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The topological classification
of minimal surfaces in R

3

By Charles Frohman and William H. Meeks III*

Abstract

We give a complete topological classification of properly embedded mini-
mal surfaces in Euclidian three-space.

1. Introduction

In 1980, Meeks and Yau [15] proved that properly embedded minimal sur-
faces of finite topology in R

3 are unknotted in the sense that any two such
homeomorphic surfaces are properly ambiently isotopic. Later Frohman [6]
proved that any two triply periodic minimal surfaces in R

3 are properly ambi-
ently isotopic. More recently, Frohman and Meeks [9] proved that a properly
embedded minimal surface in R

3 with one end is a Heegaard surface in R
3 and

that Heegaard surfaces of R
3 with the same genus are topologically equivalent.

Hence, properly embedded minimal surfaces in R
3 with one end are unknot-

ted even when the genus is infinite. These topological uniqueness theorems
of Meeks, Yau, and Frohman are special cases of the following general classi-
fication theorem which was conjectured in [9] and which represents the final
result for the topological classification problem of properly embedded minimal
surfaces in R

3.
The space of ends of a properly embedded minimal surface in R

3 has a
natural linear ordering up to reversal, and the middle ends in this ordering
have a parity (even or odd) (see Section 2).

Theorem 1.1 (Topological Classification Theorem for Minimal Surfaces).
Two properly embedded minimal surfaces in R

3 are properly ambiently isotopic
if and only if there exists a homeomorphism between the surfaces that preserves
the ordering of their ends and preserves the parity of their middle ends.

*This material is based upon work for the NSF by the first author under Award No.
DMS-0405836 and by the second author under Award No. DMS-0703213. Any opinions,
findings, and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the NSF.
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The constructive nature of our proof of the Topological Classification The-
orem provides an explicit description of any properly embedded minimal sur-
face in terms of the ordering of the ends, the parity of the middle ends, the
genus of each end - zero or infinite - and the genus of the surface. This topo-
logical description depends on several major advances in the classical theory of
minimal surfaces. First, associated to any properly embedded minimal surface
M with more than one end is a unique plane passing through the origin called
the limit tangent plane at infinity of M (see Section 2). Furthermore, the ends
of M are geometrically ordered over its limit tangent plane at infinity and this
ordering is a topological property of the ambient isotopy class of M [8]. We
call this result the “Ordering Theorem”. Second, our proof of the classification
theorem depends on the nonexistence of middle limit ends for properly embed-
ded minimal surfaces. This result follows immediately from the theorem of
Collin, Kusner, Meeks and Rosenberg [2] that every middle end of a properly
embedded minimal surface in R

3 has quadratic area growth. Third, our proof
relies heavily on a topological description of the complements of M in R

3; this
topological description of the complements was carried out by the authors [9]
when M has one end and by Freedman [4] in the general case.

Here is an outline of our proof of the classification theorem. The first step
is to construct a proper family P of topologically parallel, standardly embed-
ded planes in R

3 such that the closed slabs and half spaces determined by P
each contains exactly one end of M and each plane in P intersects M trans-
versely in a simple closed curve. The next step is to reduce the global classifi-
cation problem to a tractable topological-combinatorial classification problem
for Heegaard splittings of closed slabs or half spaces in R

3.

2. Preliminaries

Throughout this paper, all surfaces are embedded and proper. We now
recall the definition of the limit tangent plane at infinity for a properly embed-
ded minimal surface F ⊂ R

3. From the Weierstrass representation for minimal
surfaces one knows that the finite collection of ends of a complete embedded
noncompact minimal surface Σ of finite total curvature with compact bound-
ary are asymptotic to a finite collection of pairwise disjoint ends of planes and
catenoids, each of which has a well-defined unit normal at infinity. It follows
that the limiting normals to the ends of Σ are parallel and one defines the limit
tangent plane of Σ to be the plane passing through the origin and orthogonal
to the normals of Σ at infinity. Suppose that such a Σ is contained in a com-
plement of F . One defines a limit tangent plane for F to be the limit tangent
plane of Σ. In [1] it is shown that if F has at least two ends, then F has
a unique limit tangent plane which we call the limit tangent plane at infinity
for F . We say that the limit tangent plane at infinity for F is horizontal if it
is the xy-plane.



TOPOLOGICAL CLASSIFICATION OF MINIMAL SURFACES 683

The main result in [8] is:

Theorem 2.1 (The Ordering Theorem). Suppose F is a properly em-
bedded minimal surface in R

3 with more than one end and with horizontal
limit tangent plane at infinity. Then the ends of F have a natural linear order-
ing by their “relative heights” over the xy-plane. Furthermore, this ordering
is topological in the sense that if f is a diffeomorphism of R

3 such that f(F )
is a minimal surface with horizontal limit tangent plane at infinity, then the
induced map on the spaces of ends preserves or reverses the orderings.

Unless otherwise stated, we will assume that the limit tangent plane at
infinity of F is horizontal, so that F is equipped with a particular ordering
on its set of ends E(F ). E(F ) has a natural topology which makes it into a
compact Hausdorff space. This topology coincides with the order topology
coming from the Ordering Theorem. The limit points of E(F ) are called limit
ends of F . Since E(F ) is compact and the ordering on E(F ) is linear, there
exist unique maximal and minimal elements of E(F ) for this ordering. The
maximal element is called the top end of F . The minimal element is called the
bottom end of F . Otherwise the end is called a middle end of F .

Actually for our purposes we will need to know how the ordering of the
ends E(F ) is obtained. This ordering is induced from a proper family S of
pairwise disjoint ends of horizontal planes and catenoids in R

3−F that separate
the ends of F in the following sense. Given two distinct middle ends e1, e2 of
F , then for r sufficiently large, e1 and e2 have representatives in different
components of {(x, y, z) ∈ (R3 −∪S) | x2 + y2 ≥ r2}. Since the components of
S can be taken to be disjoint graphs over complements of round disks centered
at the origin, they are naturally ordered by their relative heights and hence
induce an ordering on E(F ) [8].

