Enumerating exceptional collections on some
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Abstract

We use constructions of surfaces as abelian covers to write down exceptional col-
lections of maximal length for every surface X in certain families of surfaces of general
type with p, = 0 and K% = 3,4,5,6,8. We also compute the algebra of derived en-
domorphisms for an appropriately chosen exceptional collection, and the Hochschild
cohomology of the corresponding quasiphantom category. As a consequence, we see
that the subcategory generated by the exceptional collection does not vary in the family
of surfaces.

1 Introduction

Exceptional collections of maximal length on surfaces of general type with p, = 0 have been
constructed for Godeaux surfaces [12] and [14], primary Burniat surfaces [2], and Beauville
surfaces [23] and [35]. Recently, progress has also been made for some fake projective
planes [24] and [22]. In this article, we present a method which can be applied uniformly
to produce exceptional collections of line bundles on several different surfaces with p, = 0,
including Burniat surfaces with K? = 6 (cf. [2]), 5,4, 3, Kulikov surfaces with K2 = 6 and
some Beauville surfaces with K2 = 8 (cf. [23], [35]). In fact we do more: we enumerate all
exceptional collections of line bundles corresponding to any choice of numerical exceptional
collection. We can use this enumeration process to find those exceptional collections that
are particularly well-suited to studying the surface itself, and possibly its moduli space.

Both [2] and [23] hinted that it should be possible to produce exceptional collections
of line bundles on a wide range of surfaces of general type with p, = 0. This inspired
us to build the approaches of [2] and [23] into a larger framework (see especially Sec. 2),
an important part of which is a new formula for the pushforward of a line bundle on an
abelian cover, generalising formulas in [39]. We believe that this is a step in the right
direction, even though there are many families of surfaces which remain just out of reach
(for example, see Sec. 6).
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Let X be a surface of general type with p, = 0, and let ¥ be a del Pezzo surface
with K2 = Kg( The groups Pic X/Tors X and PicY are both isomorphic to Z'", where
N = 9— K%, and moreover, the cohomology groups H?(X,Z) and H?(Y,Z) are completely
algebraic. By exploiting this relationship between X and Y, we can study exceptional
collections of line bundles on X. Indeed, exceptional collections on del Pezzo surfaces are
well understood after [38], [30], and we sometimes refer to X as a fake del Pezzo surface,
to emphasise this analogy.

Suppose now that X is a fake del Pezzo surface that is constructed as a branched Galois
abelian cover ¢: X — Y, where Y is a (weak) del Pezzo surface with K¢ = K%. Many fake
del Pezzo surfaces can be constructed in this way (cf. [9]), but we require certain additional
assumptions on the branch locus and Galois group (see Sec. 3.1). These assumptions ensure
that there is an appropriate choice of lattice isometry PicY — Pic X/Tors X. This isometry
is combined with our pushforward formula to calculate the coherent cohomology of any line
bundle on X.

Theorem 1.1 Let X be a fake del Pezzo surface satisfying our assumptions, and let L be
any line bundle on X. We have an explicit formula for the line bundles M, appearing in

the pushforward p,L = @xeG* M., where G is the Galois group of the cover ¢: X — Y.

Working modulo torsion, we can lift any exceptional collection of line bundles from
Y to a numerical exceptional collection on X. We then incorporate Theorem 1.1 into a
systematic computer search, to find those combinations of torsion twists which correspond
to an exceptional collection on X.

Let E be an exceptional collection on X, and suppose Hi(X,Z) is nontrivial. Then
E can not be full, for K-theoretic reasons (see Sec. 4). Hence we have a semiorthogonal
decomposition of the bounded derived category of coherent sheaves on X:

DY(X) = (E, A).

If E is of maximal length, then A is called a quasiphantom category; that is, Ky(A) is
torsion and the Hochschild homology HH,(A) is trivial. Even when H;(X,Z) vanishes, an
exceptional collection of maximal length need not be full (see [14]), and in this case A is
called a phantom category, because Ky(.A) is trivial.

On the other hand, the Hochschild cohomology does detect the quasiphantom category
A; in fact, HH*(A) measures the formal deformations of A. We calculate HH*(A) by
considering the As.-algebra of endomorphisms of E, together with the spectral sequence
developed in [33]. Indeed, one of the advantages of our systematic search, is that we can
find exceptional collections for which the higher multiplications in the A..-algebra of E are
as simple as possible. Theorem 1.2 below serves as a prototype statement of our results
for a good exceptional collection on a fake del Pezzo surface. More precise statements can
be found in the text.



Theorem 1.2 Let X — T be a family of fake del Pezzo surfaces satisfying our assump-
tions. Then for any t in T, there is an exceptional collection E of line bundles on X = X
which has mazximal length 12 — K)z( Moreover, the subcategory of D*(X) generated by E
does not vary with t, and the Hochschild cohomology of X agrees with that of the quasi-
phantom category A in degrees less than or equal to two.

The significance of Theorem 1.2 is amplified by the reconstruction theorem of [16]: if
X and X’ are smooth, =Ky is ample, and D®(X) and D?(X’) are equivalent bounded
derived categories, then X = X’. In conjunction with Theorem 1.2, we see that if Kx
is ample, then X can be reconstructed from the quasi-phantom category A. Currently,
it is not clear whether there is any practical way to extract information about X from
A, although some interesting ideas are discussed in [2]. It would be interesting to know
whether this “rigidity” of [E is a general phenomenon, or just a coincidence for good choices
of exceptional collection.

The study of exceptional collections of line bundles on fake del Pezzo surfaces leads
naturally to the question of how to characterise effective divisors on X. For example, in
[1], there is an explicit description of the semigroup of effective divisors on the Burniat
surface with K2 = 6, as well as possible descriptions for the other Burniat surfaces. We
believe that Theorem 1.1 can be used to prove similar characterisations for the other fake del
Pezzo surfaces considered in this article. Indeed, as a test case, we describe the semigroup
of effective divisors on certain Beauville surfaces with K2 = 8 in App. C.

In Section 2 we review abelian covers, and prove our result on pushforward of line
bundles, which is used throughout. In Section 3.1, we explain our assumptions on X
and its Galois covering structure ¢: X — Y, and describe our approach to enumerating
exceptional collections on the surface of general type. Section 3.2 is an extended treatment
of the Kulikov surface, which is a fake del Pezzo surface with K? = 6. We give a cursory
review of dg-categories and A.-algebras in Section 4, as background to our discussion of
quasi-phantom categories and the theory of heights from [33]. We then show to compute
the A-algebra and height of an exceptional collection on the Kulikov surface.

Section 5 considers the families of Burniat surfaces with K2 = 6,5,4,3. Exceptional
collections of line bundles on Burniat surfaces with K2 = 6 have already appeared in [2].
As the size of Tors X decreases, it becomes more difficult to find well-behaved exceptional
collections. Thus we need to use the action of the Weyl group on Pic X/Tors X (cf. Sec. 3.1)
to find suitable exceptional collections on Burniat surfaces with K2 = 4, 3. Finally, section
6 is a discussion of the Keum-Naie surface with K? = 4, showing what can go wrong when
we tweak our assumptions.

Appendix A lists certain data relevant to the Kulikov surface example of Section 3.2.
Appendix B is a reference for the calculations on Burniat surfaces in Section 5. The last
Appendix C treats two Beauville surfaces with K? = 8, and should be compared with [23],
[35].

In order to use results on deformations of each fake del Pezzo surface, we work over C.



Remark 1.1 The calculation of ¢, L according to Theorem 1.1 is elementary but repeti-
tive; we include a few sample calculations to illustrate how to do it by hand, but when the
torsion group becomes large, it is more practical to use computer algebra. Our enumera-
tions of exceptional collections are obtained by simple exhaustive computer searches. We
use Magma [11], and the annotated scripts are available from [19].
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2 Preliminaries

We collect together the relevant material on abelian covers. See especially [39], [7] or
[31] for details. Unless stated otherwise, X and Y are normal projective varieties, with
Y nonsingular. Let G be a finite abelian group acting faithfully on X with quotient
p: X — Y. Write A = Y A, for the branch locus of ¢, where each A; is a reduced,

irreducible effective divisor on Y. The cover ¢ is determined by the group homomorphism
D 7T1(Y - A) - Hl(Y - A,Z) - G,

which assigns an element of G to the class of a loop around each irreducible component A;
of A. If & is surjective, then X is irreducible. The factorisation through H; (Y —A, Z) arises
because G is assumed to be abelian, so we only need to consider the map ®: H (Y —A,Z) —
G. For brevity, we refer to the loop around A; by the same symbol, A;.

Let Y be the blow up of Y at a point P where several branch components A;,, ..., A;,
intersect. Then there is an induced cover of }7, and the image of the exceptional curve F
under ® is given by

O(E) =Y (A). (1)

J=1

Fix an irreducible reduced component I" of A and denote ®(I') by . Then the inertia
group of I is the cyclic group H C G generated by «. Choosing the generator of H* =
Hom(H,C*) to be the dual character v*, we may identify H* with Z/n, where n is the
order of 4. Composing the restriction map res: G* — H* with this identification gives

G* — Z/n, x +— k,

where x|z = (v*)* for some 0 < k < n — 1. On the other hand, given Y in G* of order d,
the evaluation map x: G — Z/d satisfies

X(7) = xlu(y) =%



as a residue class in Z/d (or as an integer between 0 and d — 1).
The pushforward of ¢,.Ox breaks into a direct sum of eigensheaves

XEG*

Moreover, the £, are line bundles on Y and by Pardini [39], their associated (integral)
divisors L, are given by the formula

dLX = Zqu)(Az)Az (3)

The line bundles £, play a pivotal role in the sequel, and we refer to them as the character
sheaves of the cover p: X — Y.

2.1 Line bundles on X

We develop tools for calculating with torsion line bundles on X. Let m: A — X be the
étale cover of X associated to the torsion subgroup T' = Tors X = 71 (X)* = H((X,Z).
We call A the maximal abelian cover of X, and we have the following commutative diagram

N

Suppose the big cover ¢y: A — Y is Galois with group é, ramified over the same branch
divisor A as ¢: X — Y. Then the original group G is the quotient G/T', so we get short
exact sequences

X

Y

0T —-G—G—0 (4)

and B
0—T"—G" «—G" —0 (5)

where G* = Hom(G,C*), etc. In fact, for each surface that we consider, these exact
sequences are split (although see sec. 6 for a slightly more tricky example), so that

G=GoT, G*=G*aT" (6)

Let T be a reduced irreducible component of the branch locus A of an abelian cover
w: X — Y and suppose the inertia group of I' is cyclic of order n. Then

Definition 2.1 (see also [2]) The reduced pullback I' of T is the (integral) divisor T' =
Lo*(T) on X.



Remark 2.1 The reduced pullback extends to arbitrary linear combinations ), k;A; in
the obvious way. We use a bar to denote divisors on Y and remove the bar when taking
the reduced pullback. In other situations, it is convenient to use D; to denote the reduced
pullback of a branch divisor A;.

The remainder of this section is dedicated to calculating the pushforward ¢.(L & 7),
where L = Ox (>, kiD;) is the line bundle associated to the reduced pullback of ) k;A;,
and 7 is any torsion line bundle on X. We do this by exploiting the association of the
free part L with ¢: X — Y, and the torsion part 7 with 7: A — X. The formulae that
we obtain are a natural extension of results in [39]. It may be helpful to skip ahead to
Examples 2.2.1 and 2.4.1 before reading this section in detail.

2.2 Free case

Until further notice, we write I' C Y for an irreducible component of the branch divisor A
of o: X — Y. By Pardini [39], the inertia group H C G of T is cyclic, and H is generated
by ®(T') of order n. Let I' C X be the reduced pullback of T, so that nI' = ©*(T'). We
start with cyclic covers.

Lemma 2.1 Let a: X — Y be a cyclic cover with group H = Z/n, and suppose that fis
an irreducible reduced component of the branch divisor. Let I' be the reduced pullback of T,
and suppose 0 < k <n—1. Then

a,Ox (kT) = @ Mt e P M

1€H*— €S

where M; is the character sheaf associated to o with character i € H*, and
S={n—k,....n—1} CH*"=Z/n.
Remark 2.2 If £ is a multiple of n, say k = pn, the projection formula gives

@, Ox (kT') = o, (2 Oy (pT)) = a.0x ® Oy (pT) = P M
i€eH*

Thus the lemma extends to any integer multiple of T'.

Proof After removing a finite number of points from I', we may choose a neighbourhood
U of T such that U does not intersect any other irreducible components of A. Then since X
and Y are normal we may calculate a,Ox (kT) locally on a~1(U) and U. In what follows,
we do not distinguish U (respectively a~(U)) from Y (resp. X).



Let g = ®(T) so that H = (g) = Z/n, and identify H* with Z/n via g* = 1. Locally,
write a: =} (U) — U as 2" = b where b = 0 defines ' in U. Then

n—1 n—1 n—1
0. 0x = Povs = Pov(-iT) = P
i=0 i=0 =0

where the last equality is given by (3). Thus a,Ox is generated by 1,z,...,2" ! as an

Oy-module, and the Oy-algebra structure on a,Ox is induced by the equation z" = b.
The calculation for Ox (kI') is similar,

n—k—1 n—k—1

OJ*OX(kF> —OJ*OX k: @ Oyz
i=—k i=—k

where we use z" = b to remove negative powers of z. Thus

n—k—1
0, Ox (kT) = @ Oy (—1iT) @ Oy (—iT)(T)
i=n—k
- @ Mt @M
1€ H*— €S
where S ={n —k,...,n—1}. O

The lemma can be extended to any abelian group using arguments inspired by Pardini
[39] sections 2 and 4.

Proposition 2.1 Let p: X — Y be an abelian cover with group G, and let k = np + k,
where 0 < k <n—1. Then

p:Ox (kD)= @ £'GDe D £ (e +1D),

XEG*—Skf xESkf

where B
Sr={xe€G :n—k<x|lg <n-1}.

