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Integral polytopes
P a polytope in RY with integral vertices:

P is the convex hull of finitely many vertices v in Z%

OR

P is the intersection of finitely many half spaces



Integral polytopes
P a polytope in RY with integral vertices:

P is the convex hull of finitely many vertices v in Z%

OR

P is the intersection of finitely many half spaces
A

d-cube: convex hull of {0,1}¢
Cd:{(CEl,...,SI?d) OSiBZSl, 221,,d}



Volume of polytopes

normalized volume of P := dim(P)! - (euclidean volume of P)

Example:

standard simplex A, = {(x1,...,2,) | Y z; <1, z; > 0}
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Volume of polytopes

normalized volume of P := dim(P)! - (euclidean volume of P)

Example:

d-cube: convex hull of {0, 1}¢
Cd:{(CEl,...,SI?d) OSiBZSl, 221,,d}

® )
.- )
euclidean volume 1 —3°

(normalized) volume d!



Lattice points of polytopes

o #P NZ"Y number of lattice points (discrete volume)

Example:

standard simplex Ay = {(z1,...,2q) | Zle r; <1, x; >0}
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Lattice points of polytopes

o #P NZ"Y number of lattice points (discrete volume)

Lp(t) := #(tP NZ"Y) counts lattice points in t-dilation of P.

Example:

2A2_|
standard simplex Ay = {(z1,...,2q) | Zle r; <1, x; >0}
standard simplex tAg = {(z1,...,2q) | Zle r; <t, x; >0}

4(tAg N Z4) = (HH)



Flow polytopes
G graph n + 1 vertices |E/| edges

a:(a17@2,...,an,_zaf’i)1 aiGZgO

Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}



Flow polytopes
G graph n + 1 vertices |E/| edges

a:(a17@2,...,an,_zaf’i)v aiGZgO

Fa(a) = {flows z(e) € R>g, € € E(G) | netflow vertex i = a;}

Example
£T
T12 + T13 + T14 =0 G 14
L23 T X24 — X12 —UY
371 352 234

X34 — X13 — T93 =0
34 13 23 =03 0 0y s Sy — as — as



Flow polytopes
G graph n + 1 vertices |E/| edges

a:(a17a27°°'7an7_zai)’ CL@GZ%O
Fa(a) = {flows z(e) € R>g, € € E(G) | netflow vertex i = a;}
Example

i
T12 + T13 + T14 =1 G T

T23 + T24 — T12 =092

X X X
»1 »2 »34

X34 — X13 — T93 =0
34 13 23 =03 0 0y s Sy — as — as

dimension of Fx(a) is |[E| —n



Flow polytopes
G graph n + 1 vertices m edges
a=(1,0,...,0,—1)

Fa(1,0,...,0,—1) is flows on G: netflow first vertex is 1,
netflow last vertex —1, netflow other vertices is 0.



Flow polytopes
G graph n + 1 vertices m edges
a=(1,0,...,0,—1)

Fa(1,0,...,0,—1) is flows on G: netflow first vertex is 1,
netflow last vertex —1, netflow other vertices is 0.

Example

T12 + 213 + 14 =1

T3 + Tog — X12 = 0

T34 — T13 — T2z = 0

—X14 — T4 — T34 =—1



Vertices of tlow polytopes

e vertices of flow polytopes of F5(1,0,...,0,—1) can be
viewed as unit flows on directed paths from vertex 1 to
n + 1 called routes.
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e vertices of flow polytopes of F5(1,0,...,0,—1) can be
viewed as unit flows on directed paths from vertex 1 to
n + 1 called routes.




Examples of flow polytopes
Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}

Example

r1+ T2+ 23+ x4 =1 G

Fa(l,—1) is a simplex




Examples flow polytopes
Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}

Example

Fa(1,0—1) is a product of simplicies A, x Ay
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Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}

Example

G ,

AQXAl




Examples flow polytopes
Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}

Example

Fa(1,0—1) is a product of simplicies A, x Ay

G
> >
1 0 0 —1

A1><A1><A1



Flow polytopes are "transcendental" too

flow polytopes have been related to:
e Toric geometry (Hille 2003)
o Jeffrey—Kirwan residues (Baldoni—Vergne 2009)
e cluster algebras (Danilov—Karzanov—Koshevoy 2012)



Flow polytopes are "transcendental" too

flow polytopes have been related to:

e diagonal harmonics  (Mészaros-M-Rhoades 17, Liu-Mészaros-M 18)
e generalized permutahedra (Mészaros-St. Dizier 2017)

e Schubert polynomials (Escobar-Mészaros 2018)
(Fink-Mészaros-St. Dizier 2018)
e Gelfand-Tsetlin polytopes (Liu-Mészaros-St. Dizier 2019)



Flow polytopes are "transcendental" too

flow polytopes have been related to:

e Brandén-Huh's Lorentzian polynomials  (Mészaros-Setiabatra 2019)
e juggling sequences (Harris-Insko-Omar 2015, B-H-H-M-S 2020)

e rational Catalan combinatorics
(B-G-H-H-K-M-Y 2018, Yip 2019, Jang-Kim 2019)

e Alternating sign matrices (Mészaros-M-Striker 2019)



Flow polytopes of planar graphs

 Theorem (Postnikov 13, Mészaros-M-Striker 19)
If G is a planar graph then F(1,0,...,0,—1) is equivalent to
_an order polytope of a certain poset P.
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Flow polytopes of planar graphs

 Theorem (Postnikov 13, Mészaros-M-Striker 19)
If G is a planar graph then F(1,0,...,0,—1) is equivalent to
_an order polytope of a certain poset P.
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Flow polytopes of planar graphs

 Theorem (Postnikov 13, Mészaros-M-Striker 19) )
If G is a planar graph then F(1,0,...,0,—1) is equivalent to
_an order polytope of a certain poset P.

