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Abstract

The notion of singular support for coherent sheaves was introduced by Arinkin and Gaitsgory in order to
carefully state the geometric Langlands conjecture. This is a conjectural equivalence of categories of sheaves
on certain moduli spaces: in order to make the conjecture reasonable one needs to restrict to sheaves which
satisfy a certain ”singular support condition”. In this talk I’ll explain how to think about this singular support
condition from the point of view of boundary conditions in twisted N = 4 gauge theory. Specifically, Arinkin and
Gaitsgory’s singular support condition arises by considering only those boundary conditions which are compatible
with a natural choice of vacuum state. By allowing this vacuum state to move away from this natural choice we
see aspects of a rich additional structure for the geometric Langlands correspondence. This work is joint with
Philsang Yoo.

1 Introduction

Today I’ll explain some joint work with Philsang Yoo which attempts to explain the modern statement of the
geometric Langlands conjecture in terms of supersymmetric field theory. In the pioneering work of Kapustin and
Witten [KW06] the geometric Langlands correspondence occurs as an equivalence between categories of boundary
conditions along a Riemann surface Σ in S-dual N = 4 supersymmetric field theories, and in dual topological twists.
The equivalence they explain is closely related to the “best hope” geometric Langlands conjecture as formulated by
Beilinson and Drinfeld, which says the following.

1.1 Geometric Langlands

Let G be a reductive algebraic group over C, and let Σ be a smooth compact complex curve. Let BunG(Σ) be the
moduli stack of algebraic G-bundles on Σ, and let FlatG(Σ) be the moduli stack of G-bundles with flat connection
on Σ.

Conjecture 1.1 (“Best Hope” version of Geometric Langlands). There is an equivalence of categories

D-mod(BunG(Σ)) ∼= QC(FlatG∨(Σ))

where G∨ is the Langlands dual group of G.

Remark 1.2. There’s a lot to say about this conjecture: one doesn’t just expect an equivalence, but an equivalence
compatible with all sorts of extra structure. One way to think about it is as an extremely fancy version of Fourier
duality (non-abelian, categorified). You can think of the space FlatG∨(Σ) as parameterizing a nice family of
D-modules on BunG(Σ): those that are eigenobjects for a family of natural symmetries. Points in FlatG∨(Σ)
parameterize these eigenobjects in the sense that the above equivalence sends an eigenobject to a skyscraper sheaf
at a point in FlatG∨(Σ) (its “eigenvalue”). When G is abelian the equivalence is literally given by a Fourier transform
(more precisely a twisted Fourier-Mukai transform). This is a theorem of Laumon [Lau96] and Rothstein [Rot96].
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As stated above this conjecture is only true when G is abelian. There’s a basic reason: one of the structures that the
equivalence should respect is the geometric Eisenstein functors on the left- and right-hand sides. When you have
a parabolic subgroup P ⊆ G with Levi L there is a pull-push functor from D-mod(BunL(Σ) to D-mod(BunG(Σ))
(and similarly on the right-hand side). While there is a good 6-functor formalism for D-modules on stacks it turns
out that for quasi-coherent sheaves on derived stacks the pullback is badly-behaved – it doesn’t preserve compact
objects. Because these geometric Eisenstein functors are well-behaved on one side but not the other, there’s no way
the equivalence as stated above can hold.

More concretely, V. Lafforgue [Laf09] proved the geometric Langlands conjecture for the curve Σ = CP1. He showed
that D-mod(BunG(CP1)) was equivalent to a category of sheaves strictly larger than QC(FlatG∨(CP1)). Arinkin
and Gaitsgory [AG12] demonstrated how to extend Lafforgue’s answer to general curves Σ, fixing the technical issue
with pull-back functors, and therefore give a plausible statement of the geometric Langlands correspondence. They
enlarged QC(FlatG∨(Σ)) to a larger category where the pullback functors associated to inclusions L ↪→ P preserved
compact objects in the smallest possible way, which recovers Lafforgue’s answer for Σ = CP1.

