, the Lyashko-Looijenga map LL(y) is essentially the coefficient map for
the braid monodromy of H along the fn direction (with parameter y ∈ Y := Spec

(
C[f1, · · · , fn−1]

)
).

5.1. The trivialization theorem and refined chain enumeration by parabolic type.
A geometric interpretation of the LL map (and any coefficient map) is that it records the intersections of complex
lines Ly := y × C, parallel to the direction of fn, with the discriminant hypersurface H. Bessis considers loops that
surround H only inside these lines Ly and constructs in this way well-defined elements of the generalized braid group
B(W ) := π1(V/W −H). Taking advantage of the canonical short exact sequence 1 → P (W ) → B(W ) → W → 1, he
extends this to a labeling map lbl(y) that sends y ∈ Y to a tuple of elements of W . The topological construction of
the labeling map heavily restricts the resulting tuples and if e := LL(y) = Ly ∩H is an image of the LL map, which is
by definition a collection of points in C with total multiplicity n, Bessis proves this remarkable Trivialization Theorem:

Theorem 5.1. [Bes15] The points in a fiber LL−1(e) are in a natural bijection via the labeling map with chains in
the noncrossing lattice whose rank jumps are given by the multiplicities in e.

Chains in the noncrossing lattice NC(W ) correspond to length-additive factorizations of a Coxeter element c, so
that the trivialization theorem suggests a geometric way to enumerate such collections. In particular, maximal chains
correspond precisely to reduced reflection factorizations and thus the Deligne-Arnold-Bessis formula in §2 should agree
with the degree of the LL map. To produce refined enumerative results, one must study the restriction of the LL map
on the branch locus K ⊂ Y . The discriminant hypersurface H is stratified by orbits of flats [X] ∈ LAW

/W and their
projections [X]Y on the base space Y completely cover K. By studying the local behavior of the LL and lbl maps on
these constructible sets [X]Y , we prove the following.

Theorem 5.2. [Dou22b] The number of length-additive factorizations of a Coxeter element c ∈ W of the form
w · τ1 · · · τk = c, with τi’s reflections and w of parabolic type [X], is given by the formula hkk!/[NW (X) :WX ].

Our techniques are in the same spirit as methods initiated by Arnold [Arn96] and used extensively by singularity
theorists thereafter (even to some extent in the celebrated ELSV formula). One tries to lift the restriction of the map
to an affine space, where it becomes quasi-homogeneous and hence its degree can be calculated via Bezout’s theorem.
The term [N(X) :WX ] that appears in our formula is exactly the degree of such a lift.

Now, for any length additive factorization σ := (w1 · · ·wk = c), we define its passport
(
Z
)
:=

(
[Z1, · · · , Zk]

)
as the

tuple of parabolic types [Zi] of the wi. An ambitious task would then be to compute the number FactW [(Z)] of such
factorizations σ with given passport (Z). Lando and Zvonkine [ZL99] derive the Goulden-Jackson formula

(14) FactSn

[
(Z)

]
= nl−1 ·

l∏
i=1

ki!

[N(Zi) :WZi ]
,

via a geometric analysis of the LL map on the space of monic degree n polynomials (which realizes V/W whenW is the
symmetric group). For other reflection groups, (case-by-case) formulas of Krattenthaler and Müller [KM10] suggest a
similar structure for certain passports. We describe in [Dou22b, Sec. 7] a complete stratification of Y by constructible
sets Y{Z} indexed by passports, which are often precisely the intersections of the strata [Zi]Y we used for Thm. 5.2.
We relate the enumeration problem with the local geometry of the LL map on those and ask:

Problem 10. Find a uniform geometric extension, for suitable (Z), of formula (14) to other reflection groups.



9

5.2. A cyclic sieving phenomenon.
The cyclic sieving phenomenon (CSP) [RSW04] occurs when a polynomial X(q) carries orbital information about the
action of a cyclic group C on a space X. More precisely, and if C is generated by an element c of order n, we say that
the triple (X,X(q), C) exhibits the cyclic sieving phenomenon if for all integers d, the number of elements of X fixed
by cd equals the evaluation X(ζd), where ζ = e2πi/n.

The set RedW (c) of reduced reflection factorizations of a Coxeter element c supports many natural cyclic actions.
The operation Pro below may be realized as the Hurwitz action (16) of a particular braid and has order hn:

Pro : (τ1, · · · , τn) → (cτnc
−1, τ1, · · · , τn−1).

