COMPUTING SOME EXAMPLES OF BLOW-UPS

KRISTIN DEVLEMING

1. Introduction

This problem arose from studying families of pairs of cameras, projections \(\phi_i : \mathbb{P}^3 \rightarrow \mathbb{P}^2 \) from points \(p_i \in \mathbb{P}^3 \) for \(i = 1, 2 \), called the camera centers. These rational maps are resolved by blowing up the camera centers. We study a family of such maps over \(\mathbb{A}^1 \) where the camera centers are distinct for \(t \neq 0 \) but come together when \(t = 0 \) and the resolution of the family of maps.

2. Set-Up

Consider the family of rational maps \(A_i : \mathbb{P}^3 \times \mathbb{A}^1 \rightarrow \mathbb{P}^2 \) given by

\[
A_1 ([x : y : z : w], t) = [x : y : z] \\
A_2 ([x : y : z : w], t) = [x : y : z + t]
\]

The locus of indeterminacy of the map \((A_1, A_2) : \mathbb{P}^3 \times \mathbb{A}^1 \rightarrow \mathbb{P}^2 \times \mathbb{P}^2\) is at least set-theoretically given by the union of the individual loci: \(W = V(x, y, z) \cup V(x, y, z + t) = V(x, y, z(z + t)) \).

To resolve the rational map, we let \(f \) be the composition of \((A_1, A_2)\) with the Segre embedding \(\mathbb{P}^2 \times \mathbb{P}^2 \rightarrow \mathbb{P}^8 \), giving the rational map \(f : \mathbb{P}^3 \times \mathbb{A}^1 \rightarrow \mathbb{P}^8 \)

\[
f ([x : y : z : w], t) = [x^2 : xy : (x(z + t)) : yx : y^2 : y(y(z + t)) : zx : zy : z(z + t)]
\]

From this, we see that, scheme-theoretically, the locus of indeterminacy is given by \(Z = V(x^2, xy, x(z + t), y^2, y(z + t), xz, yz, z(z + t)) = V(x^2, y^2, xy, xz, yz, xt, yt, z(z + t)) \). This is not the same as the previously mentioned locus \(W = V(x, y, z(z + t)) \). They coincide for \(t \neq 0 \), but for \(t = 0 \), \(Z_0 = V(x^2, y^2, z^2, xy, xz, yz) \).

Ultimately, we’ll blow up \(Z \) to resolve the map, noting that on each fiber of the map, this amounts to just blowing up the locus of indeterminacy of the fiber. This is clear for \(t \neq 0 \) and for \(t = 0 \), \(Z_0 = V((x, y, z)^2) \), and the blow up of \(\mathbb{P}^3 \) at \(Z_0 \) isomorphic to the blow up of \(\mathbb{P}^3 \) at the point \((0, 0, 0)\).

For comparison, we’ll blow up \(W \) and see that the rational map is not actually resolved.

3. Blowing Up \(W \)

On \(\mathbb{P}^3 \), \(V(w) \) is completely contained in the domain of definition of \(f \), so we only compute the blow up on \(D(w) \). Abusing notation with the same coordinates, our map becomes \(f : \mathbb{A}^3_{xyz} \times \mathbb{A}^1_t \rightarrow \mathbb{P}^8 \)

\[
f ((x, y, z), t) = [x^2 : xy : (x(z + t)) : yx : y^2 : y(y(z + t)) : zx : zy : z(z + t)]
\]

We then compute \(X_W = Bl_W (\mathbb{A}^3 \times \mathbb{A}^1) \): because \(W = V(x, y, z(z + t)) \),

\[
X_W = V(xT_2 - yT_1, xT_3 - (z + t)T_1, yT_3 - (z + 2)T_2) \subset \mathbb{A}^3 \times \mathbb{A}^1 \times \mathbb{P}^2_{T_1T_2T_3}.
\]