Conjecture 1.3 (Arinkin and Gaitsgory’s version of Geometric Langlands). There is an equivalence of categories

D-mod(BunG(Σ)) ∼= IndCohNG
(FlatG∨(Σ))

where IndCohN∨G (FlatG∨(Σ)) is the category of those ind-coherent sheaves on FlatG∨(Σ) (that is, objects in the
ind-completion of the category of coherent sheaves) which satisfy a condition called “nilpotent singular support”.

Before I tell you what nilpotent singular support means, let me quickly detour to talk about the connection to
gauge theory, and the work of Kapustin and Witten.

1.2 Kapustin-Witten Theories

Let’s recall Kapustin and Witten’s story. Start out with N = 4 super Yang-Mills theory in dimension 4. Kapustin
and Witten constructed a CP1-family of topological twists of this theory, and demonstrated that if you dimensionally
reduce these theories at the points (0 : 1) and (1 : 0) respectively you obtain the B-model with target LocG(Σ) and
the A-model with target BunG(Σ). Here LocG(Σ) is the stack of representations of the fundamental group of Σ
into G; this is analytically equivalent to FlatG(Σ) but crucially not algebraically equivalent, which is why I give it
a different name 1.

Kapustin and Witten argue that the geometric Langlands conjecture is a consequence of S-duality for N = 4
supersymmetric field theories. This follows from two observations.

1. Firstly, S-duality exchanges the gauge group G and its Langlands dual G∨, and it acts antipodally on the CP1

of twisted theories. In particular the topologicall twisted theories at the points (0 : 1) and (1 : 0) are S-dual.

2. The category of boundary conditions along Σ in the B-twisted theory for gauge group G∨ is equivalent to
QC(FlatG∨(Σ)). Dually, Kapustin and Witten argue that the category of boundary conditions in the A-
twisted theory for gauge group G is equivalent to the category D-mod(BunG(Σ)) of D-modules. S-duality
implies that these two categories are equivalent.

There are two issues with this argument if one wishes to truly draw a bridge with the geometric Langlands conjecture.
Firstly, the issue of algebraic structure. Geometric Langlands in its usual form involves sheaves on the algebraic
stack FlatG∨(Σ), but this algebraic structure isn’t visible in Kapustin and Witten’s argument (which is purely
topological, so for instance only depends on Σ as a smooth manifold, not an algebraic curve. In joint work with
Philsang Yoo [EY15] we explain how one can reintroduce these algebraic structures on moduli spaces into the
physical story.

1However, take care, in the geometric representation theory what I call FlatG(Σ) is frequently called LocG(Σ) or LocSysG(Σ).
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Secondly, and the topic for today’s talk, Kapustin and Witten only discuss the best hope form of the geometric
Langlands conjecture, which as we’ve seen is generally false. Today, I’ll explain how to think about the Arinkin-
Gaitsgory correction to the geometric Langlands conjecture from the physical point of view, in terms of fixing a
choice of vacuum for the twisted theory.

2 Singular Support Conditions

I’ll now explain what it means to restrict the “singular support” of a coherent sheaf, then in the next section I’ll
explain the connection to a general story in TQFT. The definition of singular support that I’ll give is due to Arinkin
and Gaitsgory [AG12], based on a general story about support conditions in a dg-category developed by Benson,
Iyengar and Krause [BIK08].

I’ll start with a very general and abstract definition that makes sense for any dg-category B (all categories from
now on will be dg-categories). We say a monoidal category L acts on a category B if there’s a monoidal functor
from L to End(B).

Definition 2.1. The Hochschild cochains of a dg-category B are the algebra HC•(B) of natural transformations
from idB to itself. There’s a canonical action of the monoidal category HC•(B)-mod. In fact this action is universal:
any action of a monoidal category L on B factors through a monoidal functor to HC•(B)-mod.

