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9.1 Introduction

• Estimator θ̂ = θ̂n = θ̂(Y1, . . . , Yn) for θ : a
function of n random samples, Y1, . . . , Yn.

• Sampling distribution of θ̂ : a probability
distribution of θ̂

• Unbiased estimator, θ̂ : E(θ̂)− θ = 0.

• Properties of θ̂ : efficiency, consistency,
sufficiency

• Rao-Blackwell theorem : an unbiased esti-
mator with small variance is a function of
a sufficient statistic

• Estimation method

- Minimum-Variance Unbiased Estimation

- Method of Moments

- Method of Maximum Likelihood
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9.2 Relative Efficiency

• We would like to have an estimator with
smaller bias and smaller variance : if one
can find several unbiased estimators, we
want to use an estimator with smaller vari-
ance.

• Relative efficiency

(Def 9.1) Suppose θ̂1 and θ̂2 are two unbi-
ased estimators for θ, with variances, V (θ̂1)
and V (θ̂2), respectively.
Then relative efficiency of θ̂1 relative to θ̂2,
denoted eff(θ̂1, θ̂2), is defined to be the ra-

tio eff(θ̂1, θ̂2) = V (θ̂2)
V (θ̂1)

- eff(θ̂1, θ̂2) > 1 : V (θ̂2) > V (θ̂1), and θ̂1 is
relatively more efficient than θ̂2.

- eff(θ̂1, θ̂2) < 1 : V (θ̂2) < V (θ̂1), and θ̂2 is
relatively more efficient than θ̂1.
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(Example) want to estimate the mean of a normal
distribution. Let θ̂med be the sample median and
θ̂mean be the sample mean. Then θ̂mean is better
than θ̂med. Why?

eff(θ̂med, θ̂mean) = V (θ̂mean)
V (θ̂med)

= σ2/n
(1.2533)2σ2/n

= .6366.

(Exercise) Let Y1, . . . , Yn denote a random sample

from a population with mean µ and σ2. Consider

the following three estimates for µ :

µ̂1 = 1
2
(Y1 +Y2), µ̂2 = 1

4
Y1 + Y2+...+Yn−1

2(n−2)
+ 1

4
Yn, µ̂3 = Ȳ .

(a) Show that they are unbiased.

(b) Find the efficiency of µ̂3 relative to µ̂2 and µ̂1,

respectively.
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9.3 Consistency

• Motivation - (Tossing a coin)

A coin is tossed n times independently, and
p is the (unknown) probability of resulting
in heads. Suppose we are interested in the
number of heads among n tosses, Y .

(Q1) what is the distribution of Y ?

Since p is unknown, consider p̂ = p̂n = Y/n.
As n increases, the amount of information
in the sample(here, the quality of p̂n) also
increases in the sense that p̂n = Y/n should
be very close to p as n→∞.

(Q2) How one can express “closeness” of
p̂n to p?

Since p̂n = Y/n is a statistic, consider the
probability that | p̂n − p | will be less than
some arbitrary positive number as n in-
creases : what is the value of P (| Y/n−p |≤
ε) as n→∞?
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• Consistency and related theorems

(Def 9.2) θ̂n = θ̂(Y1, . . . , Yn) is said to be a

consistent estimator of θ(i.e., θ̂n
p−→ θ)

if, for any ε > 0,

lim
n→∞

P (| θ̂n − θ |≤ ε) = 1 or lim
n→∞

P (| θ̂n − θ |> ε) = 0

(note) “θ̂n is a consistent estimator of θ”
means “θ̂n converges in probability to θ”

(Thm 9.1) An unbiased θ̂n for θ is a con-
sistent estimator of θ if limn→∞ V (θ̂n) = 0.

(Example 9.2) Let Y1, . . . , Yn denote a ran-
dom sample from a distribution with mean
µ and variance σ2 < ∞. Show that Ȳn =
1
n

∑n
i=1 Yi is a consistent estimator of µ.
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How about consistency of Ȳ1 − Ȳ2 for µ1 −
µ2?

