
Chapter 3. Discrete Random Variables
and Their Probability Distributions

2.11 Definition of random variable

3.1 Definition of a discrete random variable

3.2 Probability distribution of a discrete ran-
dom variable

3.3 Expected value of a random variable or a
function of a random variable

3.4-3.8 Well-known discrete probability distri-
butions

Discrete uniform probability distribution

Bernoulli probability distribution

Binomial probability distribution

Geometric probability distribution

Hypergeometric probability distribution

Poisson probability distribution

3.9 Moments and Moment generating func-
tions (see Chapter 6)

3.11 Tchebysheff’s Theorem
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2.11 Definition of random variable

(Example : opinion poll)
In an opinion poll, we decide to ask 100 people
whether they agree or disagree with a certain
issue.
Suppose we are interested in the number of
people who agree out of 100.
If we record a “1” as for agree and “0” for dis-
agree, then the sample space S for this experi-
ment has 2100 sample points, each an ordered
string of 1s and 0s of length 100. It is tedious
to list all sample points.
Our interest is the number of people who agree
out of 100. If we define a variable Y=number
of 1s recorded out of 100, the (sample) space
for Y is the set of integers {0,1,...,100}.
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It frequently occurs that we are mainly inter-
ested in some functions of the outcomes as
opposed to the outcome itself. In the exam-
ple what we do is to define a new variable Y ,
the quantity of our interest. In statistics, Y is
called a random variable.

(Def 2.12) A random variable (RV) Y is a real-
valued function(mapping) from S into (not onto)
R, a set of real number,

Y : S → R where y = Y (s) and s ∈ S.
[note]

• Use late-alphabet capital letters (e.g., X, Y , Z) for
RVs

• The support of Y is the set of possible values of Y ,
{y ∈ R : Y (s) = y, s ∈ S}.

• The different roles of (capital) Y and (lowercase)
y(=a particular value that a RV Y may assume).

(Example) Toss of a coin
1) What is the S?
2) We are interested in Y = number of tail.
What is the support of Y ?
3) Y : S → R
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[Note] Y : S → R where y = Y (s) and s ∈ S.

• Y is a variable that is a function of the
sample points in S.

• Mapping or function: For each s ∈ S, there
exists one and only one y such that y =
Y (s) :

• One assigns a real number denoting the
value of Y to each point in S :
{Y = y} = {s : Y (s) = y, s ∈ S} is the
numerical event assigned the number y.

• Y partitions S into subsets so that points
within a subset are all assigned the same
value of Y . These subsets are mutually ex-
clusive since no point is assigned two dif-
ferent numerical values.

• P (Y = y) is the sum of the probabilities
of the sample points that are assigned the
value y.
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(Example : opinion poll)
In an opinion poll, we ask four people whether
they agree or disagree with a certain issue.
Suppose we are interested in the number of
people who agree out of four. We record a
“1” as for agree and “0” for disagree.
i) Identify the sample points in S,
ii) Assign a value of Y to each sample point,
iii) identify the sample points associated with
each value of the random variable Y .
iv) Compute probabilities for each value of Y .
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3.1 Definition of a discrete r.v.

(Def 3.1) A random variable Y is said to be
discrete if the support of Y is countable (either
finite or pairable with the positive integers)

(Revisited opinion poll example)
The event of interest is Y = { the number of
people who agree with a certain issue }. Since
the observed value of Y must be between zero
and 100, sample size, Y takes on only a finite
number of values and then is discrete.

(Example) common example: Any integer-valued
Y is discrete.

6



3.2 Probability distribution of a discrete
random variable

Every discrete random variable, Y , a probabil-
ity mass function (or probability distribution)
that gives the probability that Y is exactly equal
to some value.

(Def 3.2 and 3.3) The probability that a dis-
crete Y takes on the value y, P (y) = P (Y = y),
is a probability mass function(p.m.f.) (or prob-
ability distribution) of Y

• The expression (Y = y) : the set of all points in S
assigned the value y by the random variable Y

• P (Y = y) : the sum of the probabilities of all sample
points in S that are assigned the value y

• P (y) : represented by a formula, a table or a graph

(Example) A supervisor in a manufacturing plant has
two men and three women working for him. He wants
to choose two workers for a special job, and decides to
select the two workers at random. Let Y denote the
number of women in his selection. Find the probability
distribution for Y and represent it by a table, or a graph
and formula.
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(Theorem 3.1)
For p(y) for a discrete Y , the following must
be true:

1. 0 ≤ p(y) ≤ 1 for every y in the support of
Y .