In [2] it is shown that a limit end of F must be a top or a bottom end of
the surface. This means that each middle end m ∈ E(F ) can be represented by
a proper subdomain Em ⊂ F which has compact boundary and one end. We
now show how to assign a parity to m. First choose a vertical cylinder C that
contains ∂Em in its interior. Since m is a middle end, there exist components
K+, K− in S which are ends of horizontal planes or catenoids in R

3 − F with
K+ above Em and K− below Em. By choosing the radius of C large enough, we
may assume that ∂K+ ∪∂K− lies in the interior of C. Next consider a vertical
line L in R

3 − C which intersects K+ and K−, each in a single point. If L is
transverse to Em, then L ∩ Em is a finite set of fixed parity which we call the
parity of Em. The parity of Em only depends on m, as it can be understood
as the intersection number with Z2-coefficients of the relative homology class
of L, intersected with the region between K+ and K− and outside C, with the
homology class determined by the locally finite chain which comes from the
intersection of Em with this same region. If we let A(R) denote the area of Em
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in the ball of radius R centered at the origin, then the results in [2] imply that
limR→∞ A(R)/πR2 is an integer with the same parity as the end m. Thus, the
parity of m could also be defined geometrically in terms of its area growth.
This discussion proves the next proposition.

Proposition 2.2. If F is a properly embedded minimal surface in R
3,

then each middle end of F has a parity.

In [9] Frohman and Meeks proved that the closures of the complements
of a minimal surface with one end in R

3 are handlebodies; that is, they are
homeomorphic to the closed regular neighborhood of a properly embedded con-
nected 1-complex in R

3. Motivated by this result and their ordering theorem,
Freedman [4] proved the following decomposition theorem for the closure of a
complement of F when F has possibly more than one end.

Theorem 2.3 (Freedman). Suppose H is the closure of a complement
of a properly embedded minimal surface in R

3. Then there exists a proper
collection D of pairwise disjoint minimal disks (Dn, ∂Dn) ⊂ (H, ∂H), n ∈ N,
such that the closed complements of D in H form a proper decomposition of H.
Furthermore, each component in this decomposition is a compact ball or is
homeomorphic to A × [0, 1), where A is an open annulus.

3. Construction of the family of planes P
In [9] we proved the Topological Classification Theorem for Minimal Sur-

faces in the case the minimal surface F has one end. Throughout this section,
we assume that F has at least two ends.

Lemma 3.1. Let F be a properly embedded minimal surface in R
3 with

one or two limit ends and horizontal limit tangent plane. Suppose H1, H2 are
the two closed complements of F and D1 and D2 are the proper families of disks
for H1, H2, respectively, whose existence is described in Freedman’s Theorem.
Then there exist a properly embedded family P of smooth planes transverse to
F satisfying :

1. Each plane in P has an end representative which is an end of a horizontal
plane or catenoid which is disjoint from F ;

2. In the slab S between two successive planes in P, F has only a finite
number of ends;

3. Every middle end of F has a representative in one of the just described
slab regions S.

Proof. Since we are assuming that the surface F has one or two limit ends,
the collections D1 and D2 of disks are each infinite sets. The disks in D1 can
be chosen to be disks of least area in H1 relative to their boundaries. In fact
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the disks used by Freedman in the proof of his theorem have this property.
Assume that the disks in D2 also have this least area property. Suppose W

is a closed component of H1 − ∪D1 or H2 − ∪D2 which is homeomorphic to
A × [0, 1).

Let γ(W ) be a piecewise smooth simple closed curve in ∂W that generates
the fundamental group of W . The curve γ(W ) bounds two noncompact annuli
in ∂W . (Imagine W is the closed outer complement of a catenoid and γ(W )
is the waist circle of the catenoid.) By choosing γ(W ) to intersect the interior
of one of the disks in D1 or D2 on the boundary of W , we can insure that
neither annulus in ∂W bounded by γ(W ) is smooth. Fix one of these annuli
and an exhaustion of it by compact annuli A1 ⊂ A2 ⊂ . . . An ⊂ . . . with
γ(W ) ⊂ ∂A1. By [14] the boundary of W is a good barrier for solving Plateau-
type problems in W . Let Ãn denote a least area annulus in W with the same
boundary as An which is embedded by [14]. The curve γ(W ) bounds a properly
embedded least area annulus A(W ) in W , where A(W ) is the limit of some
subsequence of {Ãn}; the existence of A(W ) depends on local curvature and
local area estimates given in a similar construction in [9]. Since the interior
of the minimal annulus A(W ) is smooth, the maximum principle implies that
A(W ) intersects ∂W only along γ(W ). The stable minimal annulus A(W ) has
finite total curvature [3] and so is asymptotic to the end of a plane or catenoid
in R

3. By the maximum principle at infinity [13], the end of A(W ) is a positive
distance from ∂W . Hence, one can choose the representative end of a plane or
catenoid to which A(W ) is asymptotic to lie in the interior of W .

Let S denote the collection of ends of planes and catenoids defined above
which arises from the collection of nonsimply connected components W of
Hi − ∪Di. It follows from the proof of the Ordering Theorem in [8] that S
induces the ordering of E(F ). Since the middle ends of F are not limit ends,
when F has one limit end, then, after a possible reflection of F across the
xy-plane, we may assume that the limit end of F is its top end. Thus, S will
be naturally indexed by the nonnegative integers N if F has one limit end or by
Z if F has two limit ends with the ordering on the index set N or Z coinciding
with the natural ordering on S, and the subset of nonlimit ends in E(F ).