(Thm 9.2) Suppose that θ̂n and θ̂‘
n are con-

sistent estimators of θ and θ‘, respectively.
Then,
(a) θ̂n+θ̂‘

n is a consistent estimator of θ+θ‘

(b) θ̂n× θ̂‘
n is a consistent estimator of θ×θ‘

(c) If θ‘ 6= 0, θ̂n/θ̂‘
n is a consistent estima-

tor of θ/θ‘

(d) If g(·) is a real-valued function that is
continuous at θ, then g(θ̂n) is a consistent
estimator of g(θ).

(Example 9.3) Let Y1, . . . , Yn denote a ran-
dom sample from a distribution with finite
E(Yi) = µ, E(Y 2

i ) = µ‘
2, and E(Y 4

i ) = µ‘
4.

Show that S2
n = 1

n−1

∑n
i=1(Yi − Ȳ 2

n ) is a

consistent estimator of σ2 = V (Yi).
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(Question) Suppose Y1, . . . , Yn is a random
sample from any distribution with mean µ

and known variance σ2. Then, in Section
8.6, we derived a large-sample confidence
interval for µ with confidence coefficient
approximately equal to 1− α,
[Ȳ − zα/2(σ/

√
n), Ȳ + zα/2(σ/

√
n)].

If σ2 is unknown and n is large, can one
replace σ with Sn? Why?

(Thm 9.3) Suppose that Un has a distribu-
tion function that converges to a standard
normal distribution function as n → ∞. If
Wn converges in probability to 1, then the
distribution function of Un/Wn converges
to a standard normal distribution.

(Example 9.4)
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(Note)

· Example 9.4 implies that when n is large,
√
n(Ȳn−

µ)/Sn has approximately a standard normal distri-
bution whatever is the form of the distribution from
which the sample is taken.

·We know from Chapter 7(p.359) that if the sample
is taken from a normal distribution and n is finite,√
n(Ȳn−µ)/Sn has a t distribution with n−1 degrees

of freedom

· This implies that if a large sample is taken from
a normal distribution, the distribution of

√
n(Ȳn −

µ)/Sn can be approximated by a standard normal
distribution.

In other words, if n gets large, then the number
of degrees of freedom also gets large, and the t-
distribution can be approximated by a standard nor-
mal distribution (see Table 4 and 5 in pp.848-849).

(Exercise) Suppose that Y ∼ b(n, p). Show that

1) p̂n = Y/n is an unbiased estimator of p

2) (p̂n−p)/
√
p̂nq̂n/n converges to a standard normal

distribution.

3) Derive a large-sampel confidence interval for p
with confidence coefficient 1− α
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9.4 Sufficiency

• We summarize the information in the sam-
ple by using a statistic, g(Y1, . . . , Yn) for the
parameters of interest.

(Example) Ȳ and S2 as the unbiased esti-
mator for the population mean µ and vari-
ance σ2

(Question) Does the process of summariz-
ing the original set of n sample observa-
tions to a few statistics, g1(Y1, . . . , Yn), . . . ,
gm(Y1, . . . , Yn) retain all the information about
the parameters of interest in n sample ob-
servations?

(Answer) There are methods to find statis-
tics g1(Y1, . . . , Yn), . . . , gm(Y1, . . . , Yn) sum-
marizing all the information in a sample
about the parameters of interest : we call
such statistics sufficient statistics.
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• Sufficient statistic

(Def 9.3) Let Y1, . . . , Yn denote a random
sample from a probability distribution with
unknown parameter θ. Then the statis-
tic U = g(Y1, . . . , Yn) is said to be suffi-
cient for θ if the conditional distribution of
Y1, . . . , Yn, given U , does not depend on θ.

(Example) Consider the outcomes of n independent

trials of a binomial experiment, X1, . . . , Xn where

Xi ∼ b(1, p) and p = P (the i-th trial is a success).

Suppose we are given a value of Y =
∑n

i=1Xi(i.e.,

# of successes among n trials). If we know the

value of Y , do we have to look at X1, . . . , Xn or

other functions of X1, . . . , Xn in order to gain further

information about p?