Williams conjectured the following CSP for Pro which we proved by exploiting the geometry of the trivialization
theorem. Via the labeling map lbl, we interpret Pro as a scalar action on fibers LL−1(e) for certain symmetric point
configurations e. The polynomial X(q) arises then as the Hilbert series of the special fiber LL−1(0):

Theorem 5.3. [Dou18] For a (duality) reflection group W , with invariant degrees d1, · · · , dn and RedW (c) as above,

the triple
(
RedW (c),

n∏
i=1

[ih]q
[di]q

, ⟨Pro⟩
)
, where [m]q :=

1− qm

1− q
, exhibits the cyclic sieving phenomenon.

Some CSP’s are proven by direct calculation of the orbit sizes and perhaps lack a satisfying explanation for the
appearance of the polynomial X(q). In our case, the geometry of the LL map not only resolves this but it also
provides an example where the same polynomial X(q) encodes CSP’s for different cyclic actions on X. By choosing
configurations e with different cyclic symmetries, we obtain for example a CSP with C of order h(n− 1).

For some passports, the enumeration of factorizations is given by the degree of a quasi-homogeneous morphism.
In those cases too this method will work although there are fewer candidates for symmetric fibers. We describe in
[Dou22b, § 5.3.1] what happens for the factorizations of Thm. 5.2 and ask in general:

Problem 11. Extend Thm. 5.3 over sets of block factorizations with prescribed passports (see § 5.1).

A particularly nice sub-case of Problem 11 is when the passport consists of only cycles of the same length k; that is,
when Z(k) = (k, 1n−k) and (Zk) :=

(
[Z(k), Z(k), . . . , Z(k)]

)
, with Z(k) appearing p := (n − 1)/(k − 1) times. Then,

the Goulden-Jackson formula (14) states that FactSn

[
(Z)

]
= np−1. In an REU project, we proved with Justin Bailey

(UMass undergrad, now PhD student in USC) the following cyclic sieving phenomenon.

Theorem 5.4 ([BD]). For the passport (Zk) defined above, the triple
(
FactSn

[
(Zk)

]
,

p∏
i=2

[n]qi , ⟨Pro⟩
)
exhibits the CSP.

5.3. The Brady complex after Bessis.
In his proof of the K(π, 1) conjecture Bessis uses the noncrossing lattice NC(W ) as a combinatorial recipe for building
the universal covering space of the discriminant complement V/W −H. The procedure is quite complicated and Bessis
recently proposed a simplification [Bes16]. The idea is to construct a cell model for V/W −H, via the trivialization
theorem, and hope that its combinatorics leads to a cleaner proof of the K(π, 1) property.

Bessis’ model involves first a retraction that pushes the configurations of points inside a fixed circle and then
proceeds by lifting the natural cell structure there to V/W −H via the LL map. On the other hand, there is already
a combinatorial K(π, 1) model for the braid group B(W ) defined by Brady (but which is not a priori homeomorphic
to V/W − H). It is the quotient of the order complex of NC(W ) where we identify the chains (w1, · · · , wk) and
(e, w−1

1 w2, · · · , w−1
1 wk). The labeling map lbl is compatible with Bessis’ retraction in a way that suggests:

Problem 12. Bessis’ cell complex for the discriminant complement V/W −H is isomorphic to the Brady complex.

6. Differential geometry of reflection groups

The high symmetry of reflection arrangements AW has led to the construction of rigid geometries on their ambient
spaces V and the quotients V/W . We explore here two directions, one on the module of logarithmic derivations
associated to A and one on the Frobenius manifold structure of the quotient space V/W .

6.1. Free multiplicities for restricted reflection arrangements. For a hyperplane arrangement A in some space
V ∼= Cn, its module of logarithmic derivations D(A) is defined as the ring of polynomial vector fields that are tangent
to all hyperplanes of A. When D(A) is a free module over the ambient algebra C[V ] we say that A itself is free and
we call the degrees of the generators of D(A) the exponents of A. Free arrangements include all supersolvable, all
reflection, and all restricted reflections arrangements, and they have particularly nice numerological properties: their
characteristic polynomials are products of linear factors, i.e. χ(A, t) =

∏
(t− di) and the di are the exponents of A.

Ziegler generalized this notion by introducing multiarrangements (A,m), where each hyperplane H ∈ A comes
equipped with a multiplicity m(H) ∈ Z≥0 and the module of derivations D

(
(A,m)

)
consists of those vector fields
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that have order of tangency m(H) on each hyperplane H. The notion of freeness generalizes analogously and it is an
important problem to classify free multiplicities for a given arrangement, and determine the corresponding exponents.