To resolve the map, we need to determine (locally) the defining equation of the exceptional divisor and divide the components of \(f \) by it. On \(D(T_1) \), the blow-up has the equation

\[
X_W = V(xT_2 - y, xT_3 - (z + t)) \subset \mathbb{A}^3 \times \mathbb{A}^1 \times \mathbb{A}^2.
\]
The exceptional divisor E lives above W and has equation $V(x) \subset X_W$. Therefore, we take our rational map
\[f((x, y, z), t) = [x^2 : xy : x(z + t) : yx : y(z + t) : zx : zy : z(z + t)] \]
and divide by x to get
\[\hat{f}(x, y, z, t, T_2, T_3) = [x : y : (z + t) : y : y^2/x : y(z + t)/x : z : zy/x : z(z + t)/x]. \]
We can further simplify this using the equations of the blow up, since $y = xT_2$ and $z(z + t) = xT_3$:
\[\hat{f}(x, y, z, t, T_2, T_3) = [x : y : (z + t) : y : yT_2 : (z + t)T_2 : z : zT_2 : T_3]. \]

One can check what happens on the other patches: on $D(T_2)$, E is given by $V(x)$, and on $D(T_3)$, E is given by $V(z(z + t))$. Doing the same computation (and projectivizing), we get an extension of f:
\[\hat{f}(x, y, z, t, [T_1 : T_2 : T_3]) = [xT_1 : yT_1 : (z + t)T_1 : yT_2 : (z + t)T_2 : z : zT_2 : T_3]. \]

This does extend the rational map across any point of the original domain, but is still undefined along the curve $x = y = z = t = T_3 = 0$ (the curve in the exceptional divisor above the special fiber of the family $t = 0$ given by $T_3 = 0$).

4. Blowing Up Z

To completely resolve the map, we need to blow up the ideal of Z, which we do in the same way (working with the map $f : \mathbb{A}^3_{xyz} \times \mathbb{A}^1 \rightarrow \mathbb{P}^8$). Because $Z = V(x^2, y^2, xy, xz, yt, z(z + t))$, we compute $X_Z = Bl_Z(\mathbb{A}^3 \times \mathbb{A}^1)$. The blow up is defined by equations that generate the kernel of the map
\[k[x, y, z, t][T_1, \ldots, T_8] \rightarrow k[x, y, z, t] \]

\[\begin{align*}
T_1 & \mapsto x^2 \\
T_2 & \mapsto y^2 \\
T_3 & \mapsto xy \\
T_4 & \mapsto xz \\
T_5 & \mapsto yz \\
T_6 & \mapsto xt \\
T_7 & \mapsto yt \\
T_8 & \mapsto z(z + t)
\end{align*} \]

One then sees that
\[X_Z = V(y^2T_1 - x^2T_2, yT_1 - xT_3, zT_1 - xT_4, yzT_1 - x^2T_5, tT_1 - xT_6, ytT_1 - x^2T_7, z(z + t)T_1 - x^2T_8, \]
\[xT_2 - yT_3, xzT_2 - y^2T_4, zT_2 - yT_5, xtT_2 - y^2T_6, tT_2 - yT_7, z(z + t)T_2 - y^2T_8, \]
\[zT_3 - zT_4, zT_3 - xT_5, tT_3 - yT_6, tT_3 - xT_7, z(z + t)T_3 - xyT_8, \]
\[yT_4 - xT_5, tT_4 - zT_6, ytT_4 - xzT_7, (z + t)T_4 - xT_8, \]
\[xtT_5 - yzT_6, tT_5 - zT_7, (z + t)T_5 - yT_8, \]
\[yT_6 - xT_7, z(z + t)T_6 - xtT_8, z(z + t)T_7 - ytT_8, \]
\[T_1T_2 - T_3^2, T_4T_7 - T_5T_6, T_2T_4 - T_3T_5, T_3T_8 - T_4(T_5 + T_7) \subset \mathbb{A}^3 \times \mathbb{A}^1 \times \mathbb{P}^7. \]

Now, we can look locally to extend the map:
On $D(T_1)$, this simplifies to

$$X_Z = V(y^2 - x^2 T_2, y - x T_3, z - x^2 T_4, yz - x^2 T_5, t - x T_6, yt - x^2 T_7, z(z + t) - x^2 T_8, T_2 - T_3^2, T_4 T_7 - T_5 T_6, \ T_2 T_4 - T_3 T_5, T_3 T_8 - T_4(T_5 + T_7))$$

