///////////////////////////////////////////////////// // // Tertiary Burniat surface with K^2=3 // ///////////////////////////////////////////////////// X:=rec; Pic:=LatticeWithGram(DiagonalMatrix([1,-1,-1,-1,-1,-1,-1]): CheckPositive := false); // allows neg-def n:=[2:i in [1..5]]; Gt:=AbelianGroup(n); G:=sub; T:=sub; X`Name:="Burniat 3 nodal"; X`Big:=Gt; X`Small:=G; X`Tors:=T; X`branch:=[ Pic![1,-1,-1,0,0,0,0],Pic![1,-1,0,0,-1,-1,0],Pic![1,-1,0,0,0,0,-1], // A_i Pic![1,0,-1,-1,0,0,0],Pic![1,0,-1,0,-1,0,-1],Pic![1,0,-1,0,0,-1,0], // B_i Pic![1,-1,0,-1,0,0,0],Pic![1,0,0,-1,0,-1,-1],Pic![1,0,0,-1,-1,0,0], // C_i Pic![0,1,0,0,0,0,0],Pic![0,0,1,0,0,0,0],Pic![0,0,0,1,0,0,0]]; // E_i X`phi:=[Gt.1,Gt.1+Gt.3,Gt.1+Gt.4, Gt.2,Gt.2+Gt.5,Gt.2+Gt.3+Gt.4+Gt.5, Gt.1+Gt.2+Gt.3+Gt.4,Gt.1+Gt.2+Gt.4+Gt.5,Gt.1+Gt.2+Gt.3+Gt.5]; X`phi[10]:=X`phi[1]+X`phi[2]+X`phi[3]+X`phi[7]; X`phi[11]:=X`phi[4]+X`phi[5]+X`phi[6]+X`phi[1]; X`phi[12]:=X`phi[7]+X`phi[8]+X`phi[9]+X`phi[4]; X`branchtors:=[T![1,1,0],T![1,0,1],T![1,1,0], T![0,0,1],T![1,0,1],T![0,0,1], T!0,T![1,0,1],T!0, T!0,T!0,T!0]; X`KY:=Pic![-3,1,1,1,1,1,1]; X`K:=Pic![3,-1,-1,-1,-1,-1,-1]; lines:=#X`branch; X`Lchi:=calculateLchi(X); // find torsion twists... X`Basis:=[[0,0,0,0,0,0,1,0,0,1,0,1], [0,0,0,0,0,0,0,0,0,1,0,0], [0,0,0,0,0,0,0,0,0,0,1,0], [0,0,0,0,0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,0,-1,1,0,0], [0,0,0,1,0,-1,0,0,0,0,0,1], [1,0,-1,0,0,0,0,0,0,0,1,0]]; findCoordinates(X,[1,0,0,0,0,0,0,0,0,0,0,0]); X`Ktors:=T![1,0,1]; // random approach to effective divisors loads a bit faster // -1 curves on the degree 3 weak dP CC:=[Pic.i:i in [2..7]] cat &cat[[Pic.1-Pic.i-Pic.j:i in [j+1..7]]:j in [2..7]] cat [Pic![2,-1,-1,-1,-1,-1,-1]+Pic.i:i in [2..7]]; // -2 curves on the degree 3 weak dP Append(~CC,Pic![1,-1,0,0,-1,-1,0]); Append(~CC,Pic![1,0,-1,0,-1,0,-1]); Append(~CC,Pic![1,0,0,-1,0,-1,-1]); EffY:={c:c in CC}; A:=CartesianProduct([[0..1]:i in [1..#CC]]); for i in [1..250000] do a:=Random(A); Include(~EffY,&+[a[i]*CC[i]:i in [1..#CC]]); end for; // random approach is faster, but requires a few additional curves to be included Include(~EffY,Pic.1); Include(~EffY,Pic!0); X`EffY:=EffY; //////////////////// LL:=[Pic![0,-1,0,0,0,0,0],Pic![0,0,-1,0,0,0,0],Pic![0,0,0,-1,0,0,0], Pic![0,0,0,0,-1,0,0],Pic![0,0,0,0,0,-1,0],Pic![0,0,0,0,0,0,-1], Pic![-1,0,0,0,0,0,0],Pic![-2,0,0,0,0,0,0]]; // "standard" LL:=[-Pic.2+Pic.5,-Pic.2,-Pic.1+Pic.3+Pic.5,-Pic.1+Pic.5+Pic.6,-Pic.1+Pic.5, -2*Pic.1+Pic.3+Pic.4+Pic.5+Pic.6,-2*Pic.1+Pic.3+Pic.5+Pic.6+Pic.7, -2*Pic.1+Pic.3+Pic.5+Pic.6]; // 3*A2 toric simpleroots:=[Pic.1-Pic.2-Pic.3-Pic.4,Pic.2-Pic.3,Pic.3-Pic.4,Pic.4-Pic.5,Pic.5-Pic.6,Pic.6-Pic.7]; LL:=[Weylreflection(X,L,simpleroots[2]):L in LL]; time Excl:=findExceptional(X,LL); // found 21 from 933120 ee:=< T.3, T.2 + T.3, T.1, T.2 + T.3, T.3, T.1 + T.2, T!0, T.2 >; ee in Excl; // true H,E:=findHoms(X,LL,ee); [H[[i,j]]:i in [j+1..#LL],j in [0..#LL]];