Proof By the projection formula, we only need to consider the case k = k (cf. Remark
2.2). As in the proof of Lemma 2.1, after removing a finite number of points, we may take
a neighbourhood U of T’ which does not intersect any other components of A. We work on
U and its preimages ¢~ 1 (U), 871 (U).
Factor p: X — Y as
X —=7Z =Y,



where « is a cyclic cover ramified over I' with group H = (g) = Z/n, and 3 is unramified
by our assumptions. As in Lemma 2.1 we denote the character sheaves of o by M;, and
those of the composite map ¢ = 3o« by L,. Now

where the notation [i] means the preimage of ¢ in H* under the restriction map res: G* —
H*. That is,

[i] ={x € G": x|lm = i},

where d is the order of y. Since (3 is not ramified we combine Lemma 2.1 and (7) to get

p.Ox(kD)= P Lo P £1(D)

XEG*—SkF xESkf
where
Sr={xe€G :n—k<x|lg<n-1}
is the preimage of S ={n —k,...,n— 1} C H* under res: G* — H*. O

2.2.1 Example (Campedelli surface)

Let ¢: X — P? be a G = (Z/2)3-cover branched over seven lines in general position. We
label the lines Aj,..., A7, and define ® to induce a set-theoretic bijection between {A;}
and (Z/2)% — {0}. We make the definition of ® more precise later (see Ex. 2.4.1). Tt is well
known that X is a surface of general type with p, = 0, K2 = 2 and m = (Z/2)3.

Choose generators g1, go, g3 for (Z/2)? so that ®(A;1) = g1. There are eight character
sheaves for the cover, which we calculate using formula (3),

'C(O,O,O) = O]p2, ‘CX = O]p2 (2) fOI' X ?é (0,0,0)
Write Dy for the reduced pullback of A1, so that ¢*(A;) = 2D;. Then
SA1 = {X : X|<g1> = 1} = {(17 07 0)7 (17 1, 0)7 (17 07 1)> (15 1a 1)}7
so that by Proposition 2.1, we have

QO*OX(Dl) = OIPQ D 40@2(—1) QP 30@2(—2).



2.3 Torsion case

In this section we use the maximal abelian cover A to calculate the pushforward of a torsion
line bundle on X. We assume that the composite cover A — X — Y is Galois with group

G.

Proposition 2.2 Let 7 be a torsion line bundle on X. Then

p:Ox(—7) = @ ‘C;i‘r‘

xEG*
where addition x + 7 takes place in G =G ®T*.

Remark 2.3 Note that £,; is a character sheaf for the G-cover p: A — Y, and the
proposition allows us to interpret £, as a character sheaf for the G-cover ¢p: X — Y.
Unfortunately, there is still some ambiguity, because we do not determine which character
in G* is associated to each £y, under the splitting of exact sequence (5). On the other
hand, the special case 7 = 0 gives

20x = P L
XEG*

Proof The structure sheaf O4 decomposes into a direct sum of the torsion line bundles
when pushed forward to X

0= P Ox(-7).

T€Tors X

Thus Ox(7) is the character sheaf with character 7 under the identification 7 = Tors X.
The composite p,m.O4 breaks into character sheaves according to (2), and the image of

Ox(—7) is the direct sum of those character sheaves with character contained in the coset
G* + 7 of 7 in G* under (6). O

2.4 General case

Now we combine Propositions 2.1 and 2.2 to give our formula for pushforward of line
bundles Ox (>, D;) ® 7. The formula looks complicated, but most of the difficulty is in
the notation.

Definition 2.2 Let n; be the order of U(A;) in 6’, and write k; = n;p; + ki, where
0 < k; <n; — 1. Then given any subset I C {1,...,m}, we define

SI[T] = m SkiAi [T] N m Sijj [T]C7

iel jele



where

Siplrl={x€G" [n—k < F(x +7)(¥([)) <n-1}
for any reduced irreducible component I' of the branch locus A. Note that for fixed 7 in
T*, the collection of all S;[7] partitions G*.

Theorem 2.1 Let D = 7", k;D; be the reduced pullback of the linear combination of
branch divisors ZZI k;A\; on'Y. Then

p+Ox(D @ @ Ex-i-T

1 XES[[’T}
where I is any subset of {1,...,m} and Ap =3 . 1 A;.

Remark 2.4 For simplicity, we have assumed that k; = k; for all ¢ in the statement and
proof of the theorem. When this is not the case, by the projection formula (cf. Remark
2.2) we twist by Oy (3°7" pid\;).

Proof Fix i and let D; be the reduced pullback of an irreducible component A; of the
branch divisor. Choose a neighbourhood of A; which does not intersect any other A;. This
may also require us to remove a finite number of points from D;. We work locally in this
neighbourhood and its preimages under ¢, 7

Now by the projection formula,

W*W*Ox(kiDi) =m04® Ox(k‘iDi),

and thus
@Z)*W*OX(]QDZ) == @ @*Ox(kiZDl - 7').
T€Tors X
Then we combine Propositions 2.1 and 2.2 to obtain
p.Ox(kiD;i—7)= P Lo @ LA,
XEG* =Sk, a,[7] XESk, a,[7]

where the indexing is explained in Definition 2.2.

To extend to the global setting and linear combinations Y k;D;, we just need to keep
track of which components of A should appear as a twist of each E;}ﬁ in the direct sum.
This book-keeping is precisely the purpose of Definition 2.2. O

Using the formula
Kx = ¢"(Ky + Z L AY) (8)

and the Theorem, we give an alternative proof of the decomposition of ¢, Ox(Kx).
Corollary 2.1 /39, Proposition 4.1] We have
0:Ox(Kx) = @ L, -1 (Ky).

xeG*

10



Proof Let D; be the reduced pullback of A;. Then by (8) and the projection formula,
we have

0 (Ox(Kx)) = ¢s ((p*Oy(KY) ® OX(Z(W - 1)Di>>

= Oy (Ky) @ 9.0x (Y (ns = 1)Dy).

()

Now by definition,

Stnona, = (X € G7 1 1< By(®(A)) < mi— 1} = {x € G" : X(2(A)) # 0},

Thus in the decomposition of ¢, O X(Zz(nZ — 1)DZ-) given by Theorem 2.1, the summand
L’;l is twisted by ZjeJ Aj, where J is the set of indices j with x(®(A;)) # 0. Then by

(3)s
(3 A) =30 - Hx@@)A; = £y,

icJ i
where the last equality is because x " '(g) = —x(g9) = d — x(g) for any g in G. Thus we

obtain
Ox ((’)X(Z(m - 1)Di)) = @ L1,

7 XEG*

and the Corollary follows. O

2.4.1 Example 2.2.1 continued

We resume our discussion of the Campedelli surface. The fundamental group of X is (Z/2)3,
and so the maximal abelian cover 7: A — X is a (Z/2)%-cover 1: A — P? branched over
A. Choose generators g1, ..., gs of (Z/2)%. As promised in Ex. 2.2.1, we now fix ® and V:

A [ar| A as] A | A5 | A | A
O(A;)
U(A;) — (A;)

g1+ 92+93
94+ gs + Gge

g2 + 93
96

g1+ 93
g5

g1+ g2
94

g1
0

g2
0

g3
0

For clarity, the table displays the difference between W(A;) and ®(4;). In order that A be
the maximal abelian cover, U is defined so that each ¥(A;) generates a distinct summand
of (Z/2)°, excepting W(A7), which is chosen so that Y, ¥(A;) = 0. This last equality is
induced by the relation Y, A; = 0 in H;(P? — A, Z).

The torsion group Tors X is generated by g}, g5, g5. As an illustration of Theorem
2.1, we calculate ¢, Ox(D1) ® 7, where 7 is the torsion line bundle on X associated to gj.

11



Suppose ¢ Ox(D1) @ T = D, g+ My, where M, are the line bundles to be calculated.
In the table below, we collect the data relevant to Theorem 2.1.

X | £, [+ o (D) | Twist by A7 | M,
(0,0,0) | Op2(—1) 0 No Op2(—1)
(1,0,0) | Op2(—1) 1 Yes Op2
(0,1,0) | Op2(—1) 0 No Opz(—1)
(0,0,1) | Op2(—2) 0 No Op2(~2)
(1,1,0) | Op2(—3) 1 Yes Op2(—2)
(1,0,1) | Op2(—2) 1 Yes Op2(—1)
(0,1,1) | Op2(—2) 0 No Op2(—2)
(1,1,1) | Op2(—2) 1 Yes Op2(—1)

Summing the last column of the table, we get
0sO0x (D7) @ 7 = Op2 @ 40p2(—1) & 30p2(—2).

In particular, we see that the linear system on X associated to the line bundle Ox (D) ® 7
contains a single effective divisor.

3 Exceptional collections on surfaces with p, =0

3.1 Overview and definitions

We outline our method for producing exceptional collections, starting with some definitions
and fundamental observations.

Definition 3.1 An object E in D*(X) is called exceptional if

C ifk=0,

k _
Ext™(E,E) = { 0 otherwise.

An exceptional collection E C D(X) is a sequence of exceptional objects E = (Ey, ..., E,)
such that if 0 <1 < j <n then
Ext®(E;, B;) = 0 for all k.

It follows from Def. 3.1 that any line bundle on a surface with p; = ¢ = 0 is exceptional.
Moreover, if [E is an exceptional collection of line bundles, and L is any line bundle, then
E®L=(Ey®L,...,E,® L) is again an exceptional collection, so we always renormalise
E so that Ey = Ox.

12



Let £ = (E) denote the smallest full triangulated subcategory of D?(X) containing all
objects in E. Then &£ is an admissible subcategory of D?(X), and so we have a semiorthog-
onal decomposition

D*(X) = (€, A),

where A is the left orthogonal to €. That is, A consists of all objects F in D®(X) such that
Ext¥(F, E) = 0 for all k and for all E in £. The K-theory is additive across semiorthogonal
decompositions:

Proposition 3.1 If D*(X) = (A, B) is a semiorthogonal decomposition, then
Ko(X) = Ko(A) ® Ko(B).

Moreover, if E is an exceptional collection of length n, then Ky(£) = Z". Thus if Ky(X)
is not free, then X can never have a full exceptional collection. The maximal length of an
exceptional collection on X is less than or equal to the rank of K(X).

3.1.1 Exceptional collections on del Pezzo surfaces

Let Y be the blow up of P? in n points, and write H for the pullback of the hyperplane
section, E; for the ith exceptional curve. Then by work of Kuleshov and Orlov [38], [30]
there is an exceptional collection of sheaves on Y’

Op,(=1),...,05 (~1),0y, Oy (H), Oy (2H).

Note that the blown up points do not need to be in general position, and can even be
infinitely near. We prefer an exceptional collection of line bundles on Y, so we mutate past
Oy to get

Oy, Oy(Ey),...,0y(E,), Oy(H), Oy(2H). (9)

In fact, we only use the numerical properties of a given exceptional collection of line bun-
dles on Y. Choose a basis eq,...,e, for the lattice PicY = Z'" with intersection form
diag(1,—1"). Then we write equation (9) numerically as

O, €1,...,€En, €0, 260.

3.1.2 From del Pezzo to general type

Let X be a surface of general type with p, = 0 which admits an abelian cover p: X — Y
of a del Pezzo surface Y with K%, = K)Q( In addition, we suppose the maximal abelian
cover A — X — Y is also Galois. The branch divisor is A = ). A; and we assume that A
is sufficiently reducible so that

(A1) PicY is generated by integral linear combinations of A;.

13



Now the Picard lattices of X and Y are isomorphic. Thus if G is not too complicated,
e.g. of the form Z/p x Z/q, we might hope to have:

(A2) The reduced pullbacks D; of A; (see Def. 2.1) generate Pic X/Tors X.
In very good cases, reduced pullback actually induces an isometry of lattices
(A3) f: PicY — Pic X/Tors X, such that f(Ky) = —Kx modulo Tors X.

We say that a surface satisfies assumption (A) if (A1), (A2) and (A3) hold. These conditions
are quite strong, and are not strictly necessary for our methods. For example, we can
replace (A3) with an isometry of lattices from the abstract lattice Z'"™ to Pic X/Tors X.
See Section 6 for such an example.

Definition 3.2 A sequence E = (Ey, ..., Ey) of line bundles on X is called numerically
exceptional if x(Ej, E;) = 0 whenever 0 < i < j < n.

Assume X satisfies (A), and let (A;) = (Ao, ..., Ay) be an exceptional collection on Y.
Now define (L;) = (Lo,-..,Ly) by L; = f(A;)~!. A calculation with the Riemann-Roch
formula shows that (L;) is a numerically exceptional collection on X. This is explained in
[2].

Given a numerically exceptional collection (L;) of line bundles on X, the remaining ob-
stacle is to determine whether (L;) is genuinely exceptional rather than just numerically so.
Indeed, most numerically exceptional collections on X are not exceptional. The standard
trick (see [12]) is to choose torsion line bundles 7; in such a way that the twisted sequence
(L; ® ;) is an exceptional collection. We examine these choices of 7; more carefully in what
follows.

3.1.3 Acyclic line bundles

We discuss acyclic line bundles following [23].

Definition 3.3 Let L be a line bundle on X. If H(X,L) = 0 for all i, then we call L an
acyclic line bundle. We define the acyclic set associated to L to be

A(L) = {r € Tors X | h'(L(7)) =0 for all 0 < i < 2}.

We call L numerically acyclic if x(X,L) = 0. Clearly, an acyclic line bundle must be
numerically acyclic.

Remark 3.1 In the notation of [23], 7 = —x.

Lemma 3.1 /23, Lemma 3.4] A numerically exceptional collection Ly = Ox,L1i(11),. ..,
L, (1) on X is exceptional if and only if

7 € A(L;Y) for all i, and

0 . (10)
T — 1 € A(L; " @ L) for all j > i.
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Thus to enumerate all exceptional collections on X of a particular numerical type, it
suffices to calculate the relevant acyclic sets, and systematically test the above conditions
(10) on all possible combinations of 7.