2.
∑
y p(y) = 1

3. P (Y ∈ B) =
∑
y∈B p(y) where B ⊂ R.

(Example) p(y) = c(y + 1)2, y = 0,1,2,3.
Determine c such that p(y) is a discrete prob-
ability function.
Also find the probability distribution for Y , and
represent it by a table and a graph.
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(Def) Cumulative Distribution Function
For a discrete variable Y and real number a,
the cumulative distribution function for Y is

FY (a) = P (Y ≤ a) =
∑

all y≤a
p(y)

(Example) For discrete Y , p(y) is defined over
y = −2,−1,0,1,2, . . . ,10.

1) FY (2) =
2) FY (6) =
3) P (2 ≤ Y ≤ 6) =
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3.3 The expected value of a r.v. or a
function of a r.v.

The probability distribution for a r.v. Y : the-
oretical model for real distribution of data as-
sociated with a real population.

[Note] Given n observed samples y1, . . . , yn, how one can
describe the distribution of the data?

• measures of central tendency

– Sample mean, ȳ = 1
n

∑n
i=1 yi for the unknown

population mean : µ

• measures of dispersion or variation

– Sample variance, s2 = 1
n−1

∑n
i=1(yi − ȳ)2 and

Sample standard deviation, s =
√
s2 for the un-

known population variance and standard devia-
tion: σ2 and σ

Our interest : characteristics of the probability
distribution (p.m.f.) p(y) for a discrete Y such
as the mean and the variance for a discrete Y .
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(Def 3.4) Let Y be a discrete r.v. with the
probability mass function p(y). Then, the ex-
pected value (mean) of Y , E(Y ), is defined to
be

E(Y ) =
∑
y
yp(y).

How about the expected value of a function of
a r.v. Y like Y 2?

(Theorem 3.2)
Let Y be a discrete r.v. with the probability
mass function p(y) and g(Y ) be a real-valued
function of Y . Then the expected value of
g(Y ) is given by

E(g(Y )) =
∑
y
g(y)p(y).

(example) Roll one die; let X be the number
obtained. Find E(X) and E(X2).
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Four useful expectation theorems
Assume that Y is a discrete r.v. with p(y).

(Theorem 3.3)
Let Y be a discrete r.v. with p(y) and c be a
constant. Then E(c) = c.
(Proof)

(Theorem 3.4)
Let Y be a discrete r.v. with p(y), g(Y ) be a
function of Y , and let c be a constant. Then

E[cg(Y )] = cE[g(Y )]

(Theorem 3.5)
Let Y be a discrete r.v. with p(y) and g1(Y ), g2(Y ),
. . . , gk(Y ) be k functions of Y . Then,

E[g1(Y ) + g2(Y ) + · · ·+ gk(Y )]

= E[g1(Y )] + E[g2(Y )] + · · ·+ E[gk(Y )].

12



(Def 3.5) The variance of a discrete Y is de-
fined to be the expected value of (Y − µ)2.
That is,

V (Y ) = E[(Y − µ)2] =
∑
y

(Y − µ)2p(y)

where µ = E(Y ).
The standard deviation of Y is the positive

square root of V (Y ),
√
V (Y ).

(Theorem 3.6)
Let Y be a discrete r.v. with p(y). Then

V (Y ) = E[(Y − µ)2] =
∑
y

(Y − µ)2p(y)

=
∑
y
Y 2p(y)− µ2 = E(Y 2)− µ2.

where µ = E(Y ).
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(Example 3.2)

(Example) Let Y have p(y) = y
10, y = 1,2,3,4.

Find E(Y ), E(Y 2), E(Y (5− Y )) and σ2.

(Exercise 3.33) For constants a and b,
1) E(aY + b) = aE(Y ) + b = aµ+ b

2) V ar(aY + b) = a2V ar(Y ) = a2σ2

When a=1, .
When a=-1 and b=0, .

(Exercise) Let µ = E(Y ) and σ2 = V ar(Y ).

Find E
(
Y−µ
σ

)
and E

(
Y−µ
σ

)2
.
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In practice many experiments exhibit similar characteris-
tics and generate random variables with the same types
of probability distribution.

It is important to know the probability distributions,
means and variances for random variables associated
with common types of experiments.

Note that a probability distribution for a r.v. Y has the
(unknown) constant(s) that determine its specific form,
called parameters.

3.4-1 The discrete uniform random vari-
able

(Def) A random variable Y is said to have a dis-
crete uniform distribution with the parameter
m if and only if p(y) = 1

m where y = 1,2, . . . ,m.

(Theorem) Let Y be a discrete uniform random
variable. Then,

µ = E(Y ) =
m+ 1

2
and σ2 = V (Y ) =

m2 − 1

12
.