Example 2.2. The physical origin of this sort of structure will be the action of the local observables in a quantum
field theory on the category of boundary conditions. I’ll restrict attention to topological field theories. In a
topological field theory the local observables form an En-algebra and there’s a category of boundary conditions
along any manifold M of codimension 2 admitting an action of this En-algebra. We think about this action as
follows. Let B be the category of boundary conditions along M in a topological field theory, and let F be an object
in B. The algebra EndB(F) describes the space of local observables in the bulk-boundary theory associated to think
boundary condition, and there’s a tautological map from bulk observables into bulk-boundary observables for any
choice of boundary condition.

Let’s restrict attention to the example where B is the category IndCoh(X) of ind-coherent sheaves on something.
Eventually X will be a derived stack, but for now let’s just take it to be an affine derived scheme (that is, Spec of
a commutative dga). The singular support of a sheaf F in IndCoh(X) is – roughly speaking – its support in the
even Hochschild cohomology HH2•(X) with respect to the action we described above (the reason we only take even
cohomology is to make sure we get a commutative rather than supercommutative ring). More precisely Arinkin
and Gaitsgory define singular support with respect to the action of an algebra called O(Sing(X)) that maps into
HH2•(X). We define this algebra as follows.

Definition 2.3. We say X is quasi-smooth if its tangent complex is concentrated in degrees ≤ 1 (recall that being
smooth is equivalent to have tangent complex in degrees ≤ 0). If X is quasi-smooth then its scheme of singularities
is the classical part of the −1-shifted cotangent space

Sing(X) = (T ∗[−1]X)cl.

Concretely, for an affine derived scheme Sing(X) is the ordinary affine scheme whose functions are generated by
H1(TX) = H0(TX [1]) as an O(X)-module.

Now, this is closely related to the Hochschild cohomology of X by the following fact.

Theorem 2.4 (Hochschild-Kostant-Rosenberg). Let X be an (eventually coconnective) affine derived scheme.
There is a canonical filtration on HC•(X) whose associated graded is O(T ∗[1]X).

I don’t want to spell out all the details, but one can use this fact to define a map from O(Sing(X)) to HC•(X). In
particular the category QC(Sing(X)) of O(Sing(X))-modules acts on the category IndCoh(X). The map involves a
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shift by two because O(Sing(X)) was built from the −1-shifted cotangent space whereas HC•(X) is related to the
+1-shifted cotangent space. We’ll mention this shift again a bit later.

We can now define the category with a singular support condition. Let Y be a closed subset of Sing(X).

Definition 2.5. The category of ind-coherent sheaves on X with singular support in Y is defined to be the
localization

IndCohY (X) = IndCoh(X)⊗QC(Sing(X)) QC(Sing(X))Y

where QC(Sing(X))Y is the category of sheaves with set-theoretic support contained in Y .

Remark 2.6. If X is not just an affine derived scheme but a more general derived stack then you can still define
the category of shcaves with singular support in a closed subset Y of Sing(X) as a limit over all smooth maps
Z → X from affine derived schemes into X.

Example 2.7. From the point of view of quantum field theory, the category IndCoh(X) describes a completed
version of the category of boundary conditions in the 2d B-model with target X. Singular support conditions will
admit a nice physical description from this point of view which we’ll explain shortly – one should interpret the
algebra O(Sing(X)) as the algebra of local operators in the 2d B-model (up to one of these ubiquitous degree shifts
by two).

So I’ve nearly explained to you what the category IndCohNG∨ (FlatG∨(Σ)) is. All I have to do is tell you what the
subsetNG∨ ⊆ Sing(FlatG∨(Σ)) is. First I’ll describe the space of singularities of FlatG∨(Σ). This is a straightforward
computation using the fact that the tangent complex to FlatG∨(Σ) is the de Rham complex of Σ with coefficients
in (g∨)∗, shifted down in cohomological degree by one.

