Honors Discovery Seminar: Graph Theory, Part II

Definition. A graph is planar if we can draw it in the plane without any of the edges crossing. A face of a planar graph is a region bounded by the edges. We say that the region outside a graph is also a face. (For a more senisble version of this: draw your graph on a sphere, and then count the faces.)

1. Which of the following graphs are planar? For each planar drawing that you find, find:
\#vertices - \#edges + \#faces.

Comment: for the cube/dodecahedron ('soccer ball'), the vertices are at the corners of each square/pentagon.

For any graph that you think is not planar, what is the fewest number of crossings necessary in its drawing?
2. For a planar graph without multiple edges between vertices and with more than 3 edges, explain why $2 \#$ of edges $\geq 3 \#$ of faces (hint: how many edges are needed to bound a face? how many faces touch each edge?).
3. For a planar graph, explain why \#vertices - \#edges $+\#$ faces $=2$.
4. For a planar graph, use the previous two problems to show $\#$ edges $\leq 3 \#$ vertices -6 . Use this to show the last graph is not planar! (If you'd like: for the second-to-last graph, show that: if there are no cycles of length 3 (meaning, a path from one vertex back to itself using three edges), prove that $2 \#$ of edges $\geq 4 \#$ of faces, and plug that in.)
5. Non-planar graphs can be drawn without crossings on surfaces with more holes. For example, draw the following two graphs on a torus, and count the number
\#vertices - \#edges + \#faces.

6. It turns out that we can use graphs as a way to count the number of holes that a surface has! Can you find a relationship between the quantity
\#vertices - \#edges + \#faces.
and the number of holes a surface has?
For a challenge/to verify your relationship, draw the following graph on two-holed torus (the picture below) without any edges crossing and count
\#vertices - \#edges + \#faces.

