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Integral polytopes
P a polytope in RN with integral vertices:

P is the convex hull of finitely many vertices v in ZN
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d-cube: convex hull of {0, 1}d

Cd =
{

(x1, . . . , xd) 0 ≤ xi ≤ 1, i = 1, . . . , d
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Volume of polytopes

Example:

standard simplex ∆n = {(x1, . . . , xn) |
∑
xi ≤ 1, xi ≥ 0}

∆2

euclidean volume
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normalized volume of P := dim(P )! · (euclidean volume of P )
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Lattice points of polytopes
• #P ∩ ZN number of lattice points (discrete volume)
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i=1 xi ≤ 1, xi ≥ 0}
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Lattice points of polytopes
• #P ∩ ZN number of lattice points (discrete volume)

LP (t) := #(tP ∩ ZN ) counts lattice points in t-dilation of P .

Example:

standard simplex ∆d = {(x1, . . . , xd) |
∑d

i=1 xi ≤ 1, xi ≥ 0}

∆22

standard simplex t∆d = {(x1, . . . , xd) |
∑d

i=1 xi ≤ t, xi ≥ 0}

#(t∆d ∩ Zd) =
(
t+d
d

)



Flow polytopes
G graph n+ 1 vertices |E| edges

a = (a1, a2, . . . , an,−
∑
ai), ai ∈ Zn

≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}
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∑
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≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}
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x34
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Flow polytopes
G graph n+ 1 vertices |E| edges

G

a = (a1, a2, . . . , an,−
∑
ai), ai ∈ Zn

≥0

FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

a

a1 a2 a3 −a1 − a2 − a3

x14

x34

x13

x12 x23

x24x23 + x24 − x12 =a2

x12 + x13 + x14 =a1

x34 − x13 − x23 =a3

Example

dimension of FG(a) is |E| − n



Flow polytopes
G graph n+ 1 vertices m edges

a = (1, 0, . . . , 0,−1)

FG(1, 0, . . . , 0,−1) is flows on G: netflow first vertex is 1,
netflow last vertex −1, netflow other vertices is 0.



Flow polytopes
G graph n+ 1 vertices m edges

G

a = (1, 0, . . . , 0,−1)

FG(1, 0, . . . , 0,−1) is flows on G: netflow first vertex is 1,
netflow last vertex −1, netflow other vertices is 0.

a

1 0 0 −1

x14

x34

x13

x12 x23

x24x23 + x24 − x12 = 0

x12 + x13 + x14 = 1

x34 − x13 − x23 = 0

Example

−x14 − x24 − x34 =−1



Vertices of flow polytopes
• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 to
n+ 1 called routes.

1 −1
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Vertices of flow polytopes
• vertices of flow polytopes of FG(1, 0, . . . , 0,−1) can be

viewed as unit flows on directed paths from vertex 1 to
n+ 1 called routes.

1 −1
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Examples of flow polytopes
FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example
G

1

x4

x1

x2

x3

x1 + x2 + x3 + x4 = 1

FG(1,−1) is a simplex
−1



Examples flow polytopes
FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example
G

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−1
0

...

a+ 1 ...

b+ 1



Examples flow polytopes
FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example
G

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−1
0

...

a+ 1 ...

b+ 1

∆2 ×∆1

G

1 0 −1



Examples flow polytopes
FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example
G

1

FG(1, 0− 1) is a product of simplicies ∆a ×∆b

−1
0

...

a+ 1 ...

b+ 1

G

1 −10 0
∆1 ×∆1 ×∆1



Flow polytopes are "transcendental" too
flow polytopes have been related to:

• Jeffrey–Kirwan residues (Baldoni–Vergne 2009)
• cluster algebras (Danilov–Karzanov–Koshevoy 2012)

• Toric geometry (Hille 2003)



Flow polytopes are "transcendental" too
flow polytopes have been related to:

• generalized permutahedra (Mészáros-St. Dizier 2017)

• Schubert polynomials (Escobar-Mészáros 2018)
(Fink-Mészáros-St. Dizier 2018)

• generalized permutahedra (Mészáros-St. Dizier 2017)• generalized permutahedra (Mészáros-St. Dizier 2017)• generalized permutahedra (Mészáros-St. Dizier 2017)

• diagonal harmonics (Mészáros-M-Rhoades 17, Liu-Mészáros-M 18)

1 1 1 −3

• Gelfand-Tsetlin polytopes (Liu-Mészáros-St. Dizier 2019)



Flow polytopes are "transcendental" too
flow polytopes have been related to:

• Brändén-Huh’s Lorentzian polynomials (Mészáros-Setiabatra 2019)

• rational Catalan combinatorics
(B-G-H-H-K-M-Y 2018, Yip 2019, Jang-Kim 2019)

• Alternating sign matrices (Mészáros-M-Striker 2019)

• juggling sequences (Harris-Insko-Omar 2015, B-H-H-M-S 2020)



Flow polytopes of planar graphs
Theorem (Postnikov 13, Mészáros-M-Striker 19)
If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent to
an order polytope of a certain poset P .
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If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent to
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Corollary If G is a planar graph then
volumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

By Stanley’s theory of order polytopes:



Flow polytopes of planar graphs
Theorem (Postnikov 13, Mészáros-M-Striker 19)
If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent to
an order polytope of a certain poset P .

