
Regression trees
Trees involve stratifying or segmenting the predictor space into a
number of simple regions. In order to make a prediction for a given
observation, we typically use the mean or the mode of the training
observations in the region to which it belongs.

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Figure: For the Hitters data, a regression tree for predicting the log salary
of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous
year. The three-region partition for the Hitters data set from the
regression tree.

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Figure: At a given internal node, the label (of the form Xj < tk) indicates
the left-hand branch emanating from that split, and the right-hand
branch corresponds to Xj ≥ tk . For instance, the split at the top of the
tree results in two large branches. The left-hand branch corresponds to
Years<4.5, and the right-hand branch corresponds to Years>=4.5. The
tree has two internal nodes and three terminal nodes, or leaves. The
number in each leaf is the mean of the response for the observations that
fall there. We refer to the segments of the trees that connect the nodes
as branches.

Advantages of regression trees

I Trees are very easy to explain to people. In fact, they are even
easier to explain than linear regression!

I Some people believe that decision trees more closely mirror
human decision-making than do the regression and
classification approaches seen in previous chapters.

I Trees can be displayed graphically, and are easily interpreted
even by a non-expert (especially if they are small).

I Trees can easily handle qualitative predictors without the need
to create dummy variables.

I It’s non-model based and fully nonparametric

Build a regression tree

1. We divide the predictor space-that is, the set of possible
values for X1,X2, ...,Xp-into J distinct and non-overlapping
regions, R1,R2, ...,RJ .

2. For every observation that falls into the region Rj , we make
the same prediction, which is simply the mean of the response
values for the training observations in Rj .

How do we construct the regions R1, ...,RJ?
we choose to divide the predictor space into high-dimensional
rectangles, or boxes, for simplicity and for ease of interpretation of
the resulting predictive model. The goal is to find boxes R1, ...,RJ

that minimize the RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj
)2

where ŷRj
is the mean response for the training observations within

the jth box.
Recursive binary splitting: a top-down, greedy approach

I The approach is top-down because it begins at the top of the
tree (at which point all observations belong to a single region)
and then successively splits the predictor space; each split is
indicated via two new branches further down on the tree.

I It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than
looking ahead and picking a split that will lead to a better
tree in some future step.

Recursive binary splitting

I first select the predictor Xj and the cutpoint s such that
splitting the predictor space into the regions X |Xj < s and
X |Xj ≥ s leads to the greatest possible reduction in RSS .
(The notation X |Xj < s means the region of predictor space
in which Xj takes on a value less than s.)

I we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize
the RSS within each of the resulting regions.

I The process continues until a stopping criterion is reached; for
instance, we may continue until no region contains more than
five observations.

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

Figure: Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of
recursive binary splitting on a two-dimensional example. Bottom Left: A
tree corresponding to the partition in the top right panel. Bottom Right:
A perspective plot of the prediction surface corresponding to that tree.

Tree pruning

When should the recursive binary splitting stop? Goal: a smaller
tree that doesn’t overfit.

I One possible approach is to build the tree only so long as the
decrease in the RSS due to each split exceeds some (high)
threshold. This strategy will result in smaller trees, but is too
short-sighted since a seemingly worthless split early on in the
tree might be followed by a very NA

I A better strategy is to grow a very large tree T0, stopping
the splitting process only when some minimum node size (say
5) is reached. And then prune it back in order to obtain a
subtree, preferably with the lowest test error rate.

Cost complexity pruning (Weakest link pruning)

Rather than considering every possible subtree, the weakest link
pruning procedure:

I successively collapses the internal node that produces the
smallest per-node increase in RSS.

I continues until we produce the single-node (root) tree

It turns out this procedure generates a sequence of trees indexed
by a nonnegative tuning parameter α. For each value of α, there
corresponds a subtree T ∈ T0 such that

|T |∑
m=1

∑
i :xi∈Rm

(yi − ŷRm)2 + α|T |

is as small as possible. Here |T | indicates the number of terminal
nodes of the tree T .

The tuning parameter α controls a trade-off between the subtree
complexity and its fit to the training data. It turns out that as we
increase α from zero, branches get pruned from the tree in a
nested and predictable fashion, so obtaining the whole sequence of
subtrees as a function of α is easy.

Breiman (1984) and Ripley (1996) have shown that

I For each α, there is a unique smallest subtree Tα that
minimizes the cost complexity.

I The sequence of subtrees obtained by pruning under the
weakest link, must contain Tα.

We can select a value of α using a validation set or using
cross-validation. We then return to the full data set and obtain the
subtree corresponding to α.

