[Chapter 6. Functions of Random Variables]

- **6.1** Introduction
- **6.2** Finding the probability distribution of a function of random variables
- **6.3** The method of distribution functions
- **6.5** The method of Moment-generating functions

6.1 Introduction

Objective of statistics is to make inferences about a population based on information contained in a sample taken from that population. All quantities used to make inferences about a population are functions of the n random observations that appear in a sample.

Consider the problem of estimating a population mean μ . One draw a random sample of n observations, y_1, y_2, \ldots, y_n , from the population and employ the sample mean

$$\bar{y} = \frac{y_1 + y_2 + \dots + y_n}{n} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

for μ .

How good is this sample mean for μ ?

The answer depends on the behavior of the random variables Y_1, Y_2, \ldots, Y_n and their effect on the distributions of a random variable $\bar{Y} = (1/n) \sum_{i=1}^{n} Y_i$.

To determine the probability distribution for a function of n random variables, Y_1, Y_2, \ldots, Y_n (say \bar{Y}), one must find the joint probability functions for the random variable themselves $P(Y_1, \ldots, Y_n)$ or $f(Y_1, \ldots, Y_n)$.

The assumption that we will make is that

" Y_1, Y_2, \ldots, Y_n is a random sample from a population with probability function p(y) or probability density function f(y)"

: the random variables Y_1, Y_2, \ldots, Y_n are independent with common probability function p(y) or common density function f(y)

:
$$Y_1, \ldots, Y_n \stackrel{iid}{\sim} p(y)$$
 or $f(y)$

6.2 Finding the probability distribution of a function of random variables

We will study two methods for finding the probability distribution for a function of r.v.'s.

Consider r.v. Y_1, Y_2, \ldots, Y_n and a function $U(Y_1, Y_2, \ldots, Y_n)$, denoted simply as U, e.g. $U = (Y_1 + Y_2 + \ldots + Y_n)/n$. Then three methods for finding the probability distribution of U are as follows:

- The method of distribution functions $(\sqrt{})$
- The method of transformations.
- ullet The method of moment-generating functions $(\sqrt{})$

6.3 Method of distribution functions

Suppose that we have r.v. Y_1, \ldots, Y_n with joint pdf $f(y_1, \ldots, y_n)$. Let $U = U(Y_1, \ldots, Y_n)$ be a function of the r.v.'s Y_1, Y_2, \ldots, Y_n .

- 1. Draw the region over which $f(y_1, ..., y_n)$ is positive in $(y_1, y_2, ..., y_n)$, and find the region in the $(y_1, y_2, ..., y_n)$ space for which U = u.
- 2. Find $F_U(u) = P(U \le u)$ by integrating $f(y_1, y_2, ..., y_n)$ over the region for which $U \le u$.
- 3. Find the density function $f_U(u)$ by differentiating $F_U(u)$. Thus, $f_U(u) = dF_U(u)/du$.

(Example 6.1)

(Example 6.2)

(Example 6.3)

(Example 6.4)

6.5 The method of Moment Generating Functions

This method is based on a *uniqueness theorem* of M.G.F., which states that, *if two r.v. have identical moment-generating functions, the two r.v.'s possess the same probability distributions.*

Let U be a function of the r.v.'s Y_1, Y_2, \ldots, Y_n .

- 1. Find the moment generating function for U, $m_U(t)$.
- 2. compare $m_U(t)$ with other well-known moment generating functions. If $m_U(t) = m_V(t)$ for all values of t, then U and V have identical distributions (by uniqueness theorem)

(Theorem 6.1)[Uniqueness Theorem]

Let $m_X(t)$ and $m_Y(t)$ denote the moment generating functions of r.v.'s X and Y, respectively. If both moment-generating functions exist and $m_X(t) = m_Y(t)$ for all values of t, then X and Y have the same probability distribution.

(Example 6.10)

(Example 6.11)

The moment generating function method is often very useful for finding the distributions of sums of independent r.v.'s.

(Theorem 6.2(p.304))

Let Y_1, Y_2, \ldots, Y_n be independent r.v.'s with moment generating functions $m_{Y1}(t), m_{Y2}(t), \ldots, m_{Yn}(t)$, respectively. If $U = Y_1 + Y_2 + \ldots + Y_n$ then

$$m_U(t) = m_{Y1}(t) \times m_{Y2}(t) \times \cdots \times m_{Yn}(t).$$
 (Proof) in class

(Example 6.12)

The m.g.f method can be used to establish some interesting and useful results about the distributions of some functions of normally distributed r.v.'s.

(Theorem 6.3)

Let Y_1, Y_2, \ldots, Y_n be independent normally distributed r.v.'s with $E(Y_i) = \mu_i$ and $V(Y_i) = \sigma_i^2$, for $i = 1, 2, \ldots, n$ and let a_1, a_2, \ldots, a_n be constants. If

$$U = \sum_{i=1}^{n} a_i Y_i,$$

then U is a **normally distributed** random variable with $E(U) = \sum_{i=1}^{n} a_i \mu_i$ and $V(U) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$.

(Proof)

(Exercise 6.35)

(Theorem 6.4)

Let Y_1, Y_2, \ldots, Y_n be independent normally distributed r.v.'s with $E(Y_i) = \mu_i$ and $V(Y_i) = \sigma_i^2$, for $i = 1, 2, \ldots, n$ and define Z_i by

$$Z_i = \frac{Y_i - \mu_i}{\sigma_i}, \ i = 1, 2, \dots, n.$$

Then $\sum_{i=1}^{n} Z_i^2$ has a χ^2 -distribution with n degrees of freedom.

(Proof)

(Exercise 6.34)

(Exercise 6.43)

(Exercise 6.44)