Why? P (X1 = x1, . . . , Xn = xn | Y = y) does not

depend on p (i.e., as long as Y is known, there is no

further information about p from other functions of

X1, . . . , Xn). We call Y a sufficient statistic for p.
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• How to find a sufficient statistic

· (Def 9.3) tells us how to check if a statis-
tic is sufficient or not.

· likelihood of the sample(Def 9.4) and fac-
torization criterion(Thm 9.4) help find a
sufficient statistic for θ

(Def 9.4) Let y1, . . . , yn be sample observa-
tion taken on corresponding random vari-
ables Y1, . . . , Yn whose distribution depends
on θ. Then the likelihood of obtaining the
sample y1, . . . , yn when the parameter is θ,
L(θ) = L(y1, . . . , yn | θ), is defined to be

i) p(y1, . . . , yn | θ) for discrete Y1, . . . , Yn

ii) f(y1, . . . , yn | θ) for continuous Y1, . . . , Yn

· what L(θ1) > L(θ2) means for given Y1 =
y1, . . . , Yn = yn?
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(Def 9.4 continued) If the set of random
variables Y1, . . . , Yn is a random sample from
p(y | θ) or f(y | θ)(i.e., Y1, . . . , Yn ∼iid p(y |
θ) or f(y | θ)), then the likelihood of the
sample L(θ) = L(y1, . . . , yn | θ) is

i) for discrete Y1, . . . , Yn,

p(y1, . . . , yn | θ) =
n∏
i=1

p(yi | θ) = p(y1 | θ)× · · · × p(yn | θ)

ii) for continuous Y1, . . . , Yn,

f(y1, . . . , yn | θ) =
n∏
i=1

f(yi | θ) = f(y1 | θ)× · · · × f(yn | θ)

(Thm 9.4: factorization criterion) Let U

be a statistic based on the random sample
Y1, . . . , Yn. Then U is a sufficient statistic
for the estimation of θ iff L(θ) = L(y1, . . . , yn |
θ) can be factored into two nonnegative
functions :

L(y1, . . . , yn | θ) = g(u, θ)× h(y1, . . . , yn)

where h(y1, . . . , yn) is either a constant or a
function of y1, . . . , yn(not a function of θ).
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(Example 9.5)

(Exercises) Let Y1, . . . , Yn be IID samples
from N(µ, σ2). Then,
1) If µ is unknown and σ2 is known, show
Ȳ is sufficient for µ.

2) If µ is known and σ2 is unknown, show∑n
i=1(Yi − µ)2 is sufficient for σ2.

3) If µ and σ2 are unknown, show
∑n
i=1 Yi

and
∑n
i=1 Y

2
i is jointly sufficient for µ and

σ2
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• Note for sufficient statistics

i) there are many possible sufficient statis-
tics for one parameter.

· the random sample itself, Y1, . . . , Yn

· Y(1) ≤ . . . ≤ Y(n) : the set of order statis-
tics from Y1, . . . , Yn

· Example 9.5: a one-to one function of Ȳ

ii) we want to find a sufficient statistic that
reduces the data in the sample as much as
possible by using (Thm 9.4: factorization
criterion)

· sufficient statistics are useful to develop
unbiased estimators with minimum variance
(See 9.5).

15



9.5 Minimum-Variance Unbiased Esti-
mation

Motivation
Search an estimator with good properties: un-
biasedness, sufficiency and minimum variance.

Procedure

S1 Find a sufficient statistic U for θ

S2 Check if E(U) = θ

S3 If yes, U is a minimum-variance unbiased
estimator(MVUE) for θ.

If no, find a function of U , say h(U) such
that E(h(U)) = θ from E(U). Then h(U)
is a MVUE for θ.

Why?

(Thm 9.5) The Rao-Blackwell Theorem
Let θ̂ be an unbiased estimator for θ such
that V (θ̂) <∞. If U is a sufficient statistic
for θ, define θ̂? = E(θ̂ | U). Then, for all θ,

E(θ̂?) = θ and V (θ̂?) ≤ V (θ̂).
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Why?(continued)

- Given an unbiased estimator θ̂ for θ and a sufficient
statistic U for θ, there is a function of U that is
also an unbiased estimator for θ and has no larger
variance than θ̂.