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

Figure: Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

Figure: Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of
terminal nodes in the pruned tree. Standard error bands are displayed.
The minimum cross-validation error occurs at a tree size of three. The
dataset is randomly split in half, ielding 132 observations in the training
set and 131 observations in the test set. The training error and CV error
are based on the 132 training data and the test error is based on the 131
test data.

Classification trees

Different from regression tree, classification tree

I predicts that each observation belongs to the most
commonly occurring class of training observations in the
region to which it belongs.

I replace the goodness of fit measure at node m, RSSm, with
NmQm where Nm is the number of observations node m
contains and Qm is an impurity measure of node m.

Three commonly used impurity measures

I Classification error rate: E = 1−maxk(p̂mk) where p̂mk

represents the proportion of training observations in the mth
region that are from the kth class.

I Gini index: G =
∑K

k=1 p̂mk(1− p̂mk)

I Cross-entropy (deviance): D = −∑K
k=1 p̂mk log p̂mk .

In two-class problems, let p be the proportion of one class

I Classification error rate E = 1−max(p, 1− p)

I Gini index G = 2p(1− p)

I Cross-entropy D = −p log(p)− (1− p) log(1− p)

I The Gini-index and cross-entropy take on a small value if all
of the p̂mk ’s are close to zero or one, i.e., if the mth node is
pure. In fact, it turns out that the Gini index and the
cross-entropy are quite similar numerically.

I Cross-entropy and the Gini index are more sensitive to
changes in the node probabilities than the misclassification
rate. For example, in a two-class problem with 400
observations in each class (denote this by (400,400)), suppose
one split created nodes (300, 100) and (100, 300), while the
other created nodes (200 , 400) and (200 , 0). Both splits
produce a mis- classification rate of 0.25, but the second split
produces a pure node and is probably preferable. Both the
Gini index and cross-entropy are lower for the second split.

I either the Gini index or the cross- entropy are typically used to
evaluate the quality of a particular split, since these two
approaches are more sensitive to node purity than is the
classification error rate. Any of these three approaches might
be used when pruning the tree, but the classification error rate
is preferable if prediction accuracy of the final pruned tree is
the goal.

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes

Yes

5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

Figure: Heart data. Top: The unpruned tree. Bottom Left: Cross
-validation error, training, and test error, for different sizes of the pruned
tree. Bottom Right: The pruned tree corresponding to the minimal
cross-validation error.

Trees Versus Linear Models

Linear regression

f (X) = β0 +

p∑
j=1

Xjβj

Regression tree:

f (X) =
M∑

m=1

I{X∈Rm}

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

Figure: Top Row: A two-dimensional classification example in which the
true decision boundary is linear, and is indicated by the shaded regions. A
classical approach that assumes a linear boundary (left) will outperform a
de- cision tree that performs splits parallel to the axes (right). Bottom
Row: Here the true decision boundary is non-linear. Here a linear model
is unable to capture the true decision boundary (left), whereas a decision
tree is successful (right).

Issues with categorical predictors

I When splitting a predictor having q possible unordered values,
there are 2q−1 − 1 possible partitions of the q values into two
groups, and the computations become prohibitive for large q.

I With a 0-1 outcome, and continuous outcome(with square
error loss), the computation simplifies. The categories of the
categorical predictor are ordered by the proportion falling in
outcome class 1 or by the mean of the outcome, then the
predictor is split as if it were an ordered one. One can show
this gives the optimal split, in terms of cross-entropy or Gini
index, among all possible 2q−1 − 1 splits.

I The partitioning algorithm tends to favor categorical
predictors with many levels q. This can lead to severe
overfitting if q is large, and such variables should be avoided.

Issues with missing values

Possible approaches:

I For categorical variables, create the category ”missing”.
This also helps to discover that observations with missing
values behave differently than those complete observations.

I Construct surrogate variables besides the best splitting
variable. If the primary splitting variable is missing, use
surrogate splits in order.

I Multiway splits
I Multiway splits fragment the data too quickly, leaving

insuffcient data at the next level down
I Multiway splits can be achieved by a series of binary splits

I Linear combination splits
I Use the splits of the form

∑
ajXj ≤ s. The weights aj and

split point s are optimized to minimize the relevant criterion.
I It can improve the predictive power of the tree, but hurts

interpretability.
I The amount of computation is increases signifficantly. Model

becomes more complex.

Limitations of Trees

I Trees generally do not have the same level of predictive
accuracy as some of the other regression and classification
approaches seen in this book.

I Trees have high variance - Small change in data may result
in a very different series of splits, making interpretations
somewhat precautious. The major reason for this instability is
the hierarchical nature of the process: the effect of an error
in the top split is propagated down to all of the splits below it.

I Remedy: by aggregating many decision trees, using methods
like bagging , random forests ,and boosting , the
predictive perfor mance and stability of trees can be
substantially improved.

