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5.1 Introduction

Suppose that Y1, Y2, . . . , Yn denote the outcomes
of n successive trials of an experiment. A
specific set of outcomes, or sample measure-
ments, may be expressed in terms of the inter-
section of n events

(Y1 = y1), (Y2 = y2), . . . , (Yn = yn)

which we will denote as

(Y1 = y1, Y2 = y2, . . . , Yn = yn)

or more compactly, as

(y1, y2, . . . , yn).

Calculation of the probability of this intersec-
tion is essential in making inferences about the
population from which the sample was drawn
and is a major reason for studying multivariate
probability distributions.

2



5.2 Bivariate and Multivariate probabil-
ity distributions

Many random variables can be defined over the
same sample space.

(Example) Tossing a pair of dice.
The sample space contains 36 sample points.
Let Y1 be the number of dots appearing on
die 1, and Y2 be the sum of the number of
dots on the dice. We would like to obtain the
probability of (Y1 = y1, Y2 = y2) for all the
possible values of y1 and y2. That is the joint
distribution of Y1 and Y2.

(Def 5.2) For any r.v. Y1 and Y2 the joint (bi-
variate) distribution function F (y1, y2) is given
by

F (y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2)

for −∞ < y1 <∞ and −∞ < y2 <∞.
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(Theorem 5.2) If Y1 and Y2 are r.v. with joint dis-
tribution function F (y1, y2), then

1. F (−∞,−∞) = F (−∞, y2) = F (y1,−∞) = 0.

2. F (∞,∞) = 1.

3. If a?1 ≥ a1 and b?2 ≥ b2, then

F (a?1, b
?
2)− F (a?1, b2)− F (a1, b

?
2) + F (a1, b2)

= P (a1 < Y1 ≤ a?1, b2 < Y2 ≤ b?2) ≥ 0.

(1) Discrete variables:

(Def 5.1) Let Y1 and Y2 be discrete r.v. The
joint probability distribution for Y1 and Y2 is
given by

p(y1, y2) = p(Y1 = y1, Y2 = y2)

for −∞ < y1 < ∞ and −∞ < y2 < ∞. The
function p(y1, y2) will be referred to as the joint
probability function.
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Note that if Y1 and Y2 are discrete r.v. with
joint probability function p(y1, y2), its CDF is

F (y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2)

=
∑
t1≤y1

∑
t2≤y2

p(t1, t2)

(Theorem 5.1) If Y1 and Y2 are discrete r.v.
with joint probability function p(y1, y2), then

1. p(y1, y2) ≥ 0 for all y1, y2.

2.
∑
y1,y2

p(y1, y2) = 1, where the sum is over
all values (y1, y2) that are assigned nonzero
probabilities.

3. P [(y1, y2) ∈ A] =
∑

(y1,y2)∈A p(y1, y2) for A ⊆
S. So,

P (a1 ≤ Y1 ≤ a2, b1 ≤ Y2 ≤ b2) =
a2∑

t1=a1

b2∑
t2=b1

p(t1, t2)
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(Example 5.1) A local supermarket has three
checkout counters. Two customers arrive at
the counters at different times when the coun-
ters are serving no other customers. Each cus-
tomer chooses a counter at random, indepen-
dently of the other. Let Y1 denote the number
of customers who choose counter 1 and Y2,
the number who select counter 2. Find the
joint distribution of Y1 and Y2.

(Example 5.2) Consider the Y1 and Y2 in (Ex-
ample 5.1). Find F (−1,2), F (1.5,2) and F (5,7).
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(2) Continuous variables:

Two random variables are said to be jointly
continuous if their joint distribution function
F (y1, y2) is continuous in both arguments.

(Def 5.3) Let Y1 and Y2 be continuous r.v.
with joint distribution function F (y1, y2). If
there exists a nonnegative function f(y1, y2)
such that

F (y1, y2) =
∫ y1

−∞

∫ y2

−∞
f(t1, t2)dt2dt1

for all −∞ < y1 < ∞ and −∞ < y2 < ∞, then
Y1 and Y2 are said to be jointly continuous
random variables. The function f(y1, y2) will
be referred to as the joint probability density
function.
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(Theorem 5.3) If Y1 and Y2 are jointly con-
tinuous random variables with a joint density
function f(y1, y2), then

1. f(y1, y2) ≥ 0 for all y1, y2.