(Question) Does p(y) in (Def) above satisfy
the necessary properties in (Theorem 3.1)?
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3.4-2 The Bernoulli random variable

The Bernoulli random variable is related to
Bernoulli experiment.

1. The experiment results in one of two out-
comes (concerned with the r.v. Y of in-
terest). We call one outcome a success
and the other a failure (success is merely a
name for one of the two outcomes).

2. The probability of success is equal to p and
then the probability of a failure is equal to
q(= 1− p).

3. The random variable of interest is Y , the
outcome itself (Let Y = 1 when the out-
come is a success and Y = 0 when the
outcome is a failure)

(Def) A random variable Y is said to have a
Bernoulli distribution with the parameter p if
and only if

p(y) = pyq1−y,

where q = 1− p, y = 0,1 and 0 ≤ p ≤ 1.
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(Example) Toss a die one time. Let Y be a
random variable indicating that one observes a
number 6. The probability distribution of Y ,
p(y), is

(Question) Does p(y) in (Def) satisfy the nec-
essary properties in (Theorem 3.1)?

(Theorem) Let Y be a bernoulli random vari-
able with success probability p. Then,

µ = E(Y ) = p and σ2 = V (Y ) = pq

(Example) Suppose one tosses a die three times
independently. Let Y be the number of times
one observes a number 6. The probability dis-
tribution of Y , p(y), is

(Answer) use the Binomial probability distribution.
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3.4-3 The Binomial random variable

The Binomial random variable is related to bi-
nomial experiments

(Def 3.6)

1. The experiment consists of n identical and indepen-
dent trials.

2. Each trial results in one of two outcomes (con-
cerned with the r.v. Y of interest). We call one
outcome a success S and the other a failure F .
Here, success is merely a name for one of the two
possible outcomes on a single trial of an experiment.

3. The probability of success on a single trial is equal
to p and remains the same from trial to trial. The
probability of a failure is equal to q(= 1− p).

4. The random variable of interest is Y , the number

of successes observed during the n trials.

(Example 3.5) Reading
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Before giving the definition of the binomial
p.m.f., try to derive it by using the sample-
point approach.

How?
1. Each sample point in the sample space can
be characterized by an n-tuple involving the
letters S and F , corresponding to success and
failure: Ex) SSFSFSFFFFSS . . . SF︸ ︷︷ ︸.

n positions(n trials)
The letter in the i-th position(proceeding from left to

right) indicates the outcome of the i-th trial.

2. Consider a particular sample point corre-
sponding to y successes and contained in the
numerical event Y = y.

Ex) SSSS . . . SSS︸ ︷︷ ︸ FFF . . . FF︸ ︷︷ ︸.
y n-y

This sample point represents the intersection of n inde-

pendent events in which there were y successes followed

by (n− y) failures.
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3. If the probability of success(S) is p, this
probability is unchanged from trial to trial be-
cause the trials are independent. So, the prob-
ability of the sample point in 2 is

Ex) pppp . . . ppp︸ ︷︷ ︸ qqq . . . qq︸ ︷︷ ︸ = pyqn−y.

y terms n-y terms
Every other sample point in the event Y = y can be

represented as an n-tuple containing y S’s and (n-y)

F’s in some order. Any such sample point also has

probability pyqn−y..

4. The number of distinct n-tuples that con-
tain y S’s and (n− y) F’s is(n

y

)
=

n!

y!(n− y)!
.

5. The event (Y = y) is made up of
(
n
y

)
sample

points, each with probability pyqn−y, and that
the binomial probability distribution is

p(y) =
(n
y

)
pyqn−y.
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(Def 3.7) A random variable Y is said to have
a binomial distribution with the parameters n

trials and success probability p (in the binomial
experiment) (i.e., Y ∼ b(n, p)) if and only if

p(y) =
(n
y

)
pyqn−y,

where q = 1−p, y = 0,1,2, . . . , n and 0 ≤ p ≤ 1.

How about Y ∼ b(1, p)?

(Question) Does p(y) in (Def 3.7) satisfy the
necessary properties in (Theorem 3.1)?

(Example 3.7) Suppose that a lot of 5000 elec-
trical fuses contains 5% defectives. If a sample
of five fuses is tested, find the probability of
observing at least one defective.
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(Exercise 3.39) A complex electronic system is
built with a certain number of backup compo-
nents in its subsystems. One subsystem has
four identical components, each with a prob-
ability of .2 of failing in less than 1000 hours.
The system will operate if any two of the four
components are operating. Assume that the
components operate independently.

(a) Find the probability that exactly two of the
four components last longer than 1000 hours.