When AW is a real reflection arrangement, works of Solomon, Terao, and Yoshinaga have shown that all constant
multiplicity functions m : AW → Z≥0 determine free multi-arrangements. Moreover, for a given number m ∈ Z≥0

the free multiplicities m∗(H) := 2m and m∗∗(H) := 2m + 1 give exponents exp
(
(AW ,m∗)

)
= {mh, . . . ,mh} and

exp
(
(AW ,m∗∗)

)
= {mh+e1, . . . ,mh+en}, where h is the Coxeter number ofW and the ei are given via the invariant

degrees di of W as ei := di − 1.
Separately, Abe-Terao-Wakefield [ATW07] have proven an analog of Brieskorn’s localization lemma, which they

called the local to global formulas that relates the exponents of a free multi-arrangement (A,m) with those of its
(necessarily free) localizations (AX ,mX). In the case of the multi-arrangement (AW ,m∗∗) this implies the relation

(15)

n∏
i=1

(t+mh+ ei) =
∑

X∈LAW

tdim(X) ·
n−dim(X)∏

i=1

(
mhi(WX) + ei(WX)

)
,

which is a special case (forX = V ) of our Theorem 2.3. It is natural then to ask whether the full case of our Theorem 2.3
suggests the existence of free multiplicities for the restricted arrangements AX

W . The following conjecture, which
encompasses all previously mentioned results would achieve exactly this; if the multiplicities given in Problem 13
are indeed free, the local to global formulas for them give precisely Theorem 2.3. Moreover this would be, to our
knowledge, the first uniformly defined free multiplicities that are not constant or almost constant.

Conjecture 13 ([Dou]). Let A be an irreducible real reflection arrangement, X ∈ LA one of its flats and let m ∈ Z≥0.
For the restricted arrangement AX define two multiplicity functions m∗ and m∗∗ on the hyperplanes Z ∈ AX via

m∗(Z) := m · h(X,Z) and m∗∗(Z) := m · h(X,Z) + 1,

where h(X,Z) is as in §2.1. Then the multi-arrangements (AX ,m∗) and (AX ,m∗∗) are free with exponents

exp
(
(AX ,m∗)

)
= {mh, . . . ,mh︸ ︷︷ ︸

dim(X)-many

} and exp
(
(AX ,m∗∗)

)
= {mh+ bXi | i = 1, . . . ,dim(X)},

where h is the Coxeter number of A and bXi the Orlik-Solomon exponents of X.

We know that the Conjecture of Problem 13 is true in various instances; when X = V it agrees with the theorems
of Solomon, Terao, Yoshinaga mentioned earlier, when X = H ∈ A we prove it in [Dou] as an easy consequence of the
work of [ATW08], and whenW is the symmetric group Sn, it is a rephrasing of the main result of [ANN09]. The general
case can be pursued in at least two ways; either by constucting a local version of the so called primitive derivation
extending Yoshinaga’s work [Yos02], or by applying the deletion-restriction theorems of [ATW08] on divisional flags.
The latter case applies especially to the hyperoctahedral groups Bn and would make a very good PhD thesis project.
Moreover, because of known connections between deformations of rational arrangements and the corresponding multi-
arrangements [Yos04], even a partial answer to this problem would be able to resolve Problem 2.

6.2. Frobenius manifolds and Quasi-Coxeter elements. The theory of Frobenius manifolds was developed by
Dubrovin to give a coordinate-free formulation of the WDVV equations from 2D topological field theory. In it, a
Frobenius algebra structure is specified on any tangent plane TxM of a manifold M and its structure coefficients
encode the WDVV associativity equations for a prepotential F .

The quotient varieties V/W for real reflection groups W form an important class of Frobenius manifolds. For them
the algebra structure is defined via a special choice of fundamental invariants, known as Saito flat coordinates that
provide an Euclidean metric for the orbit space V/W . Dubrovin conjectured [Dub99] and Hertling later proved that,
in fact, these are the only examples of Frobenius manifolds with associated polynomial prepotentials.

In his classification [Dub99, Lect. 4] of massive Frobenius manifolds Dubrovin encodes the local algebra structure
in a Stokes matrix or equivalently a tuple of euclidean reflections τ := (τ1, · · · , τn), while he describes its analytic
continuation via the Hurwitz action of the Braid group Bn on τ :

(16) Bn ∋ σi ∗ (τ1, · · · , τn) = (τ1, · · · , τi−1, τi+1, τ
−1
i+1τiτi+1, · · · , τn).