Corollary If G is a planar graph then
volumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

A linear extension of a poset P is an ordering of the poset
elements compatible with the partial order.

By Stanley’s theory of order polytopes:



Flow polytopes of planar graphs
Theorem (Postnikov 13, Mészáros-M-Striker 19)
If G is a planar graph then FG(1, 0, . . . , 0,−1) is equivalent to
an order polytope of a certain poset P .

Corollary If G is a planar graph then
volumeFG(1, 0, . . . , 0,−1) = # linear extensions P .

• Fk7(1, 0, 0, 0, 0, 0,−1) is not an order polytope.
(Behrend-M-Panova 20+)

By Stanley’s theory of order polytopes:
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Examples flow polytopes
FG(a) = {flows x(ε) ∈ R≥0, ε ∈ E(G) | netflow vertex i = ai}

Example

a

1 0 0 −1

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 0, . . . , 0,−1)

Fkn+1
(1, 0, . . . , 0,−1) is called the Chan-Robbins-Yuen (CRYn) polytope

has 2n−1 vertices, dimension
(
n
2

)



Volume of the CRYn polytope

vn := volume(CRYn)

2 3 4 5 6 7n

vn 1 1 2 10 140 5880
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Volume of the CRYn polytope

vn := volume(CRYn)

2 3 4 5 6 7n

vn 1 1 2 10 140 5880

vn
vn−1

1 2 5 14 42

• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1
n+1

(
2n
n

)
are the Catalan numbers
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Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200
different objects
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Volume of the CRYn polytope
• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1
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Volume of the CRYn polytope
• vn = Cat0Cat1 · · ·Catn−2 (Zeilberger 99)

Catn := 1
n+1

(
2n
n

)
Catalan numbers (1, 1, 2, 5, 14, 42, . . .) count more than 200
different objects

. . . however, there is no combinatorial proof of formula for vn
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graph G flow polytope FG poset volume
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Euler numbers En

# standard tableaux
staircase shape
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Lattice points: Kostant’s partition function
lattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

Kkn+1
(a) is called Kostant’s partition function.
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(a) is called Kostant’s partition function.
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(a) is called Kostant’s partition function.
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let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectors
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Kkn+1
(a) =

Kkn+1
(a) is called Kostant’s partition function.

Generating function for Kkn+1
(a):

∑
a

KG(a)xa =
∏

1≤i<j≤n+1

(1− xix−1
j )−1.



Lattice points: Kostant’s partition function
lattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectors
ei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1
(a) =

1 0 −1

0

1 1
1 0 −1

1

0 0

(1, 0,−1) = e1 − e3 (1, 0,−1) = (e1 − e2) + (e2 − e3)

Formulas for weight multiplicities and tensor product multiplicities of
type A semisimple Lie algebras in terms of Kkn+1

(a).

Kkn+1
(a) is called Kostant’s partition function.



Lattice points: Kostant’s partition function
lattice points of FG(a) are integral flows on G with netflow a

let KG(a) := #(FG(a) ∩ Zm) = LFG(a)(1)

# of ways of writing a as an N-combination of vectors
ei − ej for 1 ≤ i < j ≤ n+ 1

Kkn+1
(a) =

Kkn+1
(a) is called Kostant’s partition function.

". . . he said to me that in any good mathematical theory there should be at
least one “transcendental” element . . . should account for many of the subtleties
of the theory. In the Cartan-Weyl theory, he said that my partition function was
the transcendental element."
Bertram Kostant on profile of I. M. Gelfand (Notices of the AMS, Jan. 2013)



Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑
k ik),

where ik is indeg(k)− 1

let KG(a) := #(FG(a) ∩ Zm)
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volume = 2.
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let KG(a) := #(FG(a) ∩ Zm)
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Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑
k ik),

where ik is indeg(k)− 1

Corollary

Zeilberger showed volume is Cat1 · · ·Catn−2 using this
interpretation and the Morris constant term identity:

constant term of
n∏

i=1

x−a+1
i (1− xi)−b

∏
1≤i<j≤n

(xi − xj)−c =

=
n−1∏
j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2)
.

volume(CRY n) = Kkn+1
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2

)
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Fundamental theorem volume of flow polytopes

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑
k ik),

where ik is indeg(k)− 1

Corollary

Zeilberger showed volume is Cat1 · · ·Catn−2 using this
interpretation and the Morris constant term identity:

constant term of
n∏

i=1

x−a+1
i (1− xi)−b

∏
1≤i<j≤n

(xi − xj)−c =

=
n−1∏
j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2)
.

volume(CRY n) = Kkn+1
(0, 0, 1, 2, . . . , n− 2,−

(
n−1

2

)
)

at a = b = c = 1 gives Cat1 · · ·Catn−2.

let KG(a) := #(FG(a) ∩ Zm)



Zeilberger’s entire paper
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Fundamental theorem + symmetry
Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−
∑

k ik),

Example

1 −1

0 −21 1 0 −21 1
1 2

1
1

Postnikov–Stanley gave a recursive triangulation of FG with
simplices indexed by integer flows in a similar flow polytope.

volume = KG(0, 1, 1,−2) = 2.