3.1.4 Calculating cohomology of line bundles

Given a torsion twist L(7), Theorem 2.1 gives a decomposition

@ L(7) = GB My,

x€G*

for some line bundles M, on Y, which may be computed explicitly. Since ¢ is finite, we
have

WP(L(r)) = Y hP(My)

xeG*

for all p.

Thus L(7) is acyclic if and only if each summand M, is acyclic on Y. Now if
x(Y,My) = 0 and h%(M,) = h?*(M,) = 0, we see that h'(M,) = 0. Thus by Serre
duality and the Riemann—Roch theorem, we are reduced to calculating Euler characteris-
tics and determining effectivity for (lots of) divisor classes on the del Pezzo surface Y.

3.1.5 Coordinates on Pic X/Tors X

Under assumption (A), we make the following definition.

Definition 3.4 Choose a basis By, ..., B, for Pic X/Tors X consisting of linear combina-
tions of reduced pullbacks. Then any line bundle L on X may be written uniquely as

L= Ox(dl, ... ,dn)(T)

so that L = Ox (Y1, diB;) (7). We call d (respectively T) the multidegree (resp. torsion
twist) of L with respect to the chosen basis.

The torsion twist associated to any line bundle on X may be calculated using Theorem 2.1
and the following lemma. See Lemma 3.4 for an example.

Lemma 3.2 If 7 is a torsion line bundle, then h°(T) # 0 implies T = 0.

Remark 3.2 Definition 3.4 fixes a basis for PicY = ZY9K” via the isometry with
Pic X/Tors X. This basis corresponds to a geometric marking on the del Pezzo surface
Y, and the multidegree d of L is just the image of L in PicY under the isometry. In fixing
our basis, we break some of the symmetry of the coordinates. This is necessary in order to
use the computer to search for exceptional collections. We can recover the symmetry later
using the Weyl group action (see section 3.1.7).
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3.1.6 Determining effectivity of divisor classes

Method 1 IfY is P?, P! x P! or F; and D is a divisor on Y, it is not difficult to write an
algorithm which determines whether D is effective or not, using only the (bi)degree of D. As
(—Ky)? decreases, the question gets more complicated. Our computer scripts [19] produce
a list of a few thousand “small” positive integral linear combinations of (—1)-curves. Since
the effective cone of a del Pezzo surface of degree < 7 is polyhedral with extremal rays
generated by the (—1)-curves (cf. [21], Chapter 8), this list serves as a criterion for checking
effectivity of line bundles on X (see Sec. 3.1.4). Weak del Pezzo surfaces are treated in a
similar way.

Method 2 An alternative approach is to try to characterise effective divisors on the
surface X of general type (see Remark 3.3 and [1]). Let € denote the semigroup generated
by the reduced pullbacks D; of the irreducible branch components 4A;, and pullbacks of the
other (—1)-curves on Y. Then € approximates the semigroup of all effective divisors on X
(the two are proven to be equal in some cases, cf. [1] and App. C). Moreover, € is graded
by multidegree, and we have a homomorphism & — Tors X sending D; to its torsion twist
under Def. 3.4. The image of the graded summand &; of multidegree d approximates the
set of torsion twists 7 for which Ox (> d;B;)(7) is effective. We have implemented this
method for various surfaces, and checked that the output is consistent with that of Method
1 above.

See the proofs of Proposition 3.2 below for a comparison of the two methods described
above, and also Appendix C.

3.1.7 Group actions on the set of exceptional collections

We consider a dihedral group action and the Weyl group action on the set of exceptional
collections on X. Mutations are not considered systematically in this article, since a
mutation of a line bundle need not be a line bundle.

Let E = (E,...,E,) be an exceptional collection of line bundles on X. Then the
sequence (Fa,...,E,, E1(—Kx)) is also an exceptional collection, and if we renormalise
the first line bundle of any exceptional collection to be Ox, then this operation has order
n.

There is also an involution on the set of exceptional collections of line bundles, which
sendsE = (By,...,E,) toE~t = (E 1 ..., El_l). Clearly, E~! is an exceptional collection,
and the two operations described generate a dihedral group action on the set of exceptional
collections of length n.

The Weyl group of PicY is generated by reflections in (—2)-classes. That is, suppose
a is a class in PicY with Ky - @ = 0 and o = —2. Then

ro: L— L+ (L-a)a
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is a reflection on PicY which fixes Ky. Any reflection sends an exceptional collection on
Y to another exceptional collection. Thus by assumption (A), the Weyl group acts on
numerically exceptional collections on X. This action accounts for the choices made in
giving Y a geometric marking (see Def. 3.4).

3.2 The Kulikov surface with K2 =6

For details on the Kulikov surface (first described in [31]), its torsion group and moduli
space, see [18]. The Kulikov surface X is a (Z/3)?-cover of the del Pezzo surface Y of degree
6. Figure 1 shows the associated cover of P? branched over six lines in special position.
The configuration has just one free parameter, and in fact, the Kulikov surfaces form a
1-dimensional, irreducible, connected component of the moduli space of surfaces of general
type with py = 0 and K? =6.

Figure 1: The Kulikov configuration

To obtain a nonsingular cover, we blow up the plane at three points Py, P», Ps, giving a
(Z/3)%-cover of a del Pezzo surface of degree 6. The exceptional curves are denoted E;. By
results of [18], the torsion group Tors(X) is isomorphic to (Z/3)3, so the maximal abelian
cover ¥: A — Y has group G~ (7Z/3)5. Let g; generate G, and write g; for the dual
generators of G*. As explained in Section 2, the covers are determined by ®: Hi(P? —
A7) — G and ¥: H (P2 — A,Z) — G, which are defined in the table below.

D Al AZ Ag A4 AS AG
®(D) an | 5 g1 92 |91+ 92| 291+ 92
U(D)—-®(D) | 0 | g3 |293+94|294| 95 295

The images of the exceptional curves E; under ® and ¥ are computed using formula (1):
D(E1) =291 + g2, P(E2) = g2, P(E3) = g1 + ga, etc.

Lemma 3.3 The Kulikov surface satisfies assumptions (A1) and (A2). That is, the free
part of Pic X is generated by the reduced pullbacks of A1 + Es + E3, E1, Es, E3, and the
intersection pairing diag(1l, —1, —1,—1) is inherited from Y.
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Proof Define e = D1 + Es + E3, e1 = Ei, e9 = FE5, e3 = FE3 in PicX. These
are integral divisors, since they are reduced pullbacks, and the intersection pairing is
diag(1, -1, -1, :1), V&Lhich is unimodular. For example, by definition of reduced pullback,
3eg = p* (A1 + E5 + E3), and so

(3e0)® = " (A1 + By + F3)® =91,
or 6(2) = 1. Hence we have an isomorphism of lattices. O

Using the basis chosen in this lemma, we compute the coordinates (Def. 3.4) of the reduced
pullback D; of each irreducible branch component A;.

Lemma 3.4 We have

Ox(Dy) = Ox(1,0,—1,—1), Ox(Dy) = Ox(1,-1,0,0)[2,1,2],
Ox(D3) = Ox(1,-1,0,—1)[1,0,2], Ox(Ds) = Ox(1,0,—1,0)[2,1,0],
Ox(Ds) = Ox(1,-1,-1,0)[2,0,2], Ox(Dg) = Ox(1,0,0,—1)[2,1,1],

where [a,b,c| in (Z/3)% denotes a torsion line bundle on X.

Proof We prove that Ox(D32) = Ox(1,—1,0,—1)[1,0,2]. The other cases are similar. It
is clear that Ay ~ Ay — F1 + E5 on Y, so the multidegree is correct. It remains to check
the torsion twist, by showing that F = Ox (D2 — D1 + Ey — E2 — 7) has a global section
when 7 = [1,0,2]. Then by Lemma 3.2, we have the desired equality.

The pushforward ¢,F splits into a direct sum of line bundles @ M., one for each
character x = (a,b) in G*. The following table collects the data required to calculate each
M, via Theorem 2.1. The second column is calculated using equation (3), and the next
four columns evaluate x + 7 on each W(I'), where I" is any one of Ay, Ay, FE; and E5. The
final column is explained below.

(x + 7)o ¥(I)

% Lot Ay | Ay | Ey | By My,

(0,0) | Oy(=2,1,1,0) | 0 | 1 | 0 | 1 |Oy(=3,1,2,1)
(1,0) | Oy(=1,0,0,1) | 1 | 2 | 2 | 1 Oy

0,1) | Oy(=2,1,0,1) | 0 | 1 | 1 | 2 | Oy(=3,1,1,2)
(2,0) | Oy(—2,0,1,1) | 2 | 0 | 1 | 1 | Oy(-2,0,1,1)
(1,1) | Oy(=2,1,0,1) | 1 | 2 | 0 | 2 | Oy(~1,0,0,0)
0,2) | Oy(=2,1,1,0) | 0 | 1 | 2 | 0 | Oy(=3,2,1,1)
(2,1) | Oy(=2,0,1,0) | 2 | 0 | 2 | 2 | Oy(-2,1,1,0)
(1,2) | Oy(=3,1,1,1) | 1 | 2 | 1 | 0 | Oy(-2,0,0,0)
(2,2) | Oy(=2,1,1,1)| 2 | 0| 0 | 0 | Oy(—2,1,0,1)

[
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Now by the projection formula (cf. Remark 2.2),
0xF = 0xOx(2D1 + Dy + E1 + 253 — 7) @ Oy (—A1 — Eg)

So according to Thm. 2.1 and the remark following it, each M, is a twist of Ex-H'( A1—Es)
by a certain combination of Ay, Ay, E1 and Eq. By Def. 2.2, the rules governing the twists

are:
twist by Ay iff (x + 7)o ¥(A;) =1 or 2
twist by Ag iff (x +7) o U(Ag) =2
twist by By iff (x + 7)o U(FEp) =2
twist by Eg iff (x +7) o W(Es) =1 or 2

Thus ¢, F is given by the direct sum of the line bundles M, listed in the final column.
Note that M(l,O) = OYa SO ho((p*]:) = 1. Hence _D2 - Dl —+ El — E2 —7~0. O

Corollary 3.1 By formula (8), we have
OX(KX) = OX(37 _17 _17 _1)[0? Oa 2]

Thus the Kulikov surface satisfies (AS3).

Proof The multidegree is clear by (8), but the torsion twist requires some care. Since
Ox(Kx) is the pullback of an integral divisor on X, it should be torsion-neutral with
respect to our coordinate system on Pic X. Thus by Lemma 3.4, we see that the required
twist is [0, 0, 2]. O

Remark 3.3 It is likely that every effective divisor on the Kulikov surface is a positive
integral linear combination of

Dq,...,Dg, Ey, Es, E3.

See Section 3.1.6 for some discussion of this, App. C for analogous results on two Beauville
surfaces with K2 = 8, and [1] for the primary Burniat surface with K2 = 6.

3.2.1 Acyclic line bundles on the Kulikov surface

Let us start with the following numerical exceptional collection on Y, which has 3-block
structure according to [26]:

3
A:0, eg—eq, eg —e2, eg —e3, 2e0— Y 7 1€, €.
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Given assumptions (A), we see that A corresponds to the following numerically exceptional
sequence of line bundles on X:

LO - OX7 Ll - OX(_17 17070)aL2 - OX(—LO, 1a0)7

11
L3 :OX(—L0,0, 1)7 L4 = OX(_2> 1> 17 1)7 L5 = OX(_LOaOaO) ( )

We find all collections of torsion twists L;(7;) which are exceptional collections on X.
The first step is to find the acyclic sets associated to the various Lj_1 ® L.

Proposition 3.2 The acyclic sets A(Lj_1 ® L;) for j >1i >0 are listed in Appendiz A.

First Proof Assuming the assertion of Remark 3.3 is correct, it is an easy exercise to
check each entry in the table. As an illustration, we calculate A(Lfl). The effective
divisors on X of multidegree (1,—1,0,0) are

Dy + E3, D3 + E3, Dy.

Thus by Lemma 3.4, [1,0,2],[2,0,2],[2,1,2] do not appear in A(Lfl). Next we consider
degree two cohomology via Serre duality. The effective divisors of multidegree (2,0, —1, —1)
are

2Dy + By + E3, D1 + Dy + Eq + E3,Dy + D3 + Eq + Es,
Do+ D3 +2FE,Dy+Dys+ E1,D1+ D5+ Eo, D1 + Dg + E3,
Dy + D5 + Ey1, D3 + Dg + Ey, D5 + Dg.

Thus [0,0,2], [2,0,0], [1,0,0], [0,0,1], [1,2,0], [1,2,2], [1,2,1], [0,2,0], [2,2,2], [2,1,1] can
not appear in .A(Ll_l). The acyclic set is made up of those elements of Tors X which do
not appear in either of the two lists above. O

Remark 3.4 This first proof implicitly uses the homomorphism of semigroups € — Tors X
described in sec. 3.1.6. We explain this approach in more detail for the Beauville surfaces
in Appendix C.

Second Proof Given that the above argument assumed the claim of Remark 3.3 without
proof, we should check that each element of A(Ll_l) is really acyclic. To do this, we use
Theorem 2.1 repeatedly to calculate the cohomology of all possible torsion twists of L.
This is done in our computer script [19]. O
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3.2.2 Exceptional collections on the Kulikov surface

We now find all exceptional collections on X which are numerically of the form (11).
Lemma 3.1 reduces us to a simple search, which can be done systematically [19].

Theorem 3.1 There are nine exceptional collections Ly = Ox, Li(71),...,Ls(75) on X
which are numerically of the form (11). They are given in Table 1 below. Each row lists

the required torsion twists 7; fori=1,...,5 as elements of (Z/3)3.