Suppose that F has one limit end and let S = {E0, E1, . . .}. Let B0 be
a ball of radius r0 centered at the origin with ∂E0 ⊂ B0 and such that ∂B0

intersects E0 transversely in a single simple closed curve γ0. The curve γ0

bounds a disk D0 ⊂ ∂B0. Attach D0 to E0 − B0 to make a plane P0. Next
let B1 be a ball centered at the origin of radius r1, r1 ≥ r0 + 1, such that
∂E1 ⊂ B1 and ∂B1 intersects E1 transversely in a single simple closed curve
γ1. Let D1 be the disk in ∂B1 disjoint from P0. Let P1 be the plane obtained
by attaching D1 to E1 − B1. Continuing in this manner we produce planes
Pn, n ∈ N, that satisfy properties 1, 2, 3 in the lemma. These planes can be
modified by a small C0-perturbation so that the resulting planes are smooth.
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If F had two limit ends instead of one limit end, then a simple modification of
this argument also would give a collection of planes P satisfying properties 1,
2, 3 in the lemma.

Remark 3.2. Lemma 3.1 only addresses the case where the surface F has
an infinite number of ends. When there are a finite number of ends greater
than two, then the proof of the lemma goes through with minor modifications.
If F has two ends and is an annulus, then extra care must be taken to find the
single plane in P (see for example, the proof of the Ordering Theorem for this
argument).

Proposition 3.3. There exists a collection of planes P satisfying the
properties described in Lemma 3.1 and such that each plane in P intersects
F in a single simple closed curve. Furthermore, in the slab between two suc-
cessive planes in P, F has exactly one end.

Proof. Suppose the limit tangent plane to F is horizontal and that P is
finite. Let PT and PB be the top and bottom planes in the ordering on P.
Since the inclusion of the fundamental group of F into the fundamental group
of either complement is surjective [9], the proof of Haken’s lemma [10] implies
that PT can be moved by an ambient isotopy supported in a large ball so that
the resulting plane P ′

T intersects F in a single simple closed curve. Let P̃B be
the image of PB under this ambient isotopy. Consider the part FB of F that
lies in the half space below P ′

T and note that the fundamental group of FB

maps onto the fundamental group of each complement of FB in the half space.
The proof of Haken’s lemma applied to P̃B in the half space produces a plane
P ′

B isotopic to P̃B that intersects FB in a simple closed curve. We may assume
that this is an isotopy which is the identity outside of a compact domain in FB.

Consider the slab bounded by P ′
T and P ′

B. The following assertion implies
that {P ′

T , P ′
B} can be expanded to a collection of planes P satisfying all of the

conditions of Proposition 3.3.

Assertion 3.4. Suppose S is a slab bounded by two planes in P where
P satisfies Lemma 3.1. Suppose each of these planes intersects F in a simple
closed curve. Then there exists a finite collection of smooth planes in S, each
intersecting F in a simple closed curve, which separate S into subslabs each of
which contains a single end of F . Furthermore the addition of these planes to
P gives a new collection satisfying Lemma 3.1.

Proof. Here is the idea of the proof of the assertion. If F has more than
one end in S, then there is a plane in S which is topologically parallel to the
boundary planes of S and which separates two ends of F ∩ S. The proof of
Haken’s lemma then applies to give another such plane with the same end
which intersects F in a simple closed curve. This new plane separates S into
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two slabs each containing fewer ends of F . Since the number of ends of F ∩ S

is finite, the existence of the required collection of planes follows by induction.

Assume now that the number of planes in P satisfying Lemma 3.1 is
infinite. We first check that P can be refined to satisfy the following additional
property: If W is a closed complement of either H1 −∪D1 or H2 −∪D2, then
W intersects at most one plane in P. We will prove this in the case that F

has one limit end. In what follows we will assume our standard conventions:
F has a horizontal limit tangent plane at infinity and the limit end is maximal
in the ordering of ends. The proof of the case where F has two limit ends is
similar.

Let W be the set of closures of the components of H1−∪D1 and H2−∪D2.
Given W ∈ W, let P(W ) be the collection of planes in P that intersect W . If
W is a compact ball, then P(W ) is a finite set of planes since P is proper. If
W is homeomorphic to A× [0, 1), then P(W ) is also finite. To see this choose
a plane P ∈ P whose end lies above the end of W ; the existence of such a
plane is clear from the construction of P in the previous lemma. Note that
the closed half space above P intersects W in a compact subset. Hence, only
a finite number of the planes above P can intersect W . Since there are an
infinite number of planes in P above P , there exists a plane P̃ above P so that
P̃ is disjoint from W and any plane in P above P̃ is also disjoint from W .
Since there are only a finite number of planes below P̃ , only a finite number
of planes in P can intersect W .

We now refine P. First recall that the end of P0 is contained in a single
component of W. Hence, the plane P0 intersects a finite number of components
in W and each of these components intersects a finite collection of planes in
P different from P0. Remove this collection from P and reindex to get a new
collection P = {P0, P1, · · · }. Note that P1 does not intersect any component
W ∈ W that also intersects P0. Now remove from P all the planes different
from P1 that intersect some component W ∈ W that P1 intersects. Continuing
inductively one eventually arrives at a refinement of P such that for each
W ∈ W, P(W ) has at most one element. This refinement of P satisfies
the conditions of Lemma 3.1 and so, henceforth, we may assume that P(W )
contains at most one plane for every P ∈ P.

The next step in the proof is to modify each P ∈ P so that the resulting
plane P ′ intersects F in a simple closed curve. We will do several modifications
of P to obtain P ′ and the reader will notice that each modification yields a
new plane that is a subset of the union of the closed components of W that
intersect the original plane P . This is important to make sure that further
modifications can be carried out.