Then, our exceptional divisor has equation $E = V(x^2)$, so we can extend f to

$$\hat{f}(x, y, z, t, T_2, \ldots, T_8) = [1 : xy/x^2 : x(z + t)/x^2 : yx/x^2 : y(z + t)/x^2 : zx/x^2 : zy/x^2 : z(z + t)/x^2]$$

and using the equations of the blow-up, we can write this as

$$\hat{f}(x, y, z, t, T_2, \ldots, T_8) = [1 : T_3 : T_4 + T_6 : T_3 : T_2 : T_5 + T_7 : T_4 : T_5 : T_8]$$

Similarly, we can check this on the other patches and projectivize to find one global extension

$$\hat{f}(x, y, z, t, [T_1 : \ldots : T_8]) = [T_1 : T_3 : T_4 + T_6 : T_3 : T_2 : T_5 + T_7 : T_4 : T_5 : T_8].$$

This is defined everywhere and one can check that it agrees with the given map f on its domain of definition.

Furthermore, for each fiber of the family, this map agrees with the fiber-wise resolutions of the map! One can see this by noting that the subvariety Z restricts on each fiber to the locus of indeterminacy for $t \neq 0$ and a power of it for $t = 0$.

5. One More Blow-up

For good measure, we also blow up the ideal (x, y, z, t) of the point $p = (0, 0, 0, 0)$ in the family and show that it does separate the lines $L_1 = V(x, y, z)$ and $L_2 = V(x, y, z + t)$:

$$X_p = Bl_p(\mathbb{A}^3 \times \mathbb{A}^1) = V(xT_2 - yT_1, xT_3 - zT_1, T_4 - tT_1, yT_3 - zT_2, yT_4 - tT_2, zT_4 - tT_3).$$

One can check that the lines intersect the exceptional divisor on the patch $D(T_4)$:

$$X_p = Bl_p(\mathbb{A}^3 \times \mathbb{A}^1) = V(x - tT_1, y - tT_2, z - tT_3)$$

The strict transform of the line L_1 is the closure of its preimage where $t \neq 0$, but for $t \neq 0$, the preimage of $V(x, y, z)$ is $V(T_1, T_2, T_3)$, so L_1 intersects the exceptional divisor E at $(T_1, T_2, T_3) = (0, 0, 0)$. Similarly for L_2, for $t \neq 0$, the preimage of $V(x, y, z + t)$ is $V(T_1, T_2, T_3 + 1)$, so the line L_2 intersects E at $(T_1, T_2, T_3) = (0, 0, -1)$. Therefore, in projective coordinates, L_1 intersects E at $[0 : 0 : 0 : 1]$ and L_2 intersects E at $[0 : 0 : -1 : 1]$.

Last but not least, in this blow up, we compute the extension of the map f:

$$\hat{f}(x, y, z, t, T_1, T_2, T_3) = [x^2/t : xy/t : x(z + t)/t : yx/t : y(z + t)/t : zx/t : zy/t : z(z + t)/t]$$

or

$$\hat{f}(x, y, z, t, T_1, T_2, T_3) = [xT_1 : yT_1 : (z + t)T_1 : yT_1 : T_2 : (z + t)T_2 : zT_2 : (z + t)T_3].$$

This is still not defined along the exceptional divisor, but if we divide one more time by t we get something that is defined:

$$\hat{f}(x, y, z, t, [T_1 : T_2 : T_3 : T_4]) = [T_2^2 : T_1 T_2 : T_1(T_3 + T_4) : T_1 T_2 : T_2(T_3 + T_4) : T_1 T_3 : T_2 T_3 : T_3(T_3 + T_4)].$$

This is undefined at the points $[0 : 0 : 0 : 1]$ and $[0 : 0 : -1 : 1]$ (which happen to be the intersection points of L_1 and L_2 with E).