T1 72 73 T4 )

1][0,0,0] [0,2,2] [2,2,1] [2.2,1] [0,0,1]

2(12,2,0] [2,1,2] [0,0,1] [1,1,1] [2,2,1]

302,21 [21,2] 0,0,1] [1,1,1] [2,0,2]

4112,2,0] [2,0,1] [0,2,0] [2,2,1] [2,1,2]

5|[1,1,0] [1,0,2] [2,2,0] [1,1,1] [2,2,1]

6(1[1,1,0] [1,0,2] [0,0,1] [1,1,1] [2,2,1]

71 1,1,0 [1,0,2] [2,2,1] [1,1,1] [0,0,1]

812,02 22,0 0,1,2] [1,1,1] [2,2,1]

901[2,0,2] 22,1 [0,1,2] [1,1,1] [1,0,2]

Table 1: Exceptional collections on the Kulikov surface

Remark 3.5 By Lem. 3.4, each line bundle in Table 1 can be written as a linear combi-
nation of D1, ..., Dg, Fh, Es, E5. For instance, the second row of the table is

Ox, Ox(—Dy+ D3 — Dy + D5 — Dg + 2E5 — 2E3),
Ox(=D2+2D3 — Dy — D¢ + 3E3 — 2E3), Ox(Da —2D3 + D4+ D5 — 2Dg — Es),
(’)X(*Dl+D3*2D4+E2)7 Ox(*D2+D3*D4*E1+E2*E3).

Remark 3.6 1. The precise number of exceptional collections is not important. Rather,
the fact that we have definitively enumerated all exceptional collections of numerical
type A, means that we can sift through the list to find one with the most desirable
properties.

2. Let A’ be any translation of A under the Weyl group action of A; x Ay on PicY.
Then A’ is another numerical exceptional collection on X (see Sec. 3.1.7), so we
may enumerate exceptional collections on X of numerical type A’. For the Kulikov
surface, each element of the orbit corresponds to either 9, 14, 18 or 24 exceptional
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collections on X. Thus, the Weyl group action does not “lift” to X in a way which
is compatible with the covering X — Y. On occasion, this incompatibility is used to
our advantage (see Sec. 5). We return to these exceptional collections in section 4.

4 Heights of exceptional collections

Let X be a surface of general type with p, = ¢ = 0, Tors X # 0 with an exceptional
collection of line bundles E = (Ey, ..., E,_1). Write £ for the smallest full triangulated
subcategory of D?(X) containing E. In this section we calculate some invariants of E.
The invariants we consider are essentially determined by the derived category, but we
must enhance the derived category in order to make computations. For completeness, we
discuss some background first.

4.1 Motivation from del Pezzo surfaces

Let Y be a del Pezzo surface and let E be a strong exceptional collection of line bundles
on Y. Recall that E is strong if Ext*(E;, E;) = 0 for all i, j and for all k& > 0. Then
the derived endomorphism ring H*B = Ext*(T,T) = P, ; Hom(E;, E;) is an associative
algebra, and we have an equivalence of categories £ = D°(mod-H*B) (see [15]). Here we
have defined T'= P, E;.

From now on, we assume that E is an exceptional collection on a fake del Pezzo surface
X, so that we do not have the luxury of choosing a strong exceptional collection. Instead,

we recover £ by studying the higher multiplications coming from the A.-algebra structure
on H*B.

4.2 Digression on dg-categories

We sketch the construction of a differential graded (or dg) enhancement D of D’(X). Ob-
jects in D are the same as those in D’(X), but morphisms Hom$,(F, G) form a chain com-
plex, with differential d of degree +1. Composition of maps Hom} (F, G) @ Homy (G, H) —
Hom%,(F, H) is a morphism of complexes (the Leibniz rule), and for any object F' in D, we
require d(idr) = 0. For a precise definition of Hom%,(F, G), one could use the Cech complex,
and we refer to [33] for details. The main point is that the cohomology of Hom%, (F, G) in
degree k is Extll“)b(X)(F, G), so in particular, we have H'(Hom$(F,G)) = Hom p(xy (F, G).

4.3 Hochschild homology

We first compute some additive invariants, only making implicit use of the dg-structure.
The Hochschild homology of X is given by the Hochschild-Kostant—Rosenberg isomorphism

HH,(X) = P HP (X, 0%),
p
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so HHy(X) = C2-K* and HH,(X) = 0 in all other degrees. Moreover, Hochschild homol-
ogy is additive over semiorthogonal decompositions.

Theorem 4.1 [32] If D*(X) = (A, B) is a semiorthogonal decomposition, then
HH(X) = HH,(A) ® HH(B).
Assuming the Bloch conjecture on algebraic zero-cycles, we have
Ko(X) = 2" % & Tors X,

and we note that K-theory is also additive over semiorthogonal decompositions (see Prop. 3.1).
Now for an exceptional collection of length n, K¢(€) = Z™ and

C* ifk=0
HH(£) = { 0 otherwise.

Thus the maximal length of E is at most 12 — Kg(, and such an exceptional sequence of
maximal length effects a semiorthogonal decomposition D?(X) = (£, A) with nontrivial
semiorthogonal complement A. We say that A is a quasiphantom category; by additivity,
the Hochschild homology vanishes, but K(.A) 2 Tors X # 0, so A can not be trivial.

4.4 Height

The Hochschild cohomology groups of X may be computed via the other Hochschild—
Kostant-Rosenberg isomorphism (cf. [32]):

HH*(X)= @ HI(X,A'Tx).
ptg=k

Thus for a surface of general type with p, = 0, we have

HH°(X) = H°(Ox) =C, HH'(X) =0, HH*(X) = H (Tx),
HH3(X) = H2(Tx), HH*(X) = H°(2Ky) = C}5°.

Recall that the degree two (respectively three) Hochschild cohomology is the tangent space
(resp. obstruction space) to the formal deformations of a category.

In principle, [33] gives an algorithm for computing HH*(A) using a spectral sequence
and the notion of height of an exceptional collection. Moreover, by [33, Prop. 6.1], for an
exceptional collection to be full, its height must vanish. Thus the height may be used to
prove existence of phantom categories without reference to the K-theory. We outline the
algorithm of [33] below.
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Given an exceptional collection E on X, there is a long exact sequence (induced by a
distinguished triangle)

. — NHH*(E, X) — HH*(X) — HH*(A) - NHH*"'(E, X) — ...

where NHH (E, X) is the normal Hochschild cohomology of the exceptional collection E.
The normal Hochschild cohomology can be computed using a spectral sequence with first

page

E' = a Ext™ (E,y, o) ®- - -@Extir—1(E,

—p,q -
0<ap<-<ap<n—1
ko+--+kp=q

Eap) QExthr (Eap7 Sl (an))'

p—17

The spectral sequence relies on the dg-structure on D; the initial differentials d’ and d” are
induced by the differential on D and the composition map respectively, while the higher
differentials are related to the A.-algebra structure on Ext-groups, (see Sec. 4.6).

The existing examples of exceptional collections on surfaces of general type with p, = 0
suggest that NHH"(E, X) vanishes for small k. Thus the height h(E) of an exceptional col-
lection E = (Ey, ..., Fy_1) is defined to be the smallest integer m for which NHH™(E, X)
is nonzero. Alternatively, m is the largest integer such that the canonical restriction mor-
phism HH*(X) — HH"(A) is an isomorphism for all k¥ < m —2 and injective for k = m — 1.

4.5 Pseudoheight

The height may be rather difficult to compute in practice, requiring a careful analysis of
the Ext-groups of E and the maps in the spectral sequence. The pseudoheight is easier to
compute and sometimes gives a good lower bound for the height.

Definition 4.1 The pseudoheight ph(E) of an exceptional collection E = (Ey, ..., E,_1)
18

ph(E) - 0Sa0§a1r<né-n<apﬁn—1 (G(EGO’ Eal) +oet e(Eapfl’Eap) + e(Eazﬂ an(—Kx)) —p+ 2)7

where e(F, F') = min{i : Ext’(F, F') # 0}.

The pseudoheight is just the total degree of the first nonzero term in the first page of the
spectral sequence, where the shift by 2 takes care of the Serre functor.
Consider the length 2n anticanonical extension of the sequence E (see also Sec. 3.1.7):

Ey,....,E,1,E, = Ey(—Kx),...,Fopn_1 = En_1(—Kx). (12)
If the E; are line bundles, then we have a numerical lower bound for the pseudoheight.

Lemma 4.1 /33, Lem. 4.10, Lem. 5.1] If Kx is ample and E;- Kx > E;-Kx for alli < j
and for all E;, Ej in the anticanonically extended sequence (12), then ph(E) > 3.
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The numerical conditions required by the Lemma are not particularly stringent. For ex-
ample, all the exceptional collections we have exhibited on the Kulikov surface in Sec. 3.2
have pseudoheight at least 3, even before we consider the Ext-groups more carefully.

Remark 4.1 If L is a line bundle, then dim Ext*(L, L(—-Kx)) = h®> %(2Kx) by Serre
duality, which is the case p = 0 in Def. 4.1. Thus any exceptional collection of line bundles
on a surface of general type with py = 0 has pseudoheight at most 4. Moreover, if ph(E) = 4,
then h(E) =4 by [33].

4.6 The A -algebra of an exceptional collection

Let E = (Ey, ..., E,_1) be an exceptional collection on X, and define T' = @?:_OIEZ'. Then
B = Hom%, (T, T) is a differential graded algebra via the dg-structure on D (see Sec. 4.2).
It can be difficult to compute the dg-algebra structure on B directly, so we pass to the
Ao-algebra H*B.

We discuss Ano-algebras, referring to [27] for details and further references. An Ao-
algebra is a graded vector space A = ®p€Z AP together with graded multiplication maps
My A®™ — A of degree 2 —n, for each n > 1. These multiplication maps satisfy an infinite
sequence of relations, starting with

mimi = 0,

mimg = ma(my ®idg +idg @ my).

These first two relations ensure that m; is a differential on A, satisfying the Leibniz rule
with respect to meo. The third relation is

mQ(idA®m2—m2 ®idA) = m1m3+m3(m1®idA®idA+idA®m1®idA+idA®idA®m1),

which shows that mo is not associative in general, but if m,, = 0 for all n > 3, then A is
an ordinary associative differential graded algebra.

In fact, by the above discussion, we can view B is an A..-algebra, with m being the
differential, mo the multiplication, and m, = 0 for n > 3. By a theorem of Kadeishvili
(cf. [27]), the homology H*B = H*(B,m1) has a canonical A-algebra structure, for which
my = 0, mq is induced by the multiplication on B, and H*B and B are quasi-isomorphic as
Aso-algebras. This canonical As.-structure is unique, and H*B is called a minimal model
for B. We say that B is formal if it has a minimal model H*B for which m,, = 0 for all
n > 3, so that H*B is just an associative graded algebra.

The Ax-algebra of E is

H'B=Ext"(T.T)= € Ext"E:,E)),
k 0<ij<n—1

and mo coincides with the Yoneda product on Ext-groups. Clearly, if the exceptional
collection E consists of sheaves, then H*B has only three nontrivial graded summands, in
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degrees 0, 1 and 2. Since m,, has degree 2 — n, the summands of degree 0 and 1 are crucial
in determining the Ay.-algebra structure.

4.6.1 Recovering £ from H*B

According to [15], [28], the subcategory £ of D generated by the exceptional collection
E is equivalent to the triangulated subcategory Perf(B) C D’(mod-B) of perfect objects
over the dg-algebra B. A perfect object is a differential graded B-module that is quasi-
isomorphic to a bounded chain complex of projective and finitely generated modules. As
mentioned above, it is preferable to consider the A .-algebra H*B instead, noting that £
is in turn equivalent to the triangulated category of perfect A,-modules over H*B. If B
is formal, the equivalence reduces to & = D?(mod-H*B), which should be compared with
Section 4.1.

We search for exceptional collections whose Hom- and Ext!-groups are mostly zero. In
good cases, this implies that B is formal, and H*B has no deformations. It then follows
that £ is rigid, i.e. constant in families.

4.7 Quasiphantoms on the Kulikov surface

We study some properties of the exceptional collections on the Kulikov surface from section
3.2. For the purposes of the discussion, we fix the following exceptional collection

E: O, L1[2,2,0], L2[2,1,2], L3[0,0,1], Ly4[1,1,1], L5[2,2,1],

which can be found in the second row of Table 1 in Sec. 3.2.

Using Thm 2.1, we may compute the Ext-groups of the extended sequence (12). We
present the results in Table 2 below. The ijth entry of the table is the following formal
polynomial in q

> " dim Ext*(E;, Eiyj)q",

keZ
where 0 < 7,5 < 5, and the zigzag delineates those entries whose target F;;; is in the
anticanonically extended part of (12).

Lemma 4.2 The only nonzero Ext!-groups are Extl(El, Ey) which is 2-dimensional, and
Ext!(E1, E5) which is 1-dimensional. O

Remark 4.2 The lemma shows that E does not have 3-block structure. A 3-block struc-
ture means the exceptional collection can be split into three mutually orthogonal blocks
(cf. [26]). In fact, every exceptional collection in Table 1, and every exceptional collection
in the Weyl group orbit (cf. Sec. 3.1.7), has some non-zero Ext!-groups. This is in contrast
with the exceptional collections on the Burniat surface exhibited in [2], which are of the
same numerical type, and have 3-block structure.
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0 1 2 3 4 5
0|1 2¢> 2¢° 2¢° 3¢ 3¢°
1|1 0 0 29+3¢%> q+2¢°|4¢°
2101 0 g2 ¢ 44> 64?
311 q2 q2 4q2 6q2 6q2
4011 0 |3¢? 5¢> 5¢>  5¢?
51(1]3¢> 5¢° 5¢° 5¢2 6q°

Table 2: Ext-table of an exceptional collection on the Kulikov surface

Proposition 4.1 The Ax-algebra of E is formal, and the product mo of any two elements
with strictly positive degree is trivial.