Suppose P ∈ P and the end of P is contained in H1. Let A2 be the set of
components of W∩H2 that are homeomorphic to A× [0, 1). For each W ∈ A2,
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let T (W ) be a properly embedded half plane in W , disjoint from ∪D2, such
that the geodesic closure of W −T (W ) is homeomorphic to a closed half space
of R

3. Assume that P intersects transversely the half planes of the form T (W )
and the disks in D2.

We first modify P so that there are no closed curve components in P ∩
(∪D2). If D ∈ D2 and P ∩ D has a closed curve component, then there is an
innermost one and it can be removed by a disk replacement. Since the end of P

is contained in H1, there are only a finite number of closed curve components in
∪D2 and they can be removed by successive innermost disk replacements. In a
similar way we can remove the closed curve components in P ∩ (∪T (W ))W∈A2 .

We next remove compact arc intersections in P ∩ (∪D2) by sliding P over
an outermost disk bounded by an outermost arc and into H1. In a similar
way we can remove the finite number of compact arc intersections of P with
∪T (W )W∈A2 . Notice that P already intersects the region that we are pushing
it into.

After the disk replacements and slides described above, we may assume
that P is disjoint from the disks in D2 and the half planes in A2. Let W ∈ W
be the component which contains the end of P and let P (∗) be the component
of P ∩W which contains the end of P . Cut H2 along the disks in D2 and half
planes in A2. Since every closed component of the result is a compact ball or a
closed half space, the boundary curves of P (∗), considered as subsets of these
components, bound a collection of pairwise disjoint disks in H2. The union
of these disks with P (∗) is a plane P ′′ with P ′′ ∩ W = P (∗). If P (∗) is an
annulus, then we are done. Otherwise, since the fundamental group of W is
Z, the loop theorem implies that one can do surgery in W on P (∗) ⊂ P ′′ such
that after the surgery, the component with the end of P ′′ has fewer boundary
components. After further surgeries in W we obtain an annulus P ′(∗) with
the same end as P (∗) and with boundary curve being one of the boundary
curves of P (∗). By our previous modifications, ∂P ′(∗) lies on the boundary
of the closure of one of the components of H2 − ∪D2 and bounds a disk D in
this component. We obtain the required modified plane P ′ = P ′(∗)∪D which
intersects F in the curve ∂P ′(∗).

The above modification of a plane P ∈ P can be carried out independently
of the other planes since the modified plane is contained in the union of the
components of W that intersect P and when P intersects W ∈ W, then no
other plane in P intersects W . Now perform these modifications on all of
the even indexed planes in P to form a new collection. Note that the odd
indexed planes of P give rise to a proper collection of slabs with exactly one
even indexed plane in each of these slabs. Next remove all of the odd indexed
planes from P and reindex the remaining ones by N in an order preserving
manner.
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Finally, applying the Assertion 3.4 allows one to subdivide the slabs be-
tween successive planes in P so that each slab contains at most one end of F .
This completes the construction of P and the proof of Proposition 3.3.

4. The structure of a minimal surface in a slab or half space

Let F be an orientable surface and let C be a proper collection of disjoint
simple closed curves in F × {0}. If H is a three-manifold that is obtained
by adding 2-handles to F × [0, 1] along C and then capping off the sphere
components with balls, then H is a compression body. Alternatively, if H is
an irreducible three-manifold and ∂−H is a closed proper subsurface of ∂H

and Γ is a properly embedded 1-dimensional CW-complex in H so that there
is a proper deformation retraction r : H → ∂−H ∪ Γ, then H is a compression
body. The surface ∂+H = ∂H − ∂−H is called the inner boundary component
of H. If ∂−H = ∅, then we say H is a handlebody. The compression body H

is properly embedded in the three-manifold M , if its inclusion map is a proper
embedding in the topological sense and ∂−H = H ∩ ∂M . A Heegaard splitting
of a three-manifold M is a pair of compression bodies H1 and H2 properly
embedded in M so that M = H1 ∪ H2 and the intersection of H1 and H2 is
exactly their inner boundary components. The surface ∂+H1 = ∂+H2 is called
a Heegaard surface.

The 1-dimensional CW-complex Γ in the definition of compression body
is called a spine of the compression body. There are many choices of spines
for a given compression body. For the sake of combinatorial clarity we will
only work with spines whose vertices are all monovalent or trivalent, and the
monovalent vertices coincide with Γ ∩ ∂−H. We can further assume that the
restriction of the deformation retraction r : H → ∂−H ∪ Γ restricted to ∂+H

has the property that the inverse image of any point that is in the interior
of an edge is a single circle, the inverse image of any monovalent vertex is a
circle and the inverse image of any trivalent vertex is a trivalent graph with
three edges and two vertices (a theta curve). This leads to a corresponding
decomposition of ∂+H into pairs of pants, annuli, and a copy of ∂−H with a
disk removed for each monovalent vertex of Γ. There is a pair of pants for each
trivalent vertex, and an annulus for each edge that contains no vertex, and the
rest of the surface runs parallel to ∂−H. We can reconstruct Γ up to isotopy
from this decomposition.

Aside from isotopy there are two moves that we will be using on Γ. They
are both variants of the Whitehead move. We alter the graph according to one
of the two local operations shown in Figure 1 and Figure 2.

Dually the Whitehead move involves two pairs of pants meeting along a
simple closed curve γ which is the inverse image of a point in the interior of
the edge to be replaced. If γ′ is any simple closed curve lying on that union
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Figure 1: Whitehead move

Figure 2: Half Whitehead move with lower vertices on ∂−H

of pants that intersects γ transversely in exactly two points, and separates the
boundary components of the two pairs of pants into two sets of two, then we
can perform the Whitehead move so that the two new pairs of pants meet
along γ′.

The half Whitehead move can occur at a trivalent vertex that is adjacent
to a monovalent vertex (lying on ∂−H). You can think of it as collapsing the
edge with one endpoint on the boundary and one endpoint at the vertex to the
point on ∂−H and then pulling the ends of the two remaining edges apart.

Suppose that H is a compression body and δ is a simple closed curve on
the inner boundary component of H. We can extend δ to a singular surface
whose boundary lies in Γ ∪ ∂−H. First isotope δ so that with respect to the
decomposition into annuli, pants and a punctured ∂−H, the part of δ that
lies in each component is essential. There is a singular surface with boundary
δ obtained by adding “fins” going down to Γ based on the models shown in
Figure 3, along with fins in the annuli and near ∂−H.