2.
∫∞
−∞

∫∞
−∞ f(y1, y2)dy1dy2 = 1.

3. p [(y1, y2) ∈ A] =
∫ ∫

A f(y1, y2)dy2dy1. So,

P (a1 ≤ Y1 ≤ a2, b1 ≤ Y2 ≤ b2) =

∫ b2

b1

∫ a2

a1

f(y1, y2)dy1dy2

(Example 5.3)

(Example 5.4)

(Exercise 5.5)

(Exercise 5.9)
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(Question) How about the case of the inter-
section of n events

(Y1 = y1, Y2 = y2, . . . , Yn = yn)?

For discrete r.v.,
the probability function is given by

p(y1, y2, . . . , yn) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn)

and its joint distribution function is given by

F (y1, y2, . . . , yn) = P (Y1 ≤ y1, Y2 ≤ y2, . . . , Yn ≤ yn)

=
∑
t1≤y1

∑
t2≤y2

∑
tn≤yn

p(y1, y2, . . . , yn).

For continuous r.v.,
the joint distribution function is given by

P (Y1 ≤ y1, Y2 ≤ y2, . . . , Yn ≤ yn) = F (y1, . . . , yn)

=
∫ y1

−∞

∫ y2

−∞
. . .

∫ yn
−∞

f(t1, t2, . . . , tn)dt1 . . . dtn

for every set of real numbers (y1, y2, . . . , yn) and
its joint density is given by

f(y1, y2, . . . , yn).
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5.3 Marginal and Conditional probabil-
ity distributions

Given Theorem 5.1 and Definition 5.2,

[Discrete random variables]

(Def 5.4)
a. Let Y1 and Y2 be jointly discrete r.v. with
probability function p(y1, y2). Then the marginal
probability functions of Y1 and Y2 are given by

p1(y1) =
∑
y2

p(y1, y2), p2(y2) =
∑
y1

p(y1, y2).

(Def 5.5)
If Y1 and Y2 are jointly discrete r.v. with joint
probability function p(y1, y2) and marginal prob-
ability functions p1(y1) and p2(y2) respectively,
then the conditional discrete probability func-
tion of Y1 given Y2 is

p(y1 | y2) = P (Y1 = y1 | Y2 = y2)

=
P (Y1 = y1, Y2 = y2)

P (Y2 = y2)
=
p(y1, y2)

p2(y2)

provided that p2(y2) > 0.
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Note that

1. Multiplicative law(Theorem 2.5(p.55)):
P (A ∩B) = P (A)P (B | A).

2. Consider the intersection of the two nu-
merical events, (Y1 = y1) and (Y2 = y2),
represented by the bivariate event (y1, y2).
Then, the bivariate probability for (y1, y2)
is

p(y1, y2) = p1(y1)p(y2 | y1) = p2(y2)p(y1 | y2)

3. p(y1 | y2) : the probability that the r.v. Y1
equals y1, given that that Y2 takes on the
value y2.

4. p(y1 | y2) is undefined if p2(y2) = 0.

(Example 5.5, 5.7)
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(Example) Contracts for two construction jobs
are randomly assigned to one or more of three
firms A, B and C. Let Y1 and Y2 be the number
of contracts assigned to firm A and B, respec-
tively. Recall that each firm can receives 0, 1,
or 2 contracts.

a. Find the joint probability distribution for Y1
and Y2.

b. Calculate F (1,0), F (3,4) and F (1.5,1.6)

c. Find the marginal probability distribution of
Y1 and Y2.

d. Find the conditional probability function for
Y2 given Y1 = 1.

e. Find the conditional probability function for
Y2 given Y1 = 0.
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Given Definition 5.3 and Theorem 5.3,

[Continuous random variables]

(Def 5.4)
b. Let Y1 and Y2 be jointly continuous r.v.
with probability function f(y1, y2). Then the
marginal density functions of Y1 and Y2 are
given by

f1(y1) =
∫ ∞
−∞

f(y1, y2)dy2, f2(y2) =
∫ ∞
−∞

f(y1, y2)dy1.