Proof The A -algebra H*B of E, is the direct sum of all Ext-groups appearing above
the zigzag in the table. By [41, Lemma 2.1] or [34, Thm 3.2.1.1], we may assume that
mp(...,tdg,,...) =0 for all E; and all n > 2.

We show that every product ms must be zero for degree reasons. By Lemma 4.2, there
are only two nonzero arrows in degree 1, and they can not be composed with one another,
since they have the same source. Thus the product ms of any 3 composable elements of
H* B has degree at least degms+1+2+2 = 4, and is therefore identically zero, because the
graded piece H*B is trivial. The same argument applies for all products m, with n > 3.
Thus H*B is a formal As.-algebra. In fact, we see from the table that any product mso of
two elements of nonzero degree also vanishes for degree reasons. (|

Moreover, we calculate the Hochschild cohomology of A using heights.

Proposition 4.2 We have HH°(A) = C, HH'(A) = 0, HH*(A) = C, and HH3(A)
contains a copy of C3.

Proof The pseudoheight of E may also be computed from the table, where now we
also need the portion below the zigzag. The minimal contribution to the pseudoheight is
achieved by incorporating one of the nonzero Ext!-groups. For example,

e(E1,EBy) +e(Ey, B1@uwx)—142=142-14+2=4,

so ph(E) = 4. In this case, by [33], the height and pseudoheight are equal. Hence HH*(A) =
HH*(X) for k < 2, and HH?(A) D> HH?*(X). By the Hochshild-Kostant-Rosenberg
isomorphism, the dimensions of HH*(X) follow from the infinitesimal deformation theory
of the Kulikov surface, which was studied in [18]: H!(Tx) =1 and H?(Tx) = 3. O

In summary, we have

27



Theorem 4.2 Fvery Kulikov surface X has a semiorthogonal decomposition
D'(X) = (£, A)

where & is generated by the exceptional collection E, and & is rigid, i.e. € does not vary
with X. The semiorthogonal complement A is a quasiphantom category whose formal
deformation space is isomorphic to that of D*(X), and therefore X may be reconstructed

from A.

5 Burniat surfaces revisited

Exceptional collections on Burniat surfaces Xg with K2 = 6 were first constructed and
studied in [2], where two 3-block exceptional collections are exhibited. In this section, we
consider the other families of Burniat surfaces X with Kg( =k, for 2 < k < 6, which are
obtained when the branch locus degenerates. Burniat surfaces were discovered in [17], and
an alternate construction is given in [25]. The torsion groups of X} are either (Z/2)*, or
(Z/2)3 when K% = 2 (cf. [40], [4]). We use the description of X} as a (Z/2)?-cover of a
(weak) del Pezzo surface Y with K& = k. For 3 < k < 6, X satisfies assumptions (A),
and so we are able to enumerate exceptional collections on all these Burniat surfaces. We
illustrate this using the numerical exceptional collection

A:0, er,...,e9_k, €0, 2€g

for 4 < k < 6. Heuristically, as the size of the torsion group decreases it becomes more
difficult to find good exceptional collections. Thus for k£ = 3, we have to be more careful,
using a different choice for A, together with the Weyl group action to find exceptional
collections. Exceptional collections of line bundles of maximal length on the Burniat—
Campedelli surface X, with K2 = 2 remain elusive, because this surface does not satisfy
assumption (Al).

5.1 Primary Burniat surfaces with K? =6

Exceptional collections on primary Burniat surfaces with K? = 6 were first constructed
and studied in [2] (see also [1]). We apply our own methods here, to give new examples of
exceptional collections and to put exceptional collections on the other families of Burniat
surfaces into context.

We briefly explain the Burniat line configuration, see [4] for details. Take the three
coordinate points Py, Py, P3 in P2, and label the edges Ag = Py Ps, By = P,P3, Co = P3P;.
Then let Ay, Ay (respectively B;, C;) be two general lines passing through P; (resp. P,
P3). This gives nine lines in total, four passing through each P;. Blow up the three points
P; to obtain a del Pezzo surface Y of degree 6. The strict transforms of these nine lines
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Figure 2: The Primary Burniat configuration with K? = 6

(for which we use the same labels) together with the three exceptional curves Ej;, are called
the Burniat line configuration.

The Burniat surface X is a (Z/2)2-cover of Y branched in the Burniat line configuration,
and X is a surface of general type with p, = 0, K? = 6 and Tors(X) = (Z/2)5. The
maximal abelian cover A of X is a (Z/2)%-cover of Y.

The Burniat configuration has four free parameters, and primary Burniat surfaces form
a 4-dimensional irreducible connected component of the moduli space of sufaces of general
type (see [36]). In particular, h*(Tx) = 4 and h%(Tx) = 6.

In Appendix B.1, we show that the primary Burniat surfaces satisfy assumptions (A),
exhibiting a basis for Pic X/Tors X in terms of reduced pullbacks of irreducible branch
divisors. The appendix also lists coordinates for the reduced pullback of each irreducible
component of the branch divisor according to Definition 3.4.

We consider the following exceptional collection on Y

A: 07 €1, €2, €3, €q, 2607 (13)

and use assumption (A) to produce a numerical exceptional collection (L;) on X. The
computer lists acyclic sets A(L; ') and A(Lj_1 ® L;), and a systematic search through
these enumerates all exceptional collections of numerical type (13).

Theorem 5.1 There are 81332 exceptional collections Lo = Ox, L1(m1), ..., Ls(15) on Xg
of numerical type (13). We give a sample of two below.

‘ 71 T2 73 T4 75
1[[1,0,1,0,0,0] [0,0,0,1,0,0] [0,1,0,0,0,1] [0,0,0,0,0,1] [1,1,1,1,0,1]
2 [170717070?0] [070707]‘7070] [0’]"070707]‘] [171’1’]"070] [1717171’0’]‘]

Table 3: Exceptional collections on the primary Burniat surface

Remark 5.1 The precise number of exceptional collections is not important, especially
since we have not even taken into account the action of the Weyl group. The basic ob-
servation is that there is an abundance of exceptional collections of line bundles on the
primary Burniat surface, from which we may choose those with the best properties.
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There are 16 exceptional collections on X of numerical type A which have no Ext!-
groups, and the two sample exceptional collections are taken from these 16. In all 16 cases,
the Ext-groups for the anticanonically extended sequence (12) have the same dimensions,
displayed in Table 4.

2¢*> 5¢* | 5¢* 6¢* 6¢
3¢ | 3¢ 4¢%> 4¢%> 4¢°

Ot 2 W N~ O

Table 4: Ext-table of an exceptional collection on the primary Burniat surface

This is the best possible situation, because the product meo of any two elements of
degree 2 must be identically zero for degree reasons, and all higher products m,, are also
zero. Moreover the quasiheight of E is 4. To summarise, we have:

Proposition 5.1 LetE be any one of the 16 exceptional collections on the primary Burniat
surface for which there are no Ext'-groups. Then the As-algebra H*E is formal, and the
product of any two elements of positive degree vanishes. The Hochschild cohomology of
each of the corresponding quasi-phantom categories A is

HH°(A) = C, HH'(A) =0, HH?*(A) = C*, HH?*(A) > C°,

5.2 Secondary Burniat surfaces with K2 =5

The secondary Burniat surfaces arise when the branch configuration has one or two triple
points. We first impose a single triple point P, on the three branch lines A;, Bi, and
Cs (see Figure 3). The (Z/2)*cover would then have a 1(1,1) singularity over Py, so we
blow up at Pj, to obtain a del Pezzo surface Y of degree 5. The induced nonsingular
(Z/2)%-cover X of Y is called a secondary Burniat surface with K? = 5. Since the cover
is unramified over Py, the torsion group of X is only (Z/2)° as opposed to (Z/2)% for the
primary Burniat surface.

The configuration in Figure 3 has three free parameters, and secondary Burniat surfaces
with K2 = 5 form a 3-dimensional irreducible connected component of the moduli space
of surfaces of general type (see [5]), so h!(Tx) = h?(Tx) = 3.

In Appendix B.2, we give a basis for Pic X/Tors X and coordinates for Pic X. In
particular, X satisfies assumptions (A). We consider the following exceptional collection of
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Figure 3: The Secondary Burniat configuration with K? =5

line bundles on Y
A: 0, e1, e, e3, e4, €, 2¢p.

As usual, we get a numerical exceptional collection (L;) on X, and we enumerate all
exceptional collections on X5 corresponding to our chosen numerical exceptional collection.

Theorem 5.2 There are 2597 exceptional collections on X5 corresponding to Ly, ..., Lg.
We give a sample

L07 Ll[oaoalvlal]a L2[07170707 1]7 L3[17171707 1]7 L4[071717070]7
L5[011a1707 1]> L6[170707171]7

whose Ext-table is found in Table 5.

The sample exceptional collection was chosen because it is the only one of numerical
type A for which the four line bundles Fi,..., E4 corresponding to the (—1)-curves on
Y are mutually orthogonal. There are many other exceptional collections of numerical
type A with very few non-zero Ext!-groups, but unlike Xg, we do not find any exceptional
collections that have no non-zero Ext'-groups.

Nevertheless, from the table we see that there is no nontrivial composition of two
elements of degree 1 in H*B. Moreover, the elements of degree 1 do not compose with any
element below the zigzag.

Proposition 5.2 The As-algebra of the displayed exceptional collection on the secondary
Burniat surface with K? = 5 is formal, and the product of any two elements of nonzero
degree is zero. Moreover, the corresponding quasi-phantom category has Hochschild coho-
mology

HH°(A) = C, HH'(A) =0, HH?*(A) = C3, HH*(A) D> C3,
5.3 Secondary Burniat surfaces with K? = 4

There are two ways to impose a second triple point P5; on the Burniat configuration, leading
to two different secondary Burniat surfaces with K% = 4 (see Figure 4). If P, and Ps do
not lie on the same branch line, then the blow up Y of P? at Py,..., Ps is a del Pezzo
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32 |q+3¢ 3¢ 3¢ 3¢ 3¢
q a+¢ q+¢ g+ 0 28

0 1 2 3 4 ) 6
01 qg+2¢®> q+2¢> q+2¢* ¢* 3¢* 6¢°
11 0 2¢°  5¢% | 4¢?
2101 0 0 2¢° 5¢ | 4¢*> 5¢°
311 2¢> 5¢° 44> 5¢® 54>
411 2¢> 5¢> 4q> 5¢2  5¢% 5¢?
511
6

-

Table 5: Ext-table of an exceptional collection on the secondary Burniat surface with
K*=5

surface of degree 4, and the (Z/2)2-cover is called non-nodal. If Py and Ps do lie on a
single branch line (in Fig. 4, this line is A7), then Y is a weak del Pezzo surface, and the
(Z/2)*cover is called nodal because the canonical model of X has a 1(1,1) singularity. In
both cases, the second triple point causes the torsion group of X to drop to (Z/2)*.

Figure 4: The secondary Burniat configurations with K? = 4 (nodal configuration is on
the right)

Both configurations in Figure 4 have two free parameters, so that we obtain two 2-
dimensional families of secondary Burniat surfaces with K? = 4. We recall some facts from
[5] and [6]. The non-nodal case again forms an irreducible connected component of the
moduli space, with h!(Tx) = 2 and h?(Tx) = 0. The nodal case is more interesting: the 2-
dimensional family is a proper subset of a 3-dimensional irreducible connected component
of the moduli space. In fact, h'(Txn) = 3 and h?(Txn) = 1, and there is a 3-dimensional
family of extended Burniat surfaces (see [5]), each of which is a (Z/2)%-cover of a general-
isation of the nodal Burniat configuration. We do not directly consider extended Burniat
surfaces in this article.

The data listed in Appendix B.3 shows that both X4 and X} satisfy assumption (A).
Choosing the numerical exceptional collection

A: Oa €1, €2, €3, €4, €5, €p, 2607
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we enumerate all exceptional collections on X} corresponding to A.

Theorem 5.3 There are 13 exceptional collections on X} of numerical type A. Here is a
sample exceptional collection

LO: L1[1707170]7 L2[071707 1]7 L3[0707171]7 L4[0717170]7
Ls, Lgl0,1,0,1], L7[1,0,1,1], (14)

whose Ext-table is found in Table 6.

0 1 2 3 4 5 6 7
01 ¢ 7 ¢ ¢ ¢ 3¢ 64
1|1 g+¢* 0  q+¢ q+¢* 2 5¢ |3¢
211 0 0 0 2¢>  5¢%| 3¢  4q?
301 0 g+ ¢ 24 5¢2 | 3¢  4¢®  4¢°
411 0 2¢> 5¢> 3¢ 4¢® 4q? 4¢?
501 242 5¢> 3¢° 44> 4¢? 4q? 4¢?
6|1 3¢ |qg+2¢® 2¢° 2¢°  2¢° 2¢° 24>
711 2q q q q ¢ 2+¢ ¢

Table 6: Ext-table of an exceptional collection on the nodal Burniat surface with K2 = 4

The non-nodal surface X, has six exceptional collections of numerical type A, but it is
difficult to find one for which the A,.-algebra is obviously formal, because there are too
many nonzero Ext!-groups. We use the Weyl group action on the del Pezzo surface Y to
obtain the following numerical exceptional collection

/.
A 07 €4, €2, €5, €1, €3, €p, 260'

This is just a permutation of the order in which we blow up the points in P? to construct
Y.