Figure 3: Extending the disk D to a singular surface.

On a pair of pants there are six isotopy classes of essential proper arcs.
For each choice of a pair of boundary components there is an isotopy class
of essential arcs joining them, and for each boundary component there is an
isotopy class of essential arcs joining that boundary component to itself. We
call an essential proper arc good if its endpoints lie on distinct boundary com-
ponents, and bad if its endpoints lie in the same boundary component. Two
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such arcs are parallel if they are disjoint and have their endpoints in the same
boundary components.

Lemma 4.1. Suppose that H is a compression body and δ is a simple
closed curve on ∂+H. Either δ bounds a disk in H or there is a graph Γ so
that H is a regular neighborhood of Γ ∪ ∂−H such that δ has no bad arcs.

Proof. The argument will be by induction on a complexity for δ. Let s

be the number of bad arcs. Given a bad arc k, the arcs (or arc) of δ adjacent
to k lie in the same pair of pants or in the punctured copy of ∂−H. If the
two endpoints of the bad arc coincide with the two endpoints of another bad
arc, then let d(k) = 0. If both arcs lie in the punctured copy of ∂−H, then let
d(k) = 1. If both arcs lie in the same pair of pants P , then either the two arcs
are parallel or not parallel . If they are not parallel, then d(k) = 1. If they
are parallel, then follow them into the next surface. If the next surface is the
punctured copy of ∂−H, then d(k) = 2, if the next surface is a pair of pants
and the next arcs are not parallel, then d(k) = 2, otherwise follow them into
the next surface, and keep counting. Let m = mink bad d(k). The complexity
of δ is the pair (s, m).

∂4

∂3

∂1

∂2 γ′

γ

Figure 4: Reducing m when it is greater than 1. On the right-hand side of the
figure, P1 is on the left, P2 is on the right and P1 ∩ P2 = γ′.

If m > 1, then we do the Whitehead move to reduce m as follows; see
Figure 4. Let k be a bad arc with d(k) = m. Let Q be the union of the pair
of pants containing k and the pair of pants that contains the adjacent pair of
arcs k1 and k2. Let γ be the curve that the two pairs of pants meet along.
Let ∂1, ∂2, ∂3, ∂4 be the boundary components of Q labeled so that ∂1 and ∂4

belong to one pair of pants, ∂2 and ∂3 belong to the other pair of pants, and
both k1 and k2 have an endpoint in ∂4. Let a = k∪k1∪k2. There is an arc b of
∂4 so that a push off γ′ of a∪ b lies in Q, misses a and separates the boundary
components of Q into two sets of two, say one set is ∂1 and ∂2 and the other
is ∂3 and ∂4. Perform the Whitehead move so that γ′ is the intersection of
the two new pairs of pants. Denote the new pairs of pants, resulting from the
Whitehead move corresponding to γ′, by P1 where ∂P1 = ∂1 ∪ ∂2 and by P2

where ∂P2 = ∂3∪∂4. Notice that a is a bad arc and d(a) = m−1. To conclude
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Figure 5: The endpoints of the bad arc are near ∂−H.

Figure 6: Reducing the number of bad arcs when m = 1. In the figure on the
left, the waist is the curve γ and the arc b lies in the lower pair of pants.

that we have simplified the picture we need to see that we have not increased
the number of bad arcs. If l is a bad arc in P1 ∪ P2 and it has its endpoints
in some ∂i, then it contains some bad arc of the original picture. If l has its
endpoints in γ′ and lies in P2, as δ is embedded it is trapped in the annulus
between γ′ and a and is hence inessential. If l has its endpoints in γ′ and is
contained in P1, once again the arc is trapped by a and hence there must be
two arcs in P2 having one endpoint each in common with l and the other in b;
but this means l is contained inside a bad arc from the original picture. Hence
we did not increase s. On the other hand we have decreased m by 1.

If m = 1, then there are two cases. The first is when an adjacent pair of
arcs lies in the part of the surface parallel to ∂−H. In this case we do a half
Whitehead move to reduce the number of bad arcs; see Figure 5.

The other case is when an adjacent pair of arcs is contained in an adjacent
pair of pants. Once again, a Whitehead move can be applied to reduce the
number of bad arcs; see Figure 6. Let Q be the union of the two pairs of pants
that contain k, and let k1 and k2 be the arcs of δ adjacent to k and lying in
the other pair of pants. Let γ be the circle that the pants intersect along.
Let b be an arc in the other pair of pants that contains the endpoints of k,
only intersects k1 and k2 in the endpoints they share with k, and is transverse
to the other components of δ ∩ Q. Let γ′ be a push off of b ∪ k such that it
intersects k in a single point, is disjoint from k1 and k2, and such that during
the push off, the related arcs bt stay transverse to δ and the related arcs kt are
disjoint from δ for t 
= 0. Notice that the arc k1 ∪ k ∪ k2 gets separated into
two good arcs by γ′. Hence, if we have not created any new bad arcs, then we
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have reduced the total number of bad arcs. If a bad arc enters and leaves the
new picture through a boundary component of Q, then it is either contained in
or contains a bad arc of the old picture. Hence, we only need to worry about
bad arcs with their endpoints in γ′. Since δ is embedded, such an arc misses
k1 ∪ k ∪ k2. The result of cutting Q along the arc k1 ∪ k ∪ k2 is a pair of pants
and γ′ gives rise to an arc of this pair of pants that has both its endpoints
in the same boundary component of the pair of pants. The only proper arcs
that intersect the arc corresponding to γ′ in an essential manner in two points
must have both their endpoints in the same boundary component of the pair
of pants. This implies that such a bad arc is contained inside a bad arc from
the original picture.