For continuous Y1 and Y2, P (Y1 = y1 | Y2 =
y2) can not be defined as in the discrete case,
because both (Y1 = y1) and (Y2 = y2) are
events with zero probability.

(Def 5.6)
If Y1 and Y2 are jointly continuous r.v. with
joint density function f(y1, y2), then the condi-
tional distribution function of Y1 given Y2 = y2
is

F (y1 | y2) = P (Y1 ≤ y1 | Y2 = y2) =
∫ y1

−∞

f(t1, y2)

f2(y2)
dt1
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Note that one can derive conditional density
function of Y1 given Y2 = y2, f(y1 | y2) from
the calculation of F (y1) :

(Def 5.7)
If Y1 and Y2 are jointly continuous r.v. with
joint density function f(y1, y2) and marginal
densities f1(y1) and f2(y2), respectively. For
any y2 such that f2(y2) > 0, the conditional
density of Y1 given Y2 = y2 is given by

f(y1 | y2) =
f(y1, y2)

f2(y2)
.

and, for any y1 such that f1(y1) > 0, the con-
ditional density of Y2 given Y1 = y1 is given
by

f(y2 | y1) =
f(y1, y2)

f1(y1)
.

Note that i) f(y1 | y2) is undefined for all y2
such that f2(y2) = 0, ii)f(y2 | y1) is undefined
for all y1 such that f1(y1) = 0.

(Example 5.8)
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(Example) Let Y1 and Y2 have joint probability
density function(pdf) given by

f(y1, y2) = k(1− y2) 0 ≤ y1 ≤ y2 ≤ 1

= 0 elsewhere

a. Find the value of k such that this is a pdf.

b. Calculate P (Y1 ≤ 3/4, Y2 ≥ 1/2)

c. Find the marginal density function of Y1 and
Y2.

d. Calculate P (Y1 ≤ 1/2 | Y2 ≤ 3/4)

e. Find the conditional density function of Y1
given Y2.

f. Find the conditional density function of Y2
given Y1.

g. Calculate P (Y2 ≥ 3/4 | Y1 = 1/2)
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5.4 Independent random variables

• Independent random variables :
Two events A and B are independent if
P (A ∩B) = P (A)P (B).
Suppose we are concerned with events of
the type (a ≤ Y1 ≤ b) ∩ (c ≤ Y2 ≤ d). If Y1
and Y2 are independent, does the following
equation hold?

P (a ≤ Y1 ≤ b, c ≤ Y2 ≤ d) = P (a ≤ Y1 ≤ b)P (c ≤ Y2 ≤ d)

(Def 5.8)
Let Y1 have distribution function F1(y1), Y2
have distribution function F2(y2), and Y1 and
Y2 have joint distribution function F (y1, y2).
Then, Y1 and Y2 are said to be independent
if and only if

F (y1, y2) = F1(y1)F2(y2)

for every pair of real numbers (y1, y2). If Y1
and Y2 are not independent, they are said to
be dependent.
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Extension of (Def 5.8) to n dimensions :

Suppose we have n random variables, Y1, . . . , Yn,
where Yi has distribution function Fi(yi), for
i = 1,2, . . . , n; and where Y1, . . . , Yn have joint
distribution F (y1, y2, . . . , yn).
Then Y1, . . . , Yn are independent if and only if

F (y1, y2, . . . , yn) = F1(y1) · · ·Fn(yn)

for all real numbers y1, y2, . . . , yn.

(Theorem 5.4)

• Discrete r.v. : If Y1 and Y2 are discrete
r.v. with joint probability function p(y1, y2)
and marginal probability functions p1(y1) and
p2(y2) respectively, then Y1 and Y2 are inde-
pendent if and only if

p(y1, y2) = p1(y1)p2(y2)

for all pair of real numbers (y1, y2).

