Abstract

The Harer-Zagier formula is a remarkable encod-
ing of the distribution of genus in unicellular maps.
It gives a simple product form for the corresponding
generating function after a change of the monomial
basis (X)"_, involving Eulerian polynomials.

Unicellular maps correspond to matchings of a
polygon and carry a natural cyclic action induced
by rotation. We prove generalizations of the Harer-
Zagier formula counting maps that are fixed by
given rotations; we use Steingrimmson’s colored
Fulerian polynomials and representation theoretic
techniques. The leading terms of our formulas re-
cover a known cyclic sieving phenomenon (CSP) for
noncrossing matchings.

Unicellular maps are matchings

There are 5 orbits of the 15 matchings of a hexagon:
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The Harer-Zagier formula

e A map is an embedding of a graph G on a surface
such that its complement is a union of cells.

e A unicellular map with n edges corresponds to a
complete matching of the sides of a 2n-gon.

e The genus of the resulting surface is related to the
number V' of vertices of G via V =n+1 — 2g.

o The Harer-Zagier numbers €,(n) count (classes of)
unicellular maps with n edges and of genus g.

e The normalized Eulerian polynomials ®,(X) are
defined in the following two equivalent ways:
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where A(n, k) are the Fulerian numbers (i.e. the
numbers of permutations in S,, with k descents).

P, (X) :

e The Harer-Zagier formula below gives a simpler
form for the generating function
Z eg(n) . Xn+1—2g

g=>0
after the substitution (base change) X% <+ ®p(X).

Theorem (Harer-Zagier) The numbers c,(n)
that count unicellular maps with n edges satisfy
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Unicellular maps with n = 3 edges

e In the first column we have listed all 15 matchings
of a (2-3)-gon. From that data we can write:
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e To verity the formula we compute
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Generalized Harer-Zagier numbers

We wish to study symmetric unicellular maps; i.e.
(complete) matchings 7t of a 2n-gon that are invari-

ant under some power of the rotation U := e27/2",

For any pair of numbers m > 1, N > 1 such that
mN = 2n and VY (m) = 7 (i.e. 7 has at least m-fold
symmetry) we define statistics:

® U, (7r) is the number of free (hence, of size m)
UN_orbits of vertices of the 2n-gon.

e For m even, d,,(7) is the number of size=m /2
T N_orbits of centrally symmetric (i.e. connecting

sides ¢ and n + ¢ of the 2n-gon) pairs of the
matching. |[For m odd, d,,(7) = 0]

The generalized Harer-Zagier numbers e4,(m, N)
count the (complete) matchings 7 of the 2n-gon such

that UV (7)) = 7, v,(7) = v, and d,,,(7w) = d).

Main Theorem and Example

The normalized, colored Eulerian polynomials ®,, x(X)
are defined in the following two equivalent ways:
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where A(m, N, k) is the number of Steingrimmson’s

m-colored N-permutations with k descents.

Theorem (D.) With notations (m,N), @, nv(X),
the numbers €4,(m, N) may be calculated via
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For example, for m = 2, N = 3 the first column lists 7
matchings 7 that satisfy UV (7)) = r; six with dy(7) =
1 and one with dy(7) = 3.

o Ford=1,wehave > ,23) - X"=3X"+3.
v>0
e 'The colored Eulerian polynomials give us
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Proof 1deas building on Zagier

e A unicellular map 7r can be identified with a factorization
cac =1 in Sy,, where o is the fized point free involution
corresponding to the matching, ¢ is the long cycle (123 --2n)
and the number of vertices V' equals the number of cycles of a.

e The third map in the first column corresponds to
(14)(26)(35) - (1245)(36) - (123456) = 1.

e Zagier’s second proof of the Harer-Zagier formula utilizes the
Frobenius lemma, which turns our generating tunction into a
character sum in Sy,
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e [t can be rewritten via Jucys-Murphy elements, and the sum
Z wXCYC(w) _ X(X + JQ)(X + Jg) ... (X + Jzn%

has normalized character values that are binomials in X .

e Such binomials in X are related via a change of basis to the
Eulerian polynomials or &,,(X):
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e Only the hook characters y; are non-zero on ¢ and
2n—1
X
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equals the characteristic polynomial of a fixed point free
involution &, namely (1 — X)" 1. (1 + X)".

e Symmetric unicellular maps correspond to factorizations
cac = 1 fixed under simulateneous conjugation by ¢. These
become factorizations of a Coxeter element in the group
G(m, 1, N) of m-colored N-permutations.

o All above ideas generalize almost directly in G(m, 1, N).

e Fixed point free involutions break in many conjugacy classes in
G(m, 1, N) and must be distinguished by the statistic d,, (7).

e The topological genus g must be replaced by the combinatorial
statistic vy, (7).
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