Finally, when m = 0, there are two arcs joined end to end, and the disk
inside the regular neighborhood of Γ is readily visible; see Figure 7.

Figure 7: The interior disk.

Suppose S is a flat 3-manifold in R
3 that is homeomorphic to R

2 × [0, 1].
Denote the components of ∂S by ∂0S and ∂1S. Assume further that there are
simple closed curves C0 ⊂ ∂0S and C1 ⊂ ∂1S so that ∂iS is a union of two
minimal surfaces sharing Ci as their joint boundary. As ∂iS is a plane, one of
these surfaces is a disk Di and the other is a once-punctured disk Ai. Finally,
assume that F is a properly embedded minimal surface in S having one end,
boundary C0 ∪ C1 and such that in each closed complement of F in S, the
interior angles along ∂F are less than π. Up until the end of this section, we
will assume these properties hold for S and F .

Proposition 4.2. The surface F separates S into two compression bodies
H1 and H2, having F as their inner boundary components. That is, F is a
Heegaard surface.

Proof. We outline the idea for the sake of completeness. First consider
the region H1 and suppose that ∂H1 has one end. In this case, by [9], H1 is
a handlebody. Assume now that ∂H1 has two ends. By Freedman’s theorem
applied to H1, there exists a proper family of compressing disks D1 which
can be chosen to have their boundary components disjoint from ∂S. After
possibly restricting to a subcollection of D1, we see that the result of cutting
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H1 along D1 is connected and homeomorphic to A × [0, 1). But A × [0, 1) is
homeomorphic to Σ × [0, 1] where Σ is a proper once-punctured disk on one
of the boundary planes of S with boundary being one of the two boundary
components of F . In this case H1 is a compression body. Similarly, if ∂H1

has three ends, then one can choose the collection D1 so that cutting H1 along
D1 is homeomorphic to Σ × [0, 1] where Σ consists of the two once-punctured
disks in ∂S bounded by ∂F . Similarly, H2 is a compression body, and so F is
a Heegaard surface in S.

The proof of the topological classification theorem will require the exam-
ination of three kinds of surfaces with one end.

Type 1. The topology of F ⊂ S is finite. This means that F is homeo-
morphic to the result of removing a single point from a compact surface with
two boundary components. In this case F separates S into two compression
bodies. One of the compression bodies has boundary D0 ∪ F ∪ A1 and the
other has boundary D1 ∪F ∪A0. Since A0 and A1 lie in different components
of the complement of F , any arc joining A0 to A1 has Z2-intersection number
1 with F . Hence the end is odd.

Type 2. F has infinite genus and any arc joining A0 to A1 has Z2-
intersection number 1 with F . Once again F separates S into two compression
bodies, one with boundary D0∪F∪A1 and the other with boundary D1∪F∪A0.
This is an odd end.

Type 3. Any arc joining A0 to A1 has Z2-intersection number 0 with F .
In this case F separates S into a handlebody with boundary F ∪ D0 ∪ D1

and a compression body with boundary F ∪ A0 ∪ A1. This end is even and is
necessarily of infinite genus.

Our task is to show that in the first case, the surface is classified up to
topological equivalence by its genus, and any two surfaces of the second type
(or third type) are topologically equivalent. Let D denote a topological disk,
and let A denote S1 × [0, 1).

Theorem 4.3. If F ⊂ S and F ′ ⊂ S′ are two minimal surfaces with one
end of finite type, the same genus and boundary consisting of circles C0, C1

and C ′
0, C ′

1 (respectively), then there is a homeomorphism h : S → S′ with
h(∂iS) = ∂iS

′ and h(F ) = F ′.

Proof. We need only check that the embedding of F in S is the standard
one. We will assume that we have chosen a homeomorphism between S and
R

2 × [0, 1] and work in those coordinates. It is possible to find a large solid
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cylinder D × [0, 1] whose boundary cylinder intersects F in a single simple
closed curve in ∂D × [0, 1] so that:

1. S − D × [0, 1] is homeomorphic to A × [0, 1];

2. The pair (S −D× [0, 1], F −D× [0, 1]) is topologically equivalent to the
pair (A × [0, 1], A × {1/2}).

This follows quite easily from the fact that F is a Heegaard surface. As
F has finite type, there is a compact 1-dimensional CW-complex Γ so that F

is isotopic to the frontier of a regular neighborhood of Γ∪R
2 ×{0}. Since Γ is

compact, its projection to R
2 is bounded. Hence there is a large D in R

2 that
contains its image. The set D× [0, 1] satisfies the conditions above. (Similarly
we could find D′ × [0, 1] having the same properties with respect to F ′ ⊂ S′.)

The existence of the disk D above implies that we can simultaneously
compactify S and F by adding a single circle at infinity so that the com-
pactification of S is homeomorphic to the three-ball and the closure of F is
a Heegaard surface. The fact that F completes to a surface follows from the
second property above. To see that F is a Heegaard surface, note that the
natural maps on fundamental groups induced by inclusion of the surface into
its complements are surjective. This implies that the compactified surface is
a Heegaard splitting of the three-ball. In [7] it was proved that such surfaces
are classified up to homeomorphisms of the ball by their boundary and their
genus. Hence, if F and F ′ have the same genus, then we can find a homeo-
morphism of the compactifications of S and S′ taking the compactification of
F to the compactification of F ′. By restricting the homeomorphism, we get a
homeomorphism of S to S′ having the desired properties.

Let M be a manifold and suppose that F is a Heegaard surface of M

with compact boundary. We say that F is infinitely reducible if there is a
properly embedded family of balls that are disjoint from one another, so that
each ball intersects F in a surface of genus greater than zero having a single
boundary component, and so that every end representative of M has nonempty
intersection with the family of balls. It is a good exercise in the application
of the Reidemeister–Singer theorem to prove that any two infinitely reducible
Heegaard splittings of M which agree on the boundary of M are topologically
equivalent via a homeomorphism of M that is the identity on the boundary.
This result appears in [5] and it can also be seen to hold from a proof analysis
of [9].