Theorem 5.4 There are 40 exceptional collections on X4 of numerical type A, and we
exhibit one with the minimum number of Ext!-groups

Lo, L1[0,0,0,1], L2[0,1,1,0], L3[1,0,1,0], L4[0,1,0,1],
Ls[1,0,0,0], Lg[1,1,1,1], L7[1,1,1,0]. (15)

The Ext-table of (15) is displayed in Table 7.
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0 1 2 3 4 5 6 7
0 1 q2 q2 q2 q2 q2 3(]2 6q2
11 0 qg+¢ 0 q+¢® 2¢° 54|34
2|11 q+¢* q+¢* q+¢* 2¢* 5¢°|3¢° 4¢
31 0 0 24> 5¢ | 3¢ 4¢® 4¢?
411 0 2q2 5q2 3q2 4q2 4q2 4q2
501 2¢? 5¢> 3¢? 4¢°  4¢® 4¢® 4q?
611 3q2 q2 2q2 2q2 2q2 2q2 2q2
T11] 2 q q q ¢ q ¢

Table 7: Ext-table of an exceptional collection on the non-nodal Burniat surface with
K?=4

We see that both the non-nodal and nodal secondary Burniat surfaces with K2 = 4
have quite a few nonzero Ext!-groups, since we do not have as much freedom to search
for “good” exceptional collections. Nevertheless, a careful examination of the tables shows
that no two elements of degree 1 are composable. Thus in both cases, the Ay-algebra is
formal, and the height is 4.

We summarise our results on Burniat surfaces with K2 = 6,5, 4.

Theorem 5.5 FEvery primary or secondary Burniat surface has at least one exceptional
collection of maximal length whose As.-algebra is formal. Moreover, the product of any two
elements of positive degree vanishes, and the height is 4. Thus the Hochschild cohomology
of each corresponding quasiphantom category is

HH°(A) = H*(Ox), HH'(A) =0, HH*(A) = H (Tx), HH*(A) > H*(Tx).

5.4 Tertiary Burniat surface with K2 =3

Imposing a third triple point on the branch configuration (see Fig. 5) gives a tertiary
Burniat surface X3 with K% = 3. The weak del Pezzo surface Y has three (—2)-curves,
Ay, By and C1, and the canonical model of X3 is a (Z/2)2-cover of a 3-nodal cubic. The
torsion group of X3 is (Z/2)3.

Here the moduli space gets quite involved, and we follow the description of [6]. The
tertiary Burniat surfaces form a 1-dimensional irreducible family, inside a 4-dimensional
irreducible component of the moduli space. The extended tertiary Burniat surfaces form
an open subset of this irreducible component, and the remainder consists of (Z/2)2-covers
of certain singular cubic surfaces. Our main point of interest is that h'(Tyx) = 4, and
h? (Tx) =0.
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Figure 5: The tertiary Burniat configuration with K? = 3

In Appendix B.4, we show that X satisfies assumption (A). We use the computer to
enumerate all exceptional collections on X of numerical type

A: 0, eq, ez, e3, e4, €5, €6, €g, 2€.

Lemma 5.1 There are no exceptional collections of line bundles of numerical type A on
the tertiary Burniat surface. O

Remark 5.2 Our systematic search does yield exceptional collections E’ of length seven
with numerical type 0, ey, ..., e, but in each case, there are no line bundles corresponding
to eg or 2eg which extend E’. We have also checked part of the orbit of A under the action
of the Weyl group of Y, and although we find some exceptional collections on X3 of length
eight, we do not find any of length nine.

5.4.1 The Eg-symmetry

In order to find an exceptional collection of line bundles on X3, we choose a different
numerical exceptional collection Aj, using the Eg-symmetry of PicY and the Borel-de
Siebenthal procedure. As an example, we consider the sublattice 3As inside the extended
Dynkin diagram Eg, which corresponds to a singular del Pezzo surface Y’ with 3 x %(1, 2)
singularities. The minimal resolution Y is a toric surface with a cycle of nine rational
curves with self-intersections

~(-2) = ()= (D)= (D) - (-1 = (Y = (-2 - (-1) - (-2)-

To construct }7, choose points Py, P,, P3 in general position in P?. Blow up each P;
once, and blow up the infinitely near points @1, (2, @3, where @; is supported at P; with
tangent direction P;P;,q. Alternatively, Y is the minimal resolution of the quotient of P?
by the Z/3-action %(O, 1,2), which has three fixed points. We fix a geometric marking on
Y so that the strict transform of the exceptional curve over P; has class e; — e3; in Pic 17,
and the exceptional curve over @); has class es4;. Then the cycle of curves described above
have numerical classes

€1 — €4, €4, €0 — €] —€2 — €4, €2 — €5, €5, €0 — €2 — €3 — €5, €3 — €6, €6, €0 —€1 —€3 — €6
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Taking cumulative sums of these classes gives a numerical exceptional collection A; on any
del Pezzo surface of degree three:

A1:0, e —eq, €1, eg —ex —eq, g —eq — €5, €9 — €4,

260—62—63—64—65, 260—62—64—65—66, 260—62—64—65. (16)

We again search for exceptional collections of type A; on X, and again we do not find any.
Fortunately, this time we do find exceptional collections on X using the Weyl group action
onY.

Theorem 5.6 There are exceptional collections on X3 corresponding to certain numerical
exceptional collections in the Weyl group orbit of Ay. For example, let A} be the numerical
exceptional collection obtained from Ay by swapping e1 and es. Then

Lo, L1]0,0,1], Ly[0,1,1], Ls[1,0,0], L4[0,1,1], L5[0,0,1],
L6[17170]7 L7[07070]7 L8[07170] (17)

is an exceptional collection on X3 of numerical type A}, whose Ext-table is found in Table
8.

Remark 5.3 We have not studied the whole orbit of numerical exceptional collections,
because the Weyl group is quite large, but we can give an overview based on probabilistic
methods. It seems that approximately two thirds of the orbit of A; do not give any
exceptional collections on X, and the remaining numerical types typically correspond to
anywhere between one and 21 exceptional collections on X. We see that exceptional
collections are much more scarce on X3 than for the other Burniat surfaces.

5.4.2 The A, -algebra

The exceptional collection (17) was chosen to have the fewest nonzero Ext!-groups, but
there are six of them. Of these, there are no three above the zigzag that may be composed
with one another under ms. Thus mg is identically zero on H*B for degree reasons, and
the Ao-algebra of E is formal. There is a single possible product of two elements of degree
1, coming from the chain 1 — E4 — E7. It is not clear whether this product is zero.

To compute the Hochschild cohomology, we first consider the pseudoheight of E. Ex-
amining the table, we see that the pseudoheight is 3, because

e(Ela E4> + €(E4, E7) + €(E77 El & w)_{l) +2-2=3.

In fact, this cycle of line bundles is the only one contributing 3 to the pseudoheight. In
other words, the first page of the spectral sequence converging to NHH®(E, X) has a single
term of total degree 3:

Ext'(Ey, Ey) ® Ext'(Ey, Er) ® Ext®(B7, 57 (Ey)) C Bl 5.
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0 1 2 3 4 5 6 7 8
0 1 0 q2 q2 q2 2q2 2q2 2q2 3q2
11 ¢ ¢ q+2¢ 2¢°  2¢° 2¢° 3¢°|3¢
211 0 0 P q+2¢¢ @ 2¢° |24 2¢°
3 1 0 q2 q2 q2 2q2 2q2 2q2 3q2
401 ¢ ¢ q+2¢*  2¢* |2¢° 2¢° 3¢° 3¢
511 0 O q2 q+ 2q2 q2 2q2 2q2 2q2
6 1 0 q2 q2 q2 2q2 2q2 2q2 3q2
W1 @ a+2¢t 27 2¢° 2¢° 3¢* 3¢
1|0 O 7 qg+2¢° ¢ 2¢° 2¢° 24

Table 8: Ext-table of an exceptional collection on the tertiary Burniat surface with K2 = 3

The differential d; on the first page maps this term to the direct sum of the following three
spaces

Ext?(Ey, B7) @ Ext3(E7, S™1(Ey))
Ext!(Fy, Ey) @ Ext'(Ey, ST'(EY))
Ext!(Ey4, B7) @ Ext!(E7, S™1(Ey))

in E1_175.

If we can show that any of the maps are nonzero, then it follows that E2,275 = 0 and
thus h(E) = 4. We do not currently know of a practical method for computing nontrivial
products in H*B, but the following rough idea should work.

Observe that Ext*(E;, E;) = H*(E; ' @ Ej). We write L;; = E; ' ® Ej, and so we are
actually checking injectivity of the cup product H'(L14) ® H'(Ly7) X, H?(Ly7). Tt is
difficult to compute Ux explicitly on X, so we pushforward each L;; to Y, and compare
with the cup product Uy on Y. We have

HY(puL14) @ H (psLa7) =, H?(puls @ 0uLa7) & H* (0. La7), (18)

where p is induced by the natural map ¢.Li4 ® @xLs7 — @i(L14 ® Lg7). By comparing
the definition of Uy using Cech complexes with that of Ux, we see that the composite map
displayed in (18) is equal to Ux.

It remains to compute the cup product on Y, which can be done by chasing exact
sequences, and to check that u is injective. We hope to finish this in the near future.
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6 Keum—Naie surface with K2 =4

In this section we investigate a construction of Keum—Naie surfaces, which just fails to
satisfy our assumptions from Sec. 3.1. The problem is that the maximal abelian cover
A — X does not factor through a Galois cover of the del Pezzo surface Y. Thus while we
can describe the free part of Pic X in terms of reduced pullbacks of branch divisors, we can
only describe an index 2 subgroup of Tors X using our approach. We have used various
numerical exceptional collections to search for exceptional collections of maximal length
on X, but without success.

6.1 Construction and basic properties of the surface

Keum—Naie surfaces were discovered independently in [37] and [29] as branched double
covers of Enriques surfaces with eight nodes. The connected component of the moduli space
containing Keum-Naie surfaces has dimension 6, and the torsion group is (Z/2)3 x Z /4.
Following [9] and [3], we consider a special 2-dimensional subfamily of Keum-Naie
surfaces. Each surface X in the subfamily admits a singular Z/2 x Z/4-cover of P! x P!

branched over eight lines, four in each ruling. The branch configuration is shown in Figure
6.

_ Bi D1 Dy By
A o5 P
[eh

Cy

Ay 97 73

Figure 6: The Keum-Naie configuration with K? = 4

The map ®: H{(P! x P! — A,Z) — 7Z/2 x 7Z/4 governing the cover X — P! x P! is
described in the table below.

T Zl ZQ El EQ C1 62 El EQ
o(I") h |3h|gi+h|gi+3h| g1 | g1 |1 +2h| g1+2h
T -@)| 0 | g2| g3 g4 0 | g2 g5 |93+ 94+ s

In the table, g; have order 2 while h has order 4. We see that the four divisors 4;, B;
have inertia group Z/4 under ¢, while the other branch divisors have inertia group Z/2.
Moreover, the four points Py, ..., Py correspond to %(1, 1) singularities on X. We blow up
the P; to get a nonsingular cover of a weak del Pezzo surface Y of degree 4. Write E; for
the (—1)-curve corresponding to P;. We use the same labels for the strict transforms under
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the blow up, so A;, B; are (—2)-curves on Y. Note that by formula (1) the curves E; have
inertia group Z/2.

The following proposition explains why we can not find exceptional collections on the
Keum—Naie surface.

Proposition 6.1 Let A be the maximal abelian cover of X. The composite map A —
X —Y is not Galois.

Proof The torsion group of X is (Z/2)3 x Z/4, so if 9: A — Y is Galois, we have a
surjective homomorphism ¥: Hy(Y — A, Z) — (Z/2)* x (Z/4)?. Now consider ¥(E;) =
U(A; + By). The order of W(E;) must be 2, while the orders of W(A;) and ¥(B;) must
be 4. We have similar requirements coming from the other E;. There is no surjective
homomorphism V¥ satisfying these conditions. O

We define A’ to be the intermediate Galois cover A — X corresponding to the subgroup
(Z/2)* of index 2 in Tors X, generated by ga,...,gs5. The composite map A’ — X — Y is
Galois, with defining map ¥': Hy(Y — A,Z) — Z/4 x (Z/2)® in the table above.

6.2 The Picard group

Lemma 6.1 The reduced pullbacks e = A1 + By + E1, e1 = Ay + By + Es, es = Ay,
es = Ao, eq = By, es = By generate the Picard lattice of X with intersection matriz
U @ diag(—1,-1,-1,-1), where U = ({}).

Proof We first show that linear combinations of the quoted divisors generate PicY. We
use the following linear equivalences on Y

61N62N21+E1+E4N22+E2+E3 (19)

Dy ~ Dy~ By +Ey+Ey~ B+ E3+ Ejy,
to express F3 and F, in terms of the basis. The rest of the proof is similar to that
of Lemma 3.3. Checking the intersection matrix requires some care with the definition of
reduced pullback, because the inertia groups of ¢ are not uniform. For example, we actually
have 4eg = ¢* (A1 +2E1 + By) and 4e; = ¢*(As+2E2 + B1), so that 16eg - e; = deg(p) - 2,
and hence eg-e; = 1. O

Remark 6.1 By Lemma 6.1, we see that A; is an elliptic curve of self-intersection —1
on X, even though A; is a (—2)-curve on Y. In other words, assumptions (A1) and (A2)
hold for the Keum—Naie surface, but (A3) does not. Instead we get an isometry from the
abstract lattice Z'® — Pic X/Tors X, under which the image of 2eq + 2e; — 2?22 e; is the
class of Ox(Kx) modulo torsion.
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We compute the coordinates of the reduced pullback of each irreducible branch com-
ponent using the basis provided by Lemma 6.1.