Then algebraic prepotentials correspond to tuples τ with finite Hurwitz orbits and Dubrovin asks for the construction
of the corresponding Frobenius manifolds. After work of Michel [Mic06] however, finite Hurwitz orbits occur if and
only if τ generates a reflection group, so that the problem of algebraic Frobenius manifolds in some sense lives entirely
in the world of finite Coxeter groups.

From a different viewpoint [Bau+17] study the Hurwitz action of Bn on the set RedW (g) of reduced reflection
factorizations of an element g ∈ W and show that when g is quasi-Coxeter, i.e. when there is no proper reflection
subgroup W ′ ⪇W that contains it, then the action is transitive. Reduced tuples τ always determine a quasi-Coxeter
element g :=

∏n
i=1 τi of the group W ′ = ⟨τ ⟩ and we denote the possible corresponding Frobenius manifold by F (g).
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Stump calculated the sizes of the (single orbit) sets RedW (g) for quasi-Coxeter elemenets g and discovered that
they always factor in small primes. He asked if there is an explanation for this or even a generalization of the Deligne-
Arnold-Bessis formula of §2. In [DLM22b] we discuss how a lot of the relevant geometric objects of §5 appear in
the theory of Frobenius manifolds as well. In particular there is a version of the LL map, which relates two natural
coordinate systems of Fg; it sends the flat coordinates, on which the prepotential is given, to (the elementary symmetric
polynomials of) the canonical coordinates, which are the eigenvalues in the algebra structure of the multiplication by the
Euler field. Given the prepotential, it is easy to calculate the degree of the LL map; this and Dubrovin’s construction
described previously suggest the following:

Conjecture 14 ([DLM]). For a quasi-Coxeter element g, assuming Fg exists, we have that deg
(
LL(Fg)

)
= |RedW (g)|.

In the case of Weyl groupsW and regular quasi-Coxeter elements g ∈W Dinar [Din21] has constructed the Frobenius
manifolds Fg and shown that the weights of the flat coordinates are given by (ei(g)+1)/|g|, where the exponents ei(g)
determine the eigenvalues e2πiei(g)/|g| of g. Because the LL map is weighted-homogeneous, this would give its degree
as the right hand side of (17) where dg would be viewed as the algebraicity degree of the Frobenius prepotential. In
[DLM22b] we prove the following enumerative result (also a generalization of the Deligne-Arnold-Bessis formula of §2)
which should be seen as significant evidence for the conjecture.

Proposition 6.1 ([DLM22b]). For a regular quasi-Coxeter element g in a crystallographic group W we have that

(17) |RedW (g)| = |g|nn!∏n
i=1(ei(g) + 1)

· dg,

where the exponents ei(g) are defined as above and dg is a small integer given (using Carter’s notation) by:

g ∈W D2n(n− 1) F4(1) E6(1) E6(2) E7(1) E7(4) E8(1) E8(2) E8(3) E8(5) E8(6) E8(8)
dg n 3 2 5 2 2 · 32 2 3 23 7 22 · 5 33 · 5

Indeed, in all the cases that algebraic Frobenius manifolds have been constructed our interpretation of the numbers
dg is confirmed. Applied in the opposite direction, this enumerative data can be exploited to guess solutions to the
WDVV equations. Sekiguchi [Sek19] has been succesful in doing so in small dimensions using the information from
our calculations with Stump. We state here Dubrovin’s refinement of his original conjecture:

Problem 15 (Dubrovin). Construct an algebraic Frobenius manifold Fg for any quasi-Coxeter element g.

6.3. Applications on the trivialization theorem. For the symmetric group Sn, the trivialization theorem (Thm. 5.1)
is equivalent to Riemann’s existence theorem while more generally for types A-D-E the LL map may be interpreted
as the morphism that sends a deformation of a simple singularity to its set of critical values. Currently the proof
of Thm. 5.1 relies on the numerological coincidence between the degree of the LL map and the chain number
MC(W ) = hnn!/|W | of §2 (we explain this in [CD22a]). However, Hertling and Roucairol [HR18] prove an equivalent
version for simple singularities by exploiting the Frobenius structure. We ask to extend their approach to (duality)
reflection groups:

Problem 16. Give a case-free conceptual proof of Thm. 5.1 that does not rely on the numerological coincidence.
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