17



(Theorem 5.4)

• Continuous r.v. : If Y1 and Y2 are continuous
r.v. with joint density function f(y1, y2) and
marginal density functions f1(y1) and f2(y2)
respectively, then Y1 and Y2 are independent if
and only if

f(y1, y2) = f1(y1)f2(y2)

for all pair of real numbers (y1, y2).

(Example 5.10)

(Example 5.12)
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The key benefit of the following theorem is
that we do not actually need to derive the
marginal densities. Indeed, the functions g(y1)
and h(y2) need not, themselves, be density
functions.

(Theorem 5.5) If Y1 and Y2 have a joint density
f(y1, y2) that is positive if and only if a ≤ y1 ≤ b
and c ≤ y2 ≤ d, for constants a, b, c,and d; and
f(y1, y2) = 0 otherwise. Then Y1 and Y2 are
independent r.v. if and only if

f(y1, y2) = g(y1)h(y2)

where g(y1) is a nonnegative function of y1
alone and h(y2) is a nonnegative function of
y2 alone.

(Example 5.13)

(Exercise 5.61)
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5.5 Expected value of a function of r.v.

(Def 5.9)
• Discrete r.v. : Let g(Y1, Y2, . . . , Yk) a function
of the discrete r.v., Y1, Y2, . . . , Yk, which have
probability function p(y1, y2, . . . , yk). Then the
expected value of g(Y1, Y2, . . . , Yk) is

E[g(Y1, Y2, . . . , Yk)]

=
∑
yk

· · ·
∑
y2

∑
y1

g(y1, y2, . . . , yk)p(y1, y2, . . . , yk)

• Continuous r.v. : If Y1, . . . , Yk are continuous
r.v. with joint density function f(y1, . . . , yk),
then

E[g(Y1, . . . , Yk)]

=
∫
yk
· · ·

∫
y1

g(y1, . . . , yk)f(y1, . . . , yk)dy1 . . . dyk.

• Derivation of E(Y1) from (Def 5.9)(and Def
4.4).

(Example 5.15)

(Example 5.16)
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5.6 Special theorems

(Theorem 5.6)
Let c be a constant. Then

E(c) = c

(Theorem 5.7) Let g(Y1, Y2) be a function of
the r.v. Y1 and Y2, and let c be a constant.
Then

E[cg(Y1, Y2)] = cE[g(Y1, Y2)]

(Theorem 5.8)
Let Y1,Y2 be r.v. and g1(Y1, Y2), g2(Y1, Y2), . . .,
gk(Y1, Y2) be functions of Y1 and Y2. Then

E[g1(Y1, Y2) + g2(Y1, Y2) + . . .+ gk(Y1, Y2)]

= E[g1(Y1, Y2)] + E[g2(Y1, Y2)] + · · ·+ E[gk(Y1, Y2)].

(Example 5.20)
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(Theorem 5.9) Let Y1 and Y2 be independent
r.v. and g(Y1) and h(Y2) be functions of only
Y1 and Y2, respectively. Then

E[g(Y1)h(Y2)] = E[g(Y1)]E[h(Y2)].

provided that the expectation exist.

(Proof)

(Example 5.21)

(Exercise 5.77)
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5.7 Covariance of two random variables

The covariance between Y1 and Y2 is a measure
of the linear dependence between them.

(Def 5.10) If Y1 and Y2 are r.v. with means
µ1 = E(Y1) and µ2 = E(Y2), respectively, the
covariance of Y1 and Y2 is given by

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)].

• −∞ < Cov(Y1, Y2) <∞

• The larger the absolute value of the covari-
ance of Y1 and Y2, the greater the linear
dependence between Y1 and Y2.

• Positive values indicate that Y1(Y2) increases
as Y2(Y1) increases.

• Negative values indicate that Y1(Y2) de-
creases as Y2(Y1) increases.

• A zero value indicates no linear dependence
between Y1 and Y2.

• If Y1 = Y2, Cov(Y1, Y2) =
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It is difficult to employ the covariance as an
absolute measure of dependence because its
value depends upon the scale of measurement.
So, it is difficult to determine whether a par-
ticular covariance is large or small.