Hence, in order to prove that up to topology there is only one surface
in types 2 and 3, it suffices to show that a minimal surface in a slab S and
with one end of infinite topology with boundary C0, C1 is infinitely reducible.
For this purpose we use a simple extension of a lemma from [6] to Heegaard
surfaces with boundary.
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Lemma 4.4. Suppose that F is the Heegaard surface of the irreducible
manifold M , and there are a 1-dimensional CW-complex Γ in M and a subsur-
face A of ∂M so that F is properly ambiently isotopic to a regular neighborhood
of Γ ∪ A. Suppose further that there is a ball B embedded in M so that there
is a nontrivial cycle of Γ contained in the interior of B. Then F is reducible.

Proof. Let C be the nontrivial cycle of Γ contained in the interior of B.
Notice that F is a Heegaard surface for a splitting of the complement of a
regular neighborhood of C. Apply Haken’s lemma to find a sphere intersecting
F in a single circle. The sphere cuts off a subsurface of F having genus greater
than zero. Since the sphere bounds a ball in M , F is reducible.

Theorem 4.5. If F is a Heegaard surface of S with one end, infinite
genus and boundary consisting of two circles Ci ⊂ R

2 × {i}, then the corre-
sponding Heegaard splitting is infinitely reducible.

Proof. Recall the coordinatization S = R
2×[0, 1]. Let Γ be a 1-dimensional

CW-complex so that it is a spine of one of the compression bodies making up
the Heegaard splitting. Hence, F is the frontier of a regular neighborhood of
Γ and a subsurface Σ of ∂(R2 × [0, 1]). Up to proper isotopy we can make
this regular neighborhood as thin as we like, so that if we are intersecting F

with a proper surface P , we can make Γ transverse to P and assume that the
intersection of F with the surface consists of small circles about the intersection
of Γ with P , and one manifolds that run parallel to the part of ∂P that lies
in Σ.

By Proposition 2.2 of [9], there is an exhaustion of S by compact subman-
ifolds Ki so that the part of F lying outside of each Ki is a Heegaard surface
for the complement of Ki. For any Ki there is Di × [0, 1] that contains Ki

so that its frontier is transverse to Γ. Choose a half plane HPi whose bound-
ary consists of an arc in ∂Di × [0, 1] and two rays, one each in R

2 × {0} and
R

2×{1}, that cuts the complement of Di× [0, 1] into a half space. If there is a
cycle of the graph Γ in this half space, then there is a reducing ball outside Ki.
We assume that the intersection of F with ∂Di × [0, 1] is effected as above so
that the part of the compression body containing Γ lying in the complement
of Di × [0, 1] is a compression body. We further assume that the intersection
of F with HPi is also of this form.

Our goal now is to prove that there is a reducing sphere outside of Ki.
Since F has infinite genus, there is a compressing disk E for F in the comple-
ment of the compression body and that lies outside of Di × [0, 1]. By Lemma
4.1, we can choose a decomposition of F into pants, annuli and a surface par-
allel to Σ minus some disks so that the boundary of E has no bad arcs, or
there is a disk inside the compression body with boundary ∂E. In the second
case the two disks form a sphere, which bounds a ball in the complement of
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Di × [0, 1] containing a cycle of the graph. Hence there is a reducing sphere
outside of Ki.

We now consider the case where E has no bad arcs. First make E trans-
verse to HPi. We can isotope E (and the graph Γ) so that there are no simple
closed curves in E ∩ HPi. Let k be an arc of E ∩ HPi that is outermost in
E. We will show that we can either alter the cycle which is the boundary of
E so that it intersects HPi in fewer points or we can find a nontrivial cycle of
Γ contained in the singular disk extending E. In the case that we reduce the
number of points, we continue on. Either we find a nontrivial cycle or we pull
E completely off of HPi, in which case there is a nontrivial cycle of Γ disjoint
from HPi in the desired region.

There are two cases.

1. The two endpoints of k lie in the same boundary component of the same
pair of pants.

The arc of the boundary of the disk extending E lying in Γ defines a
cycle. As ∂E does not ever enter and leave a pair of pants through the same
boundary component, this cycle is nontrivial. As the disk is outermost, there
is a nontrivial cycle of Γ in the result of cutting the complement of Di × [0, 1]
along HPi. As HPi is a half space, it is easy to see there is a cycle of Γ
contained in a ball. Hence there is a trivial handle of F lying outside Ki.

2. The two endpoints of k lie in distinct boundary components of pairs of
pants.

The first thing to notice is that the arc of the boundary of the disk ex-
tending E in Γ is embedded. If not, then it would contain a cycle, and as the
disk is outermost that cycle would live in a ball. Let l be the number of pairs
of pants that the arc passes through.

It remains to show that if l > 1, we can reduce it. If l > 1, we reduce
it via a sequence of Whitehead moves on Γ so as not to make any arcs of
∂E bad. Let Q be a union of two pairs of pants so that one of them has a
boundary component on HPi and an arc of k runs across Q from that boundary
component to another component that belongs in a separate pair of pants from
the first. Let γ′ be the frontier of a regular neighborhood in Q of the union
of the arc of k with the two boundary components. It is easy to check that γ′

can be used to perform a Whitehead move on Q that does not create any new
bad arcs, and reduces l by 1.

If l = 1, we can then use the outermost disk as a guide to isotope Γ so as
to reduce the number of points of intersection of that part of the graph in the
boundary of the singular disk which is the extension of E.

After finitely many steps, we have either found a cycle in a ball or pulled
the singular disk, which is the boundary of E, off of HPi. In case 2 above,
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because E was a compressing disk, there is a cycle of Γ contained in the
boundary of the singular disk, and it is disjoint from HPi meaning that we
have a cycle in a ball and this ball lies outside of Ki as desired. This ball is
contained in some Kj , j > i, and so we can reproduce our arguments to find a
cycle contained in a ball outside Kj . It follows that the Heegaard splitting is
infinitely reducible.