G0 G1 G2

a i b a i ba i b or
e f fe

e+ f e+ f



Fundamental theorem + symmetry
Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−
∑

k ik),

Example

1 −1

0 −21 1 0 −21 1
1 2

1
1

Postnikov–Stanley gave a recursive triangulation of FG with
simplices indexed by integer flows in a similar flow polytope.
Question 1:

volume = KG(0, 1, 1,−2) = 2.

Can we describe this triangulation explicitly? i.e. what simplex
corresponds to each integer flow?



Fundamental theorem + symmetry
Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
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Bijection between lattice points KG and KGr

Corollary
KG(0, i2, i3, . . . ,−

∑
k ik) = KGr (0, i′2, i

′
3, . . . ,−

∑
k i
′
k)

Gr reverse of G, ik, i
′
k is indegree −1 vertex k in G and Gr.

Question 2:
Is there a bijection between lattice points of FG(0, i2, i3, . . . ,−

∑
k ik)

and lattice points of FGr (0, i′2, i
′
3, . . . ,−

∑
k i
′
k)?

• KG(a) := #(FG(a) ∩ Zm)



Summary
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∑
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′
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∑
k i
′
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Can we describe this triangulation explicitly? i.e. what simplex
corresponds to each integer flow?
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In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoing
edges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv have
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DKK triangulation of flow polytopes
In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

• recall vertices of FG are indexed by routes/paths

• a framing of a graph is an ordering of the incoming and outgoing
edges on each vertex 2, 3, . . . , n.

Example:

• routes P and Q are coherent if at shared vertex v, Pv,Qv have
same relative order as vP, vQ in the framing.

• for a route P with vertex v, Pv and vP are the subpaths ending and
starting at v.

setup

• a clique C is a maximal collection of pairwise coherent routes
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DKK triangulation of flow polytopes
In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of FG

characterizing the vertices of each simplex

Theorem (Danilov-Karzanov-Koshevoy 12)
Given a framed graph G, the simplices {∆C} whose vertices
are routes in cliques C give a unimodular triangulation of FG.

Example: FG

∆C

∆C′



Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−

∑
k ik),

Question 1:
Can we describe the Postnikov-Stanley triangulation explicitly? i.e. what
simplex corresponds to each integer flow?

let KG(a) := #(FG(a) ∩ Zm)
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Summary

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

volumeFG(1, 0, . . . , 0,−1) = KG(0, i2, i3, . . . ,−
∑

k ik).

• We give an explicit bijection between the integer flows of
FG(0, i2, i3, . . .) and the simplices of a DKK triangulation.

• let KG(a) := #(FG(a) ∩ Zm)

• FG(a) flow polytope of a graph G netflow a

• volumes and lattice points important in representation theory

• if G is planar then volumeFG(1, 0, . . . , 0,−1) is the
number of linear extensions of a poset P .

• let KG(a) := #(FG(a) ∩ Zm)• let KG(a) := #(FG(a) ∩ Zm)

• The bijection depends on a framing of G and has interesting
symmetry properties.

kn+1



Gracias

Panta Rhei = everything flows (Heraclitus)

• (with K. Mészáros, J. Striker) On flow polytopes, order
polytopes, and certain faces of the alternating sign matrix
polytope, arxiv:1510.03357v2, Discrete and
Computational Geometry, Volume 62 (2019) 128–163

• Triangulations of flow polytopes, in preparation
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Connection to diagonal harmonics

a

1 1 1 −3

x14

x34

x13

x12 x23

x24

G is the complete graph kn+1

a = (1, 1, . . . , 1,−n)

Fkn+1
(1, 1, . . . , 1,−n) is called the Tesler polytope

has n! vertices, dimension
(
n
2

)

Theorem (Mészáros, M, Rhoades 2014)

volume equals (n
2)!∏n−2

i=1 (2i+1)n−i−1
· Cat1Cat2 · · ·Catn−1

• a weighted sum over lattice points gives Hilbert series of
the space of diagonal harmonics (Haglund 2011)
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Corollary:
KG(j1 − o1, . . . , jn − on, 0) are mixed volumes and so are
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Other results: Lidskii volume formula

volumeFG(a1, . . . , an) =
∑
j

(
m− n

j1, . . . , jn

)
aj11 · · · ajnn

×KG(j1 − o1, . . . , jn − on, 0)

ov = outdeg(v)− 1

Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08)
graph G with m edges, n+ 1 vertices, ai ≥ 0

• Original proof uses Jeffrey–Kirwan iterated residues

• give a proof using polytope subdivisions (Mészáros-M 2019)

• define combinatorial objects like parking functions that index the
volume of FG(a) (B-G-H-H-K-M-Y 2019)
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