(b) Find the probability that the subsystem op-
erates longer than 1000 hours.

(Theorem 3.7) Let Y be a binomial random
variable based on n trials and success probabil-
ity p. Then,

µ = E(Y ) = np and σ2 = V (Y ) = npq

(Proof)

(Example 3.7) Mean and Variance

(Exercise 3.39) Mean and Variance
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3.5 The Geometric random variable

The geometric random variable is related to
the following experiments

1. The experiment consists of identical and indepen-
dent trials, but the number of trials is not fixed.

2. Each trial results in one of two outcomes (concern-
ing with the r.v, Y ), a success and a failure.

3. The probability of success on a single trial is equal
to p and remains the same from trial to trial. The
probability of a failure is equal to q(= 1− p).

4. However, the random variable of interest Y is the

number of the trial on which the first success oc-

curs, not the number of successes that occur in n

trials.

So, the experiment could end with the first trial if

a success is observed on the very first trial, or the

experiment could go on indefinitely!!.
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(Def 3.8) A random variable Y is said to have a
geometric probability distribution with the pa-
rameter p, success probability (i.e., Y ∼ Geo(p))
if and only if

p(y) = qy−1p,

where q = 1− p, y = 1,2,3 . . . , and 0 ≤ p ≤ 1.

(Question) Does p(y) in (Def 3.8) satisfy the necessary
properties in (Theorem 3.1)?

(Exercise 3.67) Suppose that 30% of the applicants for a
certain industrial job possess advanced training in com-
puter programming. Applicants are interviewed sequen-
tially and are selected at random from the pool. Find
the probability that the first applicant with advanced
training in programming is found on the fifth interview.

(Example) A basket player can make a free throw 60% of
the time. Let X be the minimum number of free throws
that this player must attempt to make first shot. What
is P (X = 5)?
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(Theorem 3.8)
Let Y be a binomial random variable with a
geometric distribution,

µ = E(Y ) =
1

p
and σ2 = V (Y ) =

1− p
p2

(Exercise 3.67 and Example above) Mean and Variance

[Memoryless property]

• CDF of Y ∼ Geo(p) : FY (a) = P (Y ≤ a) =

• P (Y > a + b | Y > a) = P (Y > b) : given that the
first success has not yet occurred, the probability
of the number of additional trials does not depend
on how many failures has been observed.
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3.7 The Hypergeometric random vari-
able

The hypergeometric random variable is related
to the following experiments

1. In the population of N elements there are elements
of two distinct types (success and failure)

2. Among N elements r elements can be classified as
success and N − r elements can be classified as fail-
ture.

3. A sample of size n is randomly selected without
replacement from a population of N elements

4. The random variable of interest is Y , the number

of success in the sample

(Example) A bowl contains N chips, of which
N1 are white, and N2 are green chips. Ran-
domly select n chips from the bowl without
replacement. Let Y be the number of white
chips chosen. What is P (Y = y)?
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(Def 3.10) A random variable Y is said to have
a hypergeometric probability distribution with
the parameters N andr if and only if

p(y) =

(
r
y

)(
N−r
n−y

)
(
N
n

) ,

where y is an integer 0,1,2, . . . , n, subject to
the restrictions y ≤ r and n− y ≤ N − r.

(Question) Does p(y) in (Def 3.10) satisfy the
necessary properties in (Theorem 3.1)?
(Hint) Use the following facts :(a

b

)
= 0 if b > a,

n∑
i=0

(r
i

)(N − r
n− i

)
=
(N
n

)
.

(Theorem 3.10)
Let Y be a random variable with a hypergeo-
metric distribution,

µ = E(Y ) =
nr

N
and

σ2 = V (Y ) = n

(
r

N

)(
N − r
N

)(
N − n
N − 1

)
.
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(Exercise 3.103) A warehouse contains ten print-
ing machines, four of which are defective. A
company selects five of the machines at ran-
dom, thinking all are in working condition. What
is the probability that all five of the machines
are nondefective?

[Relationship between Binomial distribution and
Hypergeometric distribution]
When N is large, n is relatively small and r/N

is held constant and equal to p, the following
holds:

lim
N→∞

(
r
y

)(
N−r
n−y

)
(
N
n

) =
(n
y

)
py(1− p)n−y

where r/N = p.
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We learned the following discrete random vari-
able and their probability distributions (p.m.f.):

1) Discrete uniform probability distribution

2) Bernoulli probability distribution

3) Binomial probability distribution

4) Geometric probability distribution

5) Hypergeometric probability distribution

The experiments in 2)-5) has two outcomes
concerned with the r.v. Y , for example “suc-
cess“ and “failure“.