The correlation coefficient, ρ is defined as

ρ =
Cov(Y1, Y2)

σ1σ2

where σ1 =
√
V ar(Y1) and σ2 =

√
V ar(Y2) are

the standard deviations of Y1 and Y2.

• ρ also measures the linear dependence be-
tween Y1 and Y2 and its sign is the same
as the sign of the covariance. But, −1 <

ρ < 1.

• ρ > 0 : Y1(Y2) increases as Y2(Y1) increases.

• ρ < 0: Y1(Y2) decreases as Y2(Y1) increases.

• ρ = 0 : no correlation between Y1 and Y2.

• ρ = +1(−1) : perfect linear correlation
between Y1 and Y2, with all points on a
straight line with positive(negative) slope.
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(Theorem 5.10) Let Y1 and Y2 are r.v. with
means µ1 and µ2, respectively, then

Cov(Y1, Y2) = E[(Y1 − µ1)(Y2 − µ2)] = E(Y1Y2)− µ1µ2.

(Proof)

(Example 5.23)

(Theorem 5.11) Let Y1 and Y2 are independent
r.v., then Cov(Y1, Y2) = 0.

(Proof)

[Note] Zero covariance DOES NOT IMPLY
the independence between two random vari-
ables. BUT, one exception : If Y1 and Y2
are NORMAL random variables and they are
uncorrelated(i.e., they have zero covariance),
they are also independent(See Chapter 5.10).

(Example 5.24)

(Exercise)
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5.8 Expected value and variance of lin-
ear combinations of r.v.’s

Let U1 be a linear function of the r.v.’s Y1, Y2, . . . , Yn.
Then, we have

U1 = a1Y1 + a2Y2 + · · ·+ anYn =
n∑
i=1

aiYi

for constants a1, a2, . . . , an.

We may be interested in the moments(expected
values, covariance,...) of such linear combina-
tions.

(Theorem 5.12) Let Y1, Y2, . . . , Yn and X1, X2, . . . , Xm
be r.v. with E(Yi) = µi and E(Xj) = ξj. Define

U1 =
n∑
i=1

aiYi and U2 =
m∑
j=1

bjXj

for constants a1, a2, . . . , an and b1, b2, . . . , bm. Then
the following hold:

a E(U1) =
∑n
i=1 aiµi.
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b V (U1) =
∑n
i=1 a

2
i V (Yi)+2

∑∑
i<j aiajCov(Yi, Yj)

where the double sum is over all pairs (i, j) with
i < j.

c Cov(U1, U2) =
∑n
i=1

∑m
j=1 aibjCov(Yi, Xj).

(Example 5.25)

(Example 5.27)
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5.9 Multinomial probability distribution

From Chapter 3, we know that a binomial r.v.
results from an experiment consisting of n tri-
als with two possible outcomes per trial. If one
encounter the situations in which the number
of possible outcomes per trial is more than two,
one needs another concept.

A multinomial experiment is a generalization
of the binomial experiment.

(Def 5.11) A multinomial experiment possesses
the following properties:

1. The experiment consists of n identical tri-
als.

2. The outcome of each trial falls into one of
k classes or cells.

3. The probability that the outcome of a sin-
gle trial falls into cell i is pi, i = 1,2, . . . , k
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and remains the same from trial to trial.
Notice that p1 + p2 + · · ·+ pk = 1.

4. The trials are independent.

5. The r.v.’s of interest are Y1, Y2, . . . , Yk, where
Yi equals the number of trials for which the
outcome falls into cell i. Notice Y1 + Y2 +
. . .+ Yk = n.

(Def 5.12) Assume that p1, p2, . . . , pk are such
that

∑k
i=1 pi = 1, and pi > 0 for i = 1,2, . . . , k.

The r.v.’s Y1, Y2, . . . , Yk are said to have a multi-
nomial distribution with parameters n and p1, p2, . . . , pk
if the joint probability function of Y1, Y2, . . . , Yk
is given by

p(y1, y2, . . . , yk) =
n!

y1!y2! · · · yk!
p
y1
1 p

y2
2 · · · p

yk
k ,

where for each i, yi = 0,1, . . . , n and
∑k
i=1 yi =

n.