Proposition 2.8. The space Sing(FlatG∨(Σ)) is the (classical) moduli stack whose closed points are triples (P,∇, φ)
where (P,∇) is a classical point of FlatG∨(Σ) (i.e. a G∨-bundle with flat connection) modulo gauge transformations,
and φ is a flat section

φ ∈ H0
∇(Σ; (g∨)∗P )

of the coadjoint bundle of P . We call this space ArthG∨(Σ) – the stack of G∨-Arthur parameters of Σ.

Definition 2.9. The global nilpotent cone NG∨ ⊆ ArthG∨(Σ) is the substack consisting of Arthur parameters
(P,∇, φ) where the value φx of φ at a point x ∈ Σ is nilpotent as an element of the dual Lie algebra (g∨)∗. This
condition doesn’t depend on the choice of point x because the section φ was a flat section.

So now we know what the Arinkin-Gaitsgory category IndCohNG∨ (FlatG∨(Σ)) means. It’s the category of ind-
coherent sheaves whose singular support lies in the global nilpotent cone. My goal for the remainder of this talk
will be to explain how this condition arises from quantum field theory.

3 Localization for TQFTs

3.1 The General Story

So what’s the connection between singular support conditions and quantum field theory? The idea we’ll take
advantage of is that every quantum field theory has the structure of a module over its algebra of local observables.
We’ll restrict to the example of topological field theories, so suppose B is the category of boundary conditions in
an n-dimensional TQFT along a compact (n− 2)-manifold M . As we mentioned above, this category is a module
for the algebra A of local quantum observables in our field theory.

Definition 3.1. States in a quantum field theory on Rn with algebra Obsq(Bn) of local observables are functionals
φ : Obsq(Bn) → R. A state φ is a vacuum state if it translation invariant and satisfies the cluster decomposition
property, which says O1 on Br1(0) and O2 on Br2(0), we have

(O1 ∗ τx(O2))(φ)−O1(φ)O2(φ)→ 0 as x→∞
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where τx denotes the translation of an observable by x ∈ Rn. In a topological field theory this just says that φ is a
ring homomorphism, so vacuum states are nothing but points in the spectrum Spec(Obsq(Bn)).

So, let v ∈ SpecA be a vacuum state. An object F ∈ B is supported at v if when we localize the algebra EndB(F)
at the point v the result is non-zero. If this localization doesn’t vanish, that means precisely that there are some
local bulk-boundary observables that can be defined on a sufficiently small neighbourhood of v. We say that the
localized observables are compatible with the vacuum v, and if the localization doesn’t vanish we say the boundary
condition F is compatible with v.

3.2 Localization in Kapustin-Witten Theories

Let’s apply this to a specific example coming from Kapustin and Witten’s family of topological twists. We’ll focus
on the B-twist and explain how we see Arinkin-Gaitsgory’s nilpotent singular support condition by looking at the
category of boundary conditions compatible with a specific choice of vacuum.

Remark 3.2. Because I’ll be working with only one side of the Langlands correspondence at a time I’ll describe
the B-twist with gauge group G, not G∨. This keeps the notation a bit less cluttered.

First we’ll compute the moduli space of vacua in the B-twisted N = 4 theory. This is a straightforward calculation:
the classical algebra of observables is just the algebra of functions on the space of solutions to the equations of
motion on a ball. In the B-twisted theory this space is T ∗[3]BG ∼= g∗[2]/W . The algebra O(g∗[2]/G) is equivalent
to O(h∗[2]/W ) where h is a Cartan subalgebra and W is the Weyl group (that is, h∗[2]/W is the affinization of
g∗[2]/G – concretely the map g∗[2]/G→ h∗[2]/W is the map sending a conjugacy class of matrix to its eigenvalues).

It turns out that this algebra O(h∗[2]/W ) is exact at the quantum level. To check this one needs to check that
it doesn’t admit any P4 deformations, then use Kontsevich’s formality result. So our algebra A of local quantum
observables is just O(h∗[2]/W ) as a graded commutative algebra.