Now we will learn how to model counting data
(number of times a particular event occurs) :
Poisson r.v. and its probability distribution.
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3.8 The Poisson random variable

The Poisson r.v. often provides a good model
for the probability distribution of the number
Y of (rare) events that occur in a fixed space,
time interval, volume, or any other dimensions.

(Example) the number of automobile accidents,
or other types of accidents in a given unit of
time.
(Example) the number of prairie dogs found in
a square mile of prairie

(Def 3.11) A r.v. Y is said to have a Poisson
probability distribution with the parameter λ

(i.e., Y ∼ Poisson(λ)) if and only if

p(y) =
λy

y!
e−λ,

where y = 0,1,2, . . . , and λ > 0 (λ does not
have to be an integer, but Y does).

Here, λ (rate)= average of (rare) events that
occur in a fixed space, time interval, volume,
or any other dimensions (i.e., number of oc-
currences per that unit of dimension).
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(Question) Does p(y) in (Def 3.11) satisfy the
necessary properties in (Theorem 3.1)?
(Hint) Use the following fact :

eλ = 1 + λ+
λ2

2!
+
λ3

3!
+ · · · =

∞∑
y=0

λy

y!
.

(Theorem 3.11)
Let Y be a random variable with a poisson
distribution,

µ = E(Y ) = λ, σ2 = V (Y ) = λ.

(Example) If Y ∼ Poi(λ) and σ2 = 3, P (Y = 2)?

(Example) Suppose Y ∼ Poi(λ) so that 3P (Y = 1) =
P (Y = 2). Find P (Y = 4)?

(Example) The mean of a poisson r.v. Y is µ = 9.
Compute P (µ− 2σ < Y < µ+ 2σ).

31



(Example)The average number of homes sold
by the X Realty company is 3 homes per day.
What is the probability that exactly 4 homes
will be sold tomorrow?

(Exercise 3.127) The number of typing errors
made by a typist has a poisson distribution with
an average of four errors per page. If more
than four errors appear on a given page, the
typist must retype the whole page. What is
the probability that a certain page does not
have to be typed?

(Example) Suppose that Y is the number of
accidents in a 4 hours window, and the num-
ber of accidents per hour is 3. Then, what is
P (Y = 2)?
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[Relationship between Binomial distribution and
Poisson distribution]

Suppose Y is a Binomial r.v. with parameters
n (total number of trials) and p (probability of
success). For large n and small p such that
λ = np, the following approximation can be
used :

lim
n→∞P (Y = y) = lim

n→∞

(n
y

)
py(1− p)n−y =

λy

y!
e−λ

This approximation is quite accurate if either
n ≥ 20 and p ≤ 0.05 or n ≥ 100 and p ≤ 0.10.

(Example) Y ∼ b(100,0.02)

(a) P (Y ≤ 3) =

(b) Using Poisson distribution, approximate P (Y ≤ 3).
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3.11 Tchebysheff’s Theorem

How one can approximate the probability that
the r.v. Y is within a certain interval?

• Use Empirical Rule if the probability distri-
bution of Y is approximately bell-shaped.

• The interval with endpoints,

· (µ − σ, µ + σ) contains approximately 68
% of the measurements.

· (µ−2σ, µ+2σ) contains approximately 95
% of the measurements.

· (µ − 3σ, µ + 3σ) contains approximately
99.7 % of the measurements.

E.G.) suppose that the scores on STAT515 midterm
exam have approximately a bell-shaped curve with
µ = 80 and σ = 5. Then

· approximately 68% of the scores are between 75
and 85 ,

· approximately 95% of the scores are between 70
and 90,

· almost all of the scores are between 65 and 95.
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However, how one can approximate the proba-
bility that the r.v. Y is within a certain interval
when the shape of its probability distribution is
not bell-shaped?

(Theorem 4.13)[Tchebysheff’s Theorem]

Let Y be a r.v. with µ = E(Y ) <∞ and σ2 =
V ar(Y ) <∞. Then, for any k > 0,

P (| Y − µ |< kσ) ≥ 1−
1

k2
or P (| Y − µ |≥ kσ) ≤

1

k2

Even if the exact distributions are unknown for r.v. of

interest, knowledge of the associated means and stan-

dard deviations permits us to determine a (meaningful)

lower bounds for the probability that the r.v. Y falls in

an intervals µ± kσ.

(Example 3.28) The number of customers per
day at a sales counter Y , has been observed
for a long period of time and found to have
mean 20 and standard deviation 2. The prob-
ability distribution of Y is not known. What is
the probability that tomorrow Y will be greater
than 16 but less than 24?
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