- Which sufficient statistic should we use in this the-
orem? a sufficient statistic identified from the fac-
torization criterion(Thm 9.4)

(Example 9.6)

(Example 9.9)

(Example 9.8)
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9.6 The Method of Moments

Motivation
The k-th sample moment m

′
k = 1

n

∑n
i=1 Y

k
i should

provide good estimates of the corresponding k-
th population moment E(Y k) where E(Y k) are
functions of the population parameters.

Procedure
Suppose there are r unknown parameters. Then
solve the r equations E(Y k) = m

′
k = 1

n

∑n
i=1 Y

k
i

for k = 1,2, . . . , r with respect to r unknown
parameters. We call the solutions to the r

equations the Moment Estimators for the pa-
rameters.

[Note]

1. m
′

k = 1
n

∑n
i=1 Y

k
i is a consistent estimators of the cor-

responding E(Y k).

2. This method is easy to employ and usually provides

consistent estimators for respective parameters

3. The estimators derived from this method are often

not functions of sufficient statistics, so that their vari-

ances are sometimes larger than others(i.e., are some-

times not very efficient)
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(Example 9.11, 9.12)

(Example 9.13))

(Exercise) Suppose Y1, . . . , Yn are IID samples
from N(µ, σ2), and µ and σ2 are unknown.
Find the method-of-moments estimators of µ
and σ2.
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9.7 The Method of Maximum Likeli-
hood

Motivation
Let y1, . . . , yn be sample observation taken on
corresponding random variables Y1, . . . , Yn whose
distribution depends on θ. Then, we would like
to get the value of θ(i.e., an estimate) which
makes the observed data, y1, . . . , yn most likely
(i.e., maximize the likelihood of obtaining the
observed sample y1, . . . , yn).

Example

Suppose one tosses a coin 20 times, and count the

number of heads observed. Let p the probability that

one observes the head. Suppose we observed 11 heads

and 9 tails. Then we would like to get the value of

p which maximizes the likelihood of obtaining the ob-

served data.
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Example(continued)

Let Y be the number of heads in 20 coin tosses. Then

Y ∼ b(20, p). Since we observed 11 heads(i.e., y = 11),

the likelihood of observing y = 11 is L(y = 11 | p) =(20
11

)
p11(1− p)9.

The value of p maximizing L(y = 11 | p) is
0.55.
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Procedure

S1 Write down the likelihood L(θ1, . . . , θk) =
L(y1, . . . , yn | θ1, . . . , θk)

S2 Find estimates for θ1, . . . , θk that maximize
L(θ1, . . . , θk) or `(θ1, . . . , θk) = logL(θ1, . . . , θk).
We call them the Maximum Likelihood Es-
timator(MLE)s for the parameters.

· take the derivative of `(θ1, . . . , θk) with
respect to θ1, . . . , θk, set them to zero, and
solve them θ1, . . . , θk.

· draw a plot of L(θ) vs. θ and find θ̂ max-
imizing `(θ) (when the range of θ depends
on the samples)
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(Example 9.14)

(Example 9.15)

(Example 9.16)
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[Important notes]

1. This estimation method often leads to MVUEs.

- The MLE is always some functions of any suffi-
cient statistics U for θ. Why?

: L(y1, . . . , yn | θ) = g(u, θ)× h(y1, . . . , yn)

⇔ `(y1, . . . , yn | θ) = ln g(u, θ) + lnh(y1, . . . , yn)

Then maximization of `(y1, . . . , yn | θ) over θ is equiv-
alent to maximization of maximization of ln g(u, θ)
over θ, as lnh(y1, . . . , yn) does not depend on θ.

Moreover, ln g(u, θ) depends on the data only through
the values of U .

- Therefore, if the MLE for θ is adjusted to be
unbiased, the resulting estimator often is an MVUE
of θ.

2. The MLE for θ has the invariance property

- Suppose θ̂ is the MLE for θ and one is interested
in estimating a function of θ, h(θ). Then the MLE

ĥ(θ) for h(θ) is ĥ(θ) = h(θ̂).

In (Example 9.16) the MLE of σ2 is σ̂2 = 1
n

∑n
i=1(Yi−

Ȳ )2. What is the MLE of σ?
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