/////////////////////////////////////////////// // // Beauville surface with G=(Z/3)^2 // /////////////////////////////////////////////// X:=rec; Pic:=LatticeWithGram(Matrix(2,[0,1,1,0]): CheckPositive := false); // allows neg-def n:=[3:i in [1..6]]; Gt:=AbelianGroup(n); G:=sub; T:=sub; X`Name:="Beauville Z3"; X`Big:=Gt; X`Small:=G; X`Tors:=T; X`branch:=[Pic![1,0],Pic![1,0],Pic![1,0],Pic![1,0], Pic![0,1],Pic![0,1],Pic![0,1],Pic![0,1]]; X`phi:=[Gt.1,Gt.2,2*Gt.1+Gt.3,2*Gt.2+2*Gt.3, Gt.1+Gt.2+Gt.4,Gt.1+2*Gt.2+Gt.5,2*Gt.1+2*Gt.2+Gt.6, 2*Gt.1+Gt.2+2*Gt.4+2*Gt.5+2*Gt.6]; X`branchtors:=[T!0,T![1,0,1,0],T![0,2,2,1],T![1,2,2,1], T!0,T![0,1,2,0],T![0,1,0,2],T![0,1,0,0]]; X`KY:=Pic![-2,-2]; X`K:=Pic![2,2]; lines:=#X`branch; X`Lchi:=calculateLchi(X); X`Basis:=[[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0]]; X`Ktors:=T![1,2,2,2]; // effective divisors on Y //CC:=[[1,0],[0,1]]; EffY:=[]; for i in [0..5] do for j in [0..5] do Append(~EffY,Pic![i,j]); end for; end for; X`EffY:=EffY; for i in [-5..5] do LL:=[Pic![-1,0],Pic![i-1,-1],Pic![i-2,-1]]; Excl:=findExceptional(X,LL); i,#Excl; end for; for i in [-5..5] do LL:=[Pic![0,-1],Pic![-1,i-1],Pic![-1,i-2]]; Excl:=findExceptional(X,LL); i,#Excl; end for; //////// // interesting samples of type I_0 ////// LL:=[Pic![-1,0],Pic![0,-1],Pic![-1,-1]]; ee:=; extendedquiver(X,LL,ee);