Remark 3.3. There’s a trick that allows us to work with the unshifted algebraO(h∗/W ) instead. Roughly speaking,
when we define the topological twist we construct a family of theories over a fermionic degree 1 parameter t. If we
keep track of this parameter we actually obtain an action of a algebra of twisted local observables O(h∗[2]/W )((t))
including this parameter. If we restrict to H0 of this algebra we get O(h∗/W ) with no shift.

Näıvely, we describe the category of boundary conditions in the B-twisted theory by Coh(FlatG(Σ)), or rather by
its completion IndCoh(FlatG(Σ)), as in the usual description of the B-model. The action of local observables on
this category has a nice description in terms of geometric representation theory. If we choose a point x ∈ Σ the
category IndCoh(FlatG(Σ)) becomes a module for the category of line operators, which is given by

L = IndCoh(FlatG(B))

where B = D ∪D× D is the “formal bubble” obtained by gluing two formal disks together along a formal punctured
disk. This monoidal category acts by convolution – double a formal neighbourhood of the point x ∈ Σ and pull-
tensor-push along the diagram

FlatG(B)

FlatG(ΣqD× Dx)

qx

OO

p1

vv

p2

((

FlatG(Σ) FlatG(Σ).

In geometric representation theory the category L is called the “spectral Hecke category”. The monoidal unit of L
is given by the skyscraper sheaf at the trivial bundle. If one computes its endomorphism algebra in L one sees our
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algebra A of local operators:
EndL(δ1) ∼= O(h∗[2]/W ) = A.

This isn’t so surprising – morphisms between two line operators should be given by states on a strip compatible
with these line operators on two sides, and if the line operator on both sides this just gives all states, or all local
operators under the state-operator correspondence.

The upshot to all this is that we obtain our action of the algebra A of local operators as follows.

The action defines a functor L → End(B)

which induces a map A = EndL(δ1)→ EndEndB(idB) = HC•(B)

and therefore a map A→ EndB(F)

for each object F by the universal property of Hochschild cochains. The second line came from the first line by
applying the functor to the algebra of endomorphisms of the unit on each side.

We can now state the main result.

Theorem 3.4 (E-Yoo). The full category of boundary conditions compatible with the vacuum 0 ∈ h∗[2]/W is
equivalent to Arinkin and Gaitsgory’s nilpotent singular support category IndCohNG

(FlatG(Σ)).

There’s a simple reason that leads us to expect such a result. There’s a natural map – evaluation at a point x ∈ Σ
from ArthG(Σ) to g∗/G. Post-composing with the eigenvalue map defines a map ArthG(Σ) → h∗/W . The action
of O(h∗[2]/W ) on the category IndCoh(FlatG(Σ)) factors through the natural action of O(ArthG(Σ)) by which we
define singular support, by pullback along the eigenvalue map (note that this is only a map of ungraded commutative
rings, one needs to be more careful to keep track of all the shifts by two). What’s more, the global nilpotent cone
can by thought of as coming from the following pullback:

NG
//

��

ArthG(Σ)

evx

��

{0} // h∗/W,

which means being supported at 0 in h∗/W is equivalent to being supported on NG in ArthG(Σ).

There’s actually a bit more we can say. By replacing O(h∗[2]/W ) by its shifted version O(h∗/W ) it makes sense to
ask for the category of boundary conditions compatible with any vacuum v ∈ h∗/W . We can compute this category
by a similar method to the one I just described, and we conjecture that the results fit together in a nice way: that
the categories one obtains are equivalent to Arinkin-Gaitsgory categories with the symmetry group broken to a
subgroup compatibly with the vacuum. We conjecture the following (and we have some evidence supporting the
conjecture).

Conjecture 3.5 (Gauge symmetry breaking). The full subcategory of objects in IndCoh(LocG(Σ)) compatible
with the vacuum v ∈ h∗/W is equivalent to IndCohNL

(LocL(Σ)), where L ⊆ G is the stabilizer of v in g∗.
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