Remark 4.6. Results similar to Proposition 4.2, Theorem 4.3 and Theo-
rem 4.5 hold if S is a topological half space of R3 with one boundary plane
consisting of the union of an annulus A and a compact disk D, both of surfaces
having least area in the respective closed complements of a properly embedded
minimal surface F ⊂ R

3, and ∂S ∩ F = ∂D = ∂A, and F ∩ S has one end.
This situation arises when F ∩ S represents a top or bottom end of F . The
halfspace case is somewhat easier to analyze than the slab case and we leave
the details to the reader to verify.

Proof of Theorem 1.1. Let P = {Pi|i ∈ I} be the collection of smooth
planes given in the statement of Proposition 3.3. We now check that there
exists a similar collection of piecewise smooth planes P̃ with the same ordered
indexing set I and such that each plane in P̃ is the union of a proper mini-
mal annulus and a minimal disk, each of which intersects F only along their
common boundary. The conclusion of Proposition 3.3 is true even when F has
finitely many ends.

Let {γi = Pi ∩ F | Pi ∈ P, i ∈ I}. Let D̃i be the related least area disk
bounded by γi in Pi. The arguments in the proof of Lemma 3.1 show that
we can replace the annular component Ai of Pi − γi by a properly embedded
annulus Ãi which has least area in a closed complement of F and which is
homotopic to Ai in this complement. If Ãi does not intersect F only along
its boundary, then it is contained in F by the maximum principle and it must
represent a top or bottom annular end of F . Since a top or bottom annular
end of F is easily seen to be standardly embedded in its related half space
(formed by a small push off of the plane Ãi ∪ D̃i which then intersects the end
Ai in a simple closed curve), in the next paragraph we assume that Ãi is not
contained in F .

Define P̃ = {Pi = Ãi∪D̃i | i ∈ I}. We claim that this is a proper collection
of planes. Otherwise, there is subsequence P̃i(n) of these planes, each of which
intersects a fixed ball B. Since the curves γi(n) eventually leave any compact
ball of R

3, then Schoen’s curvature estimates for stable minimal surfaces with
boundary [16] imply that there exists a flat plane P passing through B, which
lies in the limit set of the sequence of the planes P̃i(n). Since P lies in a closed
complement of F , we contradict the Halfspace Theorem in [11]. Hence, the
collection P̃ is proper.
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Suppose that F and F ′ are two properly embedded minimal surfaces and
there exists a homeomorphism h : F → F ′ that preserves the ordering and
parity of the ends. By the above discussion, we can find systems of planes that
separate space into slabs (and one half space if I = N) and the parts of F and
F ′ lying in the respective slabs (or one or two half spaces if they exist) are
Heegaard surfaces. The parity and order-preserving homeomorphism implies
that there is a correspondence between the slabs so that the parts of F and
F ′ lying in the corresponding slabs have the same parity. After shifting some
handles around so that finite genus surfaces have the same genus, we can then
apply the classification theorem for surfaces in a slab to build a homeomor-
phism of R

3 that takes F to F ′.

University of Iowa, Iowa City, IA

E-mail address: frohman@math.uiowa.edu

University of Massachusetts, Amherst, MA

E-mail address: bill@math.umass.edu

References

[1] M. Callahan, D. Hoffman, and W. H. Meeks III, The structure of singly-periodic min-
imal surfaces, Invent. Math. 99 (1990), 455–481.

[2] P. Collin, R. Kusner, W. H. Meeks III, and H. Rosenberg, The geometry, conformal
structure and topology of minimal surfaces with infinite topology, J. Diff. Geom. 67
(2004), 377–393.

[3] D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in 3-
manifolds, Invent. Math. 82 (1985), 121–132.

[4] M. Freedman, An unknotting result for complete minimal surfaces in R
3, Invent. Math.

109 (1992), 41–46.

[5] C. Frohman, Lectures on the topology of minimal surfaces, given at UC San Diego, fall
1991.

[6] ———, The topological uniqueness of triply-periodic minimal surfaces in R
3, J. Diff.

Geom. 31 (1990), 277–283.

[7] ———, Heegaard splittings of the three-ball, In Topology ′90, Proc. Special Semester
on Low Dimensional Topology, Ohio State University, De Gruyter, Berlin, 1992.

[8] C. Frohman and W. H. Meeks III, The ordering theorem for the ends of properly em-
bedded minimal surfaces, Topology 36 (1997), 605–617.

[9] ———, The topological uniqueness of complete one-ended minimal surfaces and Hee-
gaard surfaces in R

3, J. Amer. Math. Soc. 10 (1997), 495–512.

[10] W. Haken, Some results on surfaces in 3-manifolds, in Studies in Modern Topology, 5,
39–98, Englewood Cliffs, NJ, 1968.

[11] D. Hoffman and W. H. Meeks III, The strong halfspace theorem for minimal surfaces,
Invent. Math. 101 (1990), 373–377.

[12] H. B. Lawson, The unknottedness of minimal embeddings, Invent. Math. 11 (1970),
183–187.



700 CHARLES FROHMAN AND WILLIAM H. MEEKS III

[13] W. H. Meeks III and H. Rosenberg, The maximum principle at infinity for minimal
surfaces in flat three-manifolds, Comment. Math. Helvetici 65 (1990), 255–270.

[14] W. H. Meeks III and S. T. Yau, The existence of embedded minimal surfaces and the
problem of uniqueness, Math. Z. 179 (1982), 151–168.

[15] ———, The topological uniqueness of complete minimal surfaces of finite topological
type, Topology 31 (1992), 305–316.

[16] R. Schoen, Estimates for Stable Minimal Surfaces in Three Dimensional Manifolds,
Annals of Math. Studies 103, Princeton University Press, 1983.

(Received September 30, 2002)
(Revised October 18, 2007)