Lemma 6.2 We have

Ox(41) = 0x(0,0,1,0,0,0) Ox(Dy) = 0x(1,1,-1,-1,0,0)[0, 1,0, 0]
Ox(43) = 0x(0,0,0,1,0,0) Ox(Dy) = OX(l,l,—l ~1,0 0)[0,1,0, 1]
Ox(B1) = 0x(0,0,0,0,1,0) Ox(Er) = Ox(1,0, - ,0)
Ox(By) = 0x(0,0,0,0,0,1) Ox(Ey) = OX(O,l,O 1,0)
Ox(C1) = 0x(1,1,0,0,—1,—1)[1,1,1,0] Ox(Es3) = Ox(1,0,0,—1,0,—1)[0,0,0,1]
Ox(Cy) = 0x(1,1,0,0,—1,-1)[1,0,0,1] Ox(Es) = Ox(0,1, -1, o o ~1)[0,1,1,1]

Proof This is similar to Lemma 3.3. One minor point, in computing the multidegrees.
The linear equivalences (19) on Y pull back to X giving numerical equivalences

Ci=0C=2A1+FE1+ Ey=2A2+ E> + Es
Dy =Dy =281 + E1 + By = 2By + E3 + Ey.

These can be rearranged to give
A1+ B1+E1=As+ By + FE3, Ay + By +Ey= A1 + By + Ey,

which is used to express each reduced pullback in terms of the basis from Lemma 6.1. [

Lemma 6.3 By formula (8) and Lem. 6.1, Ox(Kx) = Ox(2,2,—1,-1,—-1,-1). O

We conclude by noting that we have searched for, but not found any exceptional col-
lections of maximal length on the Keum—Naie surface. It seems that our subgroup of
Tors X is too small to allow us the freedom to find any. On a related note, exceptional
collections of maximal length have not been discovered on the Burniat—Campedelli surface
with K2 = 2 (see [1]), and some Beauville surfaces considered in [35]. Here the situation
is more straightforward, because these surfaces fail to satisfy assumption (A1) and (A2)
respectively.
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A Appendix: Acyclic bundles on the Kulikov surface

For reference, here are the acyclic line bundles on the Kulikov surface used in section 3.2.

L A(L)
Lt [0,0,0],[0,1,0],[1,1,0],[2,1,0],[2,2,0],[1,0,1],[2,0,1],[0,1,1],[1,1,1],
0,2,1],[2,2,1],[0,1,2],[1,1,2],[0,2,2]
;! [0,1,0],[1,1,0],[2,2,0],[2,0,1],[0,1,1],[1,1,1],[2, 1, 1], [1,2,1],[2,2, 1],
[0,0,2],[1,0,2],[0,1,2],[1,1,2],[1,2,2]
Ly! [0,1,0],[1,1,0],[1,0,1],[0,1,1],[1,1,1],[0,2,1],[1,2,1],[0,0,2], 2,0, 2],
0,1,2],[1,1,2],[2,1,2],[0,2,2],[1,2,2]
Lyt [0,0,0],[0,1,0],[2,1,0],]0,2,0], [2,2,0], [1,0,1],[2,0,1], [0, 1,1], 1,1, 1],
2,1,1],[0,2,1],[2,2,1],[1,1,2],[0,2,2],[2,2,2]
L7t 0,1,0],[1,1,0],[2,2,0],[1,0,1],[2,0,1],[0,1,1],[1,1,1],[0,2,1], 1,2, 1],
2,2,1],]0,0,2],[0,1,2],[1,1,2],]0,2,2],[1,2,2]
Ly @ Ly || [1,0,0],[2,0,0],[2,1,0],[0,1,1],[0,1,2],[2,1,2],[0,2,2]
L3t ® Ly | 0,0,0],[1,0,0],[2,0,0],[1,1,0],[2,1,0],[2,2,0],[1,1,2], 2, 1,2],[2,2, 2]
Ly @ Ly || [0,1,0],[1,1,0],[0,1,1],[1,1,1],[1,2,1],[0,0,2],[1,0,2],[2,0,2], [0, 1, 2],
[1,1,2],[1,2,2]
L' ® Ly || [1,0,0],[2,0,0],[1,1,0],[2,1,0],[2,2,0],[0,1,1],[0,0,2],[0,1,2], 1,1, 2],
2,1,2],[0,2,2],[2,2,2]
L3t ® Ly | [1,0,1],[1,1,1],[2,1,1],[2,0,2],[1,1,2], ]2, 1,2], 1, 2, 2]
L7 @ Ly || [0,0,0],[0,1,0], [1,1,0], [1,0,1],[0,1,1],[1,1,1],[0,2,1],[2,0,2], [0, 1, 2],
[1,1,2],[0,2,2]
L' ® Ly || [0,1,0],[1,0,1],[0,1,1],[1,1,1],[2,1,1],0,2,1],[0,0,2],[2,0,2], 1,1, 2],
2,1,2],[0,2,2],[1,2,2]
L7 @ Ly || [0,0,0],[0,1,0],1,1,0],[2,2,0],[2,0,1],[0,1,1],[1,1,1],[2,2,1], 1,0, 2],
0,1,2],[1,1,2]
L' ® Lz | 0,1,0],[1,1,0],]2,1,0],[2,2,0],[2,0,1],[1,1,1],[2,1,1],[1,2,1], 0,0, 2],
[1,0,2],[0,1,2],[1,2,2]
L' ® Ly | [1,0,0],[2,0,0,[1,1,0],[2,2,0],[0,0,2],[0,1,2],[2,1,2], 2,2, 2]
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B Appendix: Burniat surface data

B.1 Primary Burniat surface

The maps determining the covers A — X — Y are &: H1(Y —A,Z) — G and ¥: H (Y —
A,Z) — G @& T. We tabulate them below.

o(I) glg ||| |ante|atgalatg
U(I)—@() || 0 | g3|94] 0 | g5 | 96 g7 g8 | S5 50

The images of the exceptional curves are obtained in the usual way from equation (1) of
Sec. 2,

D(E1) = g2, ®(E2) = g1 + g2, ®(E3) = g1, etc.
The following reduced pullbacks are a basis for Pic X/Tors X,

eo =Co+ E1 + E3, e1 = Eq, ea = Ea, e3 = E3.

According to these generators, the coordinates on Pic X are

‘ Multidegree ‘ Torsion

Ox(4p) |1 -1 -1 0/]1,1,0,0,0,1]
Ox(A)|1 -1 0 0/]1,0,0,0,1,0]
Ox(A2) |1 -1 0 0]]0,1,0,0,1,0]
Ox(By)|1l 0 -1 -1]]0,0,1,1,0,1]
Ox(B;)|1 0 -1 0]]0,0,1,0,1,0]
Ox(B2) |1 0 -1 0]][0,0,0,1,1,0]
Ox(Cp) |1 -1 0 -1 0

Ox(Cy) |1t 0 0 -1]]0,0,0,0,1,1]
Ox(Cy)|1 0 0 -1/]0,0,0,0,1,0]

and Ox(Kx) =0x(3,-1,—-1,-1)[0,0,0,0,0, 1] by equation (8).

B.2 Secondary Burniat surface with K2 =5

The map ®: Hy(P? — A,Z) — (Z/2)? is the same as for the primary Burniat surface, but
the triple point at Py changes W. Indeed, we have U5(A; + By + C3) = 0, which kills one
factor of the torsion group. Thus the maximal abelian cover 15: A — Y is determined by

T A() A | As By El EQ 60 61 62

Us(T)—@(T) || 0 | g3 | 94| O | g5 |96 | 97 | 9a+36+37|93+95
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and the torsion group is generated by g3,...,g7.
The following reduced pullbacks are a basis for the free part of Pic X

eo =Co+ E1+ E3, e = E1, eg = Ey, e3 =FE3, e =Cy— Cy + Ey,

with intersection form diag(1, —1,—1,—1,—1). Note that E, is not a branch divisor, which
explains the funny choice for ey.
The coordinates of Pic X according to this basis are:

‘ Multidegree ‘ Torsion

Ox(Ap) |1 -1 -1 0 0/][1,1,0,0,0]
Ox(A;)) |1 -1 0 0 —-1/][1,0,0,0,0]
Ox(A2) |1 -1 0 0 0/][0,1,0,0,1]
Ox(Bp)|l 0 -1 -1 0]][0,0,1,1,0]
Ox(B1)|l 0 -1 0 -1/][0,0,1,0,0]
Ox(B2)|1l 0 -1 0 0]][0,0,0,1,1]
Ox(Cy) |1l =1 0 -1 0 0

Ox(Cy)|1 o0 o0 -1 0]]0,0,0,0,1]
Ox(Cy)|1 0 0 -1 -1 0

Thus Ox(Kx) = Ox(?), —1,—1, —1, —1)[0,0,0,0, 1].

B.3 Secondary Burniat surfaces with K2 = 4

The maps Wy, 9% : H (Y — A,Z) — (Z/2)® determining respectively the non-nodal and
nodal Burniat surfaces, differ from one another slightly. We tabulate them below.

r Ao | A1 | As | Bo | B1 | Ba| Oy C Cs

UuT)—@(T) | 0 [ g3|ga| O | 95| 96 0 g1+ 96 | 93+ 95
W) —@T) [ 0 | g3 |9a| 0 | 95| 96 |93+9a|93+96|93+05

The restriction imposed by Ps is \114(Z2 + By + 61) = 0 in the non-nodal case, and
U7 (A; + By +C1) = 0 in the nodal case. Either way, g7 is eliminated, so the torsion group
is (Z/2)*, generated by g3, ..., g¢.

We extend the basis chosen for the free part of Pic(X5). The basis is the same for
non-nodal and nodal surfaces

eo =Co+ E1+ E3, e; = Eq, eg = Ey, ez = E3,
eq =Cy—Co+ Eq, es = By — By + E3.
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Coordinates for non-nodal surface:

‘ Multidegree ‘ Torsion
Ox(4p)|1 -1 =1 0 0 0]][L,1,0,0]
Ox(A;)) |1 -1 0 0 -1 0/][10,0,0]
Ox(A2) |1 -1 0 0 0 —1/][0,1,1,0]
Ox(By) |1l 0 -1 -1 0 0/][0,0,1,1]
Ox(B;))|1 0 -1 0 -1 0/][0,0,1,0]
Ox(B2) |1 0 -1 0 0 —1/][0,0,1,1]
Ox(Cy) |1 -1 0 -1 0 O 0
Ox(C;)|t 0o 0 -1 0 -1/]0,0,1,0]
Ox(C2)|1 0 0 -1 -1 0 0

Coordinates for nodal surface are the same (with same multidegrees) except for the follow-
ing:
‘ Multidegree ‘ Torsion
Ox(A)[1 =1 0 0 -1 —1[[1,0,1,0]
Ox(A2)|1 -1 0 0 0 0]]0,1,0,0]

In both cases, Ox(Kx) =0O(3,-1,-1,—1,-1,-1)[0,0, 1,0].

B.4 Tertiary Burniat surfaces with K? = 3

The map ¥3: Hi1(Y — A, Z) — (Zl2)5 is similar to U}, with an extra restriction due to the
triple point at Ps: ¥(Ag + By + C1) = 0. This gives

T AO Al AQ Bo El EQ 60 61 62

Us(T)—@(T) || 0 | g3 | 9a| O | g5 |93+9a+95|93+9a|ga+gs|93+9s

The basis of the free part of Pic(X3) extends that of the secondary Burniat surfaces:

eo=Co+ E1+ FE3, e1 = E1, e = FEy, e3 = E3,
eq =Cyg—Co+ FEy, e5=By— By + FE3, eg = Ag — Ay + Es.
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The coordinates for each reduced pullback are

‘ Multidegree ‘ Torsion
Ox(Ap) |1 -1 -1 0 0 0 0f][1,10]
Ox(A;)) |1 -1 0 0 -1 -1 0] [1,0,1]
Ox(A2) |1 -1 0 0 0 0 —-1|][1,1,0]
Ox(By)|1l 0 -1 -1 0 0 0]][0,0,1]
Ox(B)|l 0 -1 0 -1 0 -1]1[1,0,1]
Ox(B2)ll 0 -1 0 0 -1 0] 1[0,0,1]
Ox(Cy)|l -1 0 -1 0 0 O 0
Ox(Cy)|r o 0 -1 0 -1 =1} ][1,0,1]
Ox(Cy)|1 0 0 -1 -1 0 0 0

Thus Ox (Kx) = Ox(3,—1,-1,—1,—1,—1,—1)[1,0,1].

C Appendix: Beauville surfaces

In this appendix we apply our methods to two Beauville surfaces. Each is an abelian
cover of P! x P! satisfying assumptions (A). Thus we may write any line bundle on X as
Ox(a,b)(1). We recall some facts about numerical exceptional collections on such abelian
covers of P! x P! from [23].

Lemma C.1 1. A sequence O, Ly, Lo, Ly of line bundles on X is numerically excep-
tional if and only if it belongs to one of the four numerical types:

(I.) O, O(-1,0), O(c—1,-1), O(c—2,-1),
(II,) O, O(0,-1), O(-1,c—1), O(—1,c—2),
(111.) O, O(-1,¢), O(-1,c—1), O(-2,-1),
(IV.) O, O(c,—-1), O(c—1,-1), O(—1,-2),

where ¢ is any integer.

2. For fized c, the dihedral group action on numerically exceptional collections (see
Sec. 3.1.7) has two orbits:

I.—-IlNV.—I1 . —1V_.— I,
In.—-mn.—-1mn .- _.—Il.

As explained in Sec. 3.1.7, the Weyl group of P! x P! acts on numerical exceptional col-
lections on X, interchanging I. with II. and III, with IV.. The difference is that the Weyl
group action does not lift to exceptional collections, so there are two orbits. Thus we need
only consider numerically exceptional collections of line bundles of type I. or II..
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C.1 (Z/3)*>-Beauville surface

This surface was discovered by Beauville and first described in [20], but for similar examples
see also [8]. Let X be a (Z/3)%-cover of Y = P! x P! branched over eight lines, four in each
ruling. We label these branch divisors Aq,...,Ag (see Figure 7). Clearly, the branch locus
has two free parameters, and in fact, the (Z/3)?-Beauville surfaces form a two dimensional
irreducible connected component of the moduli space [8], so h!(Tx) = 2 and h?(Tx) = 8.