Note that k = 2 provides the binomial experi-
ment/distribution.

(Example 5.30)



(Theorem 5.13) If Y1, Y2, . . . , Yk have a multi-
nomial distribution with parameters n and p1, p2, . . . , pk,
then

1. E(Yi) = npi, V (Yi) = npiqi where qi = 1−pi.

2. Cov(Ys, Yt) = −npspt if s 6= t.

(Example) Suppose that a fair die is rolled 9
times. Let Yi be the number of trials for which
number i appears.

(a) What is the probability that 1 appears three
times, 2 and 3 twice each, 4 and 5 once each,
and 6 not at all?

(b) Find E(Yi), V (Yi) and Cov(Ys, Yt) where
i, s, t = 1, . . . ,6 and s 6= t.
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5.10 Bivariate normal distribution

The bivariate density function for two normal
r.v.’s Y1 and Y2 is

f(y1, y2) =
e−Q/2

2πσ1σ2

√
1− ρ2

for −∞ < y1 <∞ and −∞ < y2 <∞ where

Q =
1

1− ρ2

[
(y1 − µ1)2

σ2
1

− 2ρ
(y1 − µ1)(y2 − µ2)

σ1σ2
+

(y2 − µ2)2

σ2
2

]
• ρ is the correlation between Y1 and Y2.

• Marginal distributions of Y1 and Y2.

• Suppose Y1 and Y2 are independent(ρ = 0),
and they have marginal normal distribu-
tions. Then (Y1, Y2) is a bivariate normal
with ρ = 0.
We know that if two variables are indepen-
dent, then they are (linearly) uncorrelated.
But, in general the following is NOT true:
if they are (linearly) uncorrelated, they are
independent.
However, for normal Y1 and Y2, they are
also independent if they are uncorrelated.
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5.11 Conditional expectations

Conditional expectations are related to con-
ditional probability/density functions discussed
in Section 5.3.

(Def 5.13) If Y1 and Y2 are any two r.v.’s,
the conditional expectation of g(Y1) given that
Y2 = y2 is defined to be

E(g(Y1) | Y2 = y2) =
∫ ∞
−∞

g(y1)f(y1 | y2)dy1

if Y1 and Y2 are jointly continuous and

E(g(Y1) | Y2 = y2) =
∑
y1

g(y1)p(y1 | y2)

if Y1 and Y2 are jointly discrete.

(Example 5.31)
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In general, the conditional expectation of Y1
given Y2 = y2 is a function of y2. If we let
Y2 range over all of its possible values, we can
think of the conditional expectation E(Y1 | Y2)
as a function of the r.v. Y2.

Because E(Y1 | Y2) is a function of the r.v. Y2,
it is itself a random variable; and as such, it
has a mean and a variance.

(Theorem 5.14) Let Y1 and Y2 denote random
variables. Then

E(Y1) = E[E(Y1 | Y2)]

where, on the right-hand side, the inside ex-
pectation is with respect to the conditional
distribution of Y1 given Y2 and the outside ex-
pectation is with respect to the distribution of
Y2.

(Proof)
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Note that

• The conditional variance of Y1 given Y2 =
y2 is defined by

V (Y1 | Y2 = y2)

= E(Y 2
1 | Y2 = y2)− [E(Y1 | Y2 = y2)]2.

• The conditional variance is a function of
y2.

• Letting Y2 range over all of its possible val-
ues, V (Y1 | Y2) is a random variable that is
a function of Y2.

(Theorem 5.15)
Let Y1 and Y2 denote random variables. Then

V (Y1) = E[V (Y1 | Y2)] + V [E(Y1 | Y2)]

(Proof)
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(Example 5.32) A quality control plan for an
assembly line involves sampling n = 10 finished
items per day and counting Y , the number
of defectives. If p denotes the probability of
observing a defective, then Y has a binomial
distribution, assuming that a large number of
items are produced by the line. But p varies
from day to day and is assumed to have a uni-
form distribution on the interval from 0 to 1/4.
Find expected value and the variance of Y .
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