As Ag A7 Ag

Ay
Az
As
Ay

Figure 7: The branch locus for a Beauville surface with G = (Z/3)?

The cover ¢: X — Y and maximal abelian cover 1): A — Y are determined by the
maps ®: H1(Y — A,Z) — (Z/3)* and ¥: H (Y — A,Z) — (Z/3)° as shown in the table

A1 | Ay | Az | Ay As Ng Ay Ag
®(D) 91| 92 201|292 | 91 +92 | 91+ 292 | 291 + 2g2 291 + 92
U(D)—-®MD)| 0 | 0 | g3 |293| o 95 g6 2(ga + g5 + g6)

The small quotient group G' = (Z/3)? is generated by g1, go and T is generated by g3, . . . , g¢-

Remark C.1 The original construction [20] of X is to take the free (Z/3)?-quotient of a
product C; x Oy of two special curves of genus 6. This realises a subgroup (Z/3)? of the
full torsion group Tors X = (Z/3)*. Using this quotient construction, many exceptional
collections of line bundles on X with numerical type I; were constructed and studied in
[35]. We use abelian covers to completely enumerate all exceptional collections of line
bundles on X, of any numerical type.

Let D; denote the reduced pullback of A;. Then the torsion free part of Pic X is based

by Dy and D5, with intersection form (9 ).

Lemma C.2 The coordinates of each Ox(D;) are

Ox(Dy) = 0x(1,0) Ox(Ds) = Ox(0,1)

Ox(D2) = Ox(1,0)[1,0,1,0] Ox(Dg) = Ox(0,1)[0,1,2,0]
Ox(D3) = 0x(1,0)]0,2,2,1] Ox (D7) = Ox(0,1)[0,1,0,2]
Ox(Dy) = 0x(1,0)[1,2,2,1] Ox(Dg) = Ox(0,1)0,1,0,0]
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With this basis, using (8) we have

Ox(Kx) =0x(2,2)[1,2,2,2]. (20)

C.1.1 The semigroup of effective divisors

In this section we prove:
Proposition C.1 The semigroup of effective divisors on X is generated by D1, ..., Ds.

This should be compared with the results of [1] on primary Burniat surfaces and the
discussion of Sec. 3.1.6.

We introduce some notation. Define & to be the semigroup generated by D;,..., Ds. It
is convenient to consider € as the image of the multiplicative semigroup M of monomials in
the bigraded polynomial ring Z[z1, x2, X3, T4, Y1, Y2, Y3, y4] under the homomorphism z; —
D;, yi — Dyt;. The z; have bidegree (1,0), and y; have bidegree (0,1). We abuse notation
to consider monomials in M as elements of & when appropriate. Let ¢t: € — Tors X be the
semigroup homomorphism defined in Sec. 3.1.6, sending each D; to its associated torsion
twist according to Lem. C.2.

Since Kx is ample, we have

Lemma C.3 If O(a,b)(7) is an effective line bundle on X, then a > 0 and b > 0.
We analyse the possible values for a and b.

Lemma C.4 Ifa,b> 2, then Ox(a,b)(7) is effective for all T in Tors X, unless a = b =2
and T =[1,2,2,2].

Proof Consider the set M 9y of monomials of bidegree (2,2). We use the computer [19]
to check that the image of My 2y under ¢ is precisely Tors X — {[1,2,2,2]}. Moreover, the
missing torsion twist is that of Kx, which is not effective, because py(X) = 0.

On the other hand, we also check that t(M34)) = t(M(3)) = Tors X, so every line
bundle of bidegree (3,2) or (2, 3) is effective. Now for any a > 3, we see that m’f‘gylf_QM(&z)
gives a global section for each Ox(a,b)(7). A similar argument works for b > 3. O

It remains to check what happens if a < 1 or b < 1. We suppose the latter (the case a <1
is similar).

Lemma C.5 Suppose b < 1. The line bundle Ox(a,b)(T) is effective if and only if there
is a monomial m in M,y such that t(m) = 7.
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Proof Case b = 0. For a < 6, we check effectivity of each line bundle directly. This
is a finite number of line bundles, and so we use the computer [19]. Note that if a < d/,
then t(Mq,0)) € t(M(q,0)).- Moreover, for a > 6, t(M,)) stabilises to H = {[a, 8,7,20] :
a, B,y € Z/3}. Indeed, H is a subgroup of Tors X, so it is closed under composition of
torsion elements. Thus if a > 6 then Ox(a,0)(7) is effective for any 7 in H.

Now fix a > 6 and 7 in Tors X — H. We show that Ox(a,0)(7) is not effective. Write
a=6+4+3j+ k where j >0 and 0 < k < 2. Then by Lemma C.2,

©:0x(a,0)(7) = pL(kD1) ® Oy (jA1) = ¢« L(kD1) ® Oy (§,0),

where L = Ox(6,0)(7). Thus if each summand of p,L(kD;) for 0 < k < 2 has negative
degree in the second factor, we see that Ox(a,0)(7) can not be effective for any a > 6.
We have again reduced the problem to checking a finite number of line bundles, and this
is done by computer in [19].

Case b = 1. The argument is similar to the previous case, so we give only a sketch. First
check a < 4 directly. Then for a > 4, the image t(M, 1)) stabilises to H U [0, 1,0,0]H, the
union of two cosets of H in Tors X. This can be seen directly from Lemma C.2. The other
torsion twists are ineffective for any a > 4, by a similar computation to that of case b =0
above. O

C.1.2 Acyclic line bundles

Now, by the Riemann—Roch theorem, the numerically acyclic line bundles on X are
O(1,k)(r) and O(k, 1)(7). Thus we may use Proposition C.1 to find all acyclic line bundles.

Proposition C.2 For k>4 or k < =2, the acyclic sets on X are
A(Ox(1,k)) =S, A(Ox (k1)) =T,
where
S={l2,0,8,7]:a,8,v€Z/3}, T ={[e, 8,7,2 = 0] : o, 3,7 € Z/3}.

Proof We prove that A(O(k,1)) = T for k > 4. The acyclic set A(O(1,k)) for k > 4
can be calculated in the same way, and the negative cases follow by Serre duality.

Fix an integer k > 4. Then by Lem. C.5, Ox (k,1)(7) is not effective if and only if 7 is
an element of Tors X — (H U[0,1,0,0]H) = 7. Now by Serre duality and (20),

H*(Ox(k, 1], 3,7,2 = 8]) = H'(Ox(2 = k,1)([l — 0,2 — 8,2 — 7, ]),

which also vanishes by Lem. C.5, or if k£ > 3, we can use Lem. C.3. Thus A(Ox(1,k)) =7
for all k£ > 4. O
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In fact, the same proof shows that S C A(Ox(1,k)) and T C A(Ox(k,1)) for any
integer k. For values of k between —1 and 3, there are a few extra acyclic twists, because
the image of ¢ has not yet stabilised to its maximum. These can be checked directly, using
Prop. C.1 as before.

L A(L)
Ox(1,-1) | 8,[1,1,1,0],[0,1,2,0]

Ox(1,0) || S,[0,2,0,0],[1,2,0,0],[1,1,1,0],[0,2,1,0],[1,2,1,0],[0,1,2,0],
[0,2,2,0],[1,2,2,0],[1,0,1,1],[0,0,2,1],[1,2,1,2], [0, 2, 2, 2]
Ox(1,1) | SuT,[1,0,0,0],00,0,1,0],[1,2,1,2],[0,2,2,2]

O0x(1,2) | &,[1,0,0,0],[0,0,1,0],[1,2,0,1],[0,2,1,1],[0,0,0,2],[1,0,0,2],
[1,1,0,2],[0,0,1,2],[1,0,1,2],[0,1,1,2],[0,0,2,2],[1,0,2,2]
Ox(1,3) | S,[1,1,0,2],[0,1,1,2]

In the other direction,

L A(L)
Ox(-1,1) | 7,[1,0,2,1],[1,1,1,2]

Ox(0,1) | 7,[1,0,0,0],[2,0,0,0],[1,1,0,0],[2,1,2,0],[2,0,0,1],[2,2,1,1],
[1,0,2,1],[1,2,2,1],1,1,1,2],[1,2,1,2],[2,2,1,2], [2,1, 2, 2]
Ox(2,1) || 7,[2,1,0,0],[0,0,1,0],[2,0,1,0],[0,1,1,0],[0,0,0,1],[0, 2,0, 1],
2,0,1,1],[2,2,2,1],[2,1,0,2],[0,1,2,2],[0,2,2,2],[2,2,2,2]
Ox(3,1) | 7,[0,1,1,0],]0,2,0,1]

Many exceptional collections on X of numerical type I and with formal A..-algebra
were constructed in [35]. We can classify all exceptional collections of line bundles on X,
of any numerical type. The enumeration is summarised below, but see [19] for details.

Proposition C.3 Exceptional collections of line bundles on the Z/3-Beauville surface are
enumerated in the table below. The integer ¢ > 0 determines the numerical type of the
exceptional collection, either I. or Il.. The number of type 1. is equal to the number of
type 1.

c 0 1 2 >3

#(Exceptional collections) | 6661 3613 2213 2187 = 37

We display a sample exceptional collection of type I;

Ox, Ox(-1,0)[0,1,0,0], Ox(0,-1)[2,2,0,0], Ox(—1,—1)[1,0,1,0]
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0 1 2 3
1 @ ¢ 4¢
1
1

q
0 0 |6¢°
2¢* | 6¢* 8¢*

1|4¢%> 6¢> 64¢>

Table 9: Ext-table of an exceptional collection on the (Z/3)2-Beauville surface

w N = O

Table 9 is the Ext-table of this exceptional collection. We see that there are no nonzero
Ext!-groups. Hence the A, .-algebra is formal, and the height is 4. Thus the Hochschild
cohomology of the corresponding quasiphantom category is HH?(A) = C, HH'(A) = 0,
HH?(A) = C?, HH3(A) D C8.

C.2 (Z/5)*-Beauville surface

We consider the (Z/5)%-Beauville surface, which was first described in [10] and [20]. Ex-
ceptional collections of line bundles on this surface were classified by Galkin and Shinder
[23], which was a major influence on our overall approach. We recover the results of [23]
as a test case for our methods.

This time X is a (Z/5)%-cover of Y = P! x P! branched over six lines, three in each
ruling. This branch configuration is rigid, and in fact the moduli space of such Beauville
surfaces is zero dimensional and smooth. The torsion group of X is Tors X = (Z/5)?, which
is fully realised by the standard construction of X as a free (Z/5)%-quotient of C; x Ca,
where C; are Fermat quintic curves. Thus C; x Cj is the maximal abelian cover A (this
description of A is not necessary for our approach). B

The maps ®: Hi(Y —A,Z) — (Z/5)? and ¥: H(Y —B,Z) — G = (Z/5)* determining
the covers are defined in the following table

aae] oAy oA oA oA
o (D) 91| g2 |41 +492 | g1 +292 | 391 + 492 | g1+ 4go
U(D)—®D)| 0| 0 0 g3 94 493 + 494

The reduced pullbacks D; (respectively Dy) of A; (resp. Ayg) are a basis for the free
part of Pic X. As usual, the other reduced pullbacks may be written in terms of this basis,
and we have
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Lemma C.6

Ox(D1) = Ox(1,0), Ox(Ds) = Ox(0,1),
Ox(D3) = Ox(1,0)[1,1], Ox(Ds5) = Ox(0,1)[1, 4],
Ox(D3) = Ox(1,0)[4,2], Ox(Dg) = Ox(0,1)[1,0]

By (8), we have
Ox(Kx) =0x(2,2)[3,3].

Lemma C.7 The semigroup & of effective divisors on X is the set of positive integer linear
combinations of D1, ..., Dg.

The proof of this Lemma is similar to that of Prop. C.1.

As in Sec. 3.1.6, we define a semigroup homomorphism ¢: & — Tors X using the torsion
twists from Lem. C.6. Using Lem. C.7, we list all acyclic line bundles on X in the following
table. We note that the restrictions t|¢, , and t[¢, ,, are surjective for j > 5 and k > 4.

L A(L)
Ox(1,-2) | [2,0]

Ox(1,-1) || [2,0],[3,0],[3, 4]

Ox(1,0) | [2,0],[3,0],[4,0],[0,1],[4,3],[3, 4], [4,4]
Ox(1,1) || [3,0],[4,0],[0,3],[4,3],[0,4],[3,4], [4,
Ox(1,2) | [4,0],[3,2],[0,3],[1,3],[4,3],(0,4], [4,4]
Ox(1,3) || [0,3],[1,3],[0, 4]

Ox(1,4) | [1,3]

Ox(—1,1) || [4,2]

Ox(0,1) || [4,2],[0,3],[4,3],[3,4]

Ox(2,1) || [3,0],[4,0],[4,1],[0,

O0x(3,1) | [4,1]

Up to choices of coordinates, these are precisely the acyclic line bundles listed in [23], and
there are no others. It seems that the rigidity of X is reflected in the small number of
acyclic line bundles.

Using this list of acyclic line bundles, and Lemma C.1, we can classify all exceptional
collections of line bundles of length four on X. Here is the complete list, which form two
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orbits, replicating results of [23].

I 4

1T,
1T,

O,
O,
0,
O,
O,
O,

O(-1,0)[0,4], O(-2,-1)[1,0], O(-3,-1)[1,4]
Oo(-1,-1)[1,1], O(-2,-1)[1,0], O(-1,-2)[2,3]
O(-1,0)[0,4], 0O(0,-1)[1,2], O(-1,-1)[1,1]
o(1,-1)[1,3], 0O(0,-1)[1,2], O(-1-2)[2,3]

00, -1)[1,2], O(-1,-1)[1,1], O(-1,-2)[2,3]
O(=1,0)(0,4], O(-1,-1)[1,1], O(-2,—1)[L,0]

We do not continue the analysis of quasi-phantoms, since it appears in [23]. We only verify
that our results are consistent.
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