. By

By Stanley’s theory of order polytopes:
Corollary If G is a planar graph then
volumeF(1,0,...,0,—1) = # linear extensions P.
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Flow polytopes of planar graphs

 Theorem (Postnikov 13, Mészaros-M-Striker 19)
If G is a planar graph then F(1,0,...,0,—1) is equivalent to
_an order polytope of a certain poset P. |

. By

By Stanley’s theory of order polytopes:

Corollary If G is a planar graph then
volumeF(1,0,...,0,—1) = # linear extensions P.

TN

A linear extension of a poset P is an ordering of the poset
elements compatible with the partial order.



Flow polytopes of planar graphs

 Theorem (Postnikov 13, Mészaros-M-Striker 19) )
If G is a planar graph then F(1,0,...,0,—1) is equivalent to
_an order polytope of a certain poset P.

. By

By Stanley’s theory of order polytopes:
Corollary If G is a planar graph then
volumeF(1,0,...,0,—1) = # linear extensions P.

_J/

e Fi.(1,0,0,0,0,0,—1) is not an order polytope.
(Behrend-M-Panova 20+)
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Examples flow polytopes
Fa(a) = {flows z(e) € R>¢, € € E(G) | netflow vertex ¢ = a;}

Example

(G is the complete graph £, 11

a=(1,0,...,0,—1)

Frnia(1,0,...,0,—-1) is called the Chan-Robbins-Yuen (C'RY),) polytope

has 21 vertices, dimension (g)



Volume of the C'RY,, polytope

Up := volume(C'RY,,)

n

Un

10

140

53830



Volume of the C'RY,, polytope

Up := volume(C'RY,,)

n 5 6 7
On 10 | 140 | 5880
n 5 | 14 | 42




Volume of the C'RY,, polytope

Up := volume(C'RY,,)
n 2 3 4 D 6 7
Un 1 1 2 | 10 | 140 | 5880

on 1| 2| 5 |14 42
Un—1
e v, = CatgCaty ---Cat,,_» (Zeilberger 99)

2
Cat,, := %H (") are the Catalan numbers



Volume of the C'RY,, polytope

o v, = CatpCaty --- Cat,,_o (Zeilberger 99)
2n
Cat, := n+r1 (%)

Catalan numbers (1,1,2,5,14,42,...) count more than 200
different objects
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Volume of the C'RY,, polytope

e v, = CatgCaty --- Cat,,_o (Zeilberger 99)
Cat,, := — (2n)

n+1\n

Catalan numbers (1,1,2,5,14,42,...) count more than 200
different objects

& god |53 | Kl © o
Content: Below is a list of articles on a diverse topics related to Catalan numbers and their generalizations. I emph
some bijective, geometric and probabilistic results.
Warning: This list is vastly incomplete as I included only downloadable articles and books (sometimes, by subscri
plan to grad ind it, but will try not to overwhelm the list, so many related results can be obtained by forwa
know if you ful.
Basics:
1 2n 2n 2n
Cp=—— = - for all n > 0.
n+1\n n n+1
(MEXICO) AT TOLL ran
] .@ B w e@ @ -429x




Volume of the C'RY,, polytope

o v, = CatpCaty --- Cat,,_o (Zeilberger 99)
2n
Cat, := n+r1 (%)

Catalan numbers (1,1,2,5,14,42,...) count more than 200
different objects

p® BB
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11

Richard P. Stanlay

... however, there is no combinatorial proof of formula for v,
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Lattice points: Kostant's partition function

lattice points of Fg(a) are integral flows on G with netflow a

let Kg(a) = #(fg(&) M Zm) = L]:G(a)(l)

K, ., (a) is called Kostant’s partition function.
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K, ., (a) is called Kostant’s partition function.

Ky, ., (a) = # of ways of writing a as an N-combination of vectors
e;—ejforl <i<j<n+l
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Lattice points: Kostant's partition function

lattice points of Fg(a) are integral flows on G with netflow a

let Kg(a) = #(Fg<a) M Zm) = L]:G(a)(l)

K, ., (a) is called Kostant’s partition function.
Ky, ., (a) = # of ways of writing a as an N-combination of vectors

e;—ejforl <i<j<n+l

Generating function for K3, ., (a):

ZKg(a)Xa = H (1 —xixj_l)_l.

1<i<g<n+1



Lattice points: Kostant's partition function

lattice points of Fg(a) are integral flows on G with netflow a

let Kg(a) = #(Fg<a) M Zm) = L]:G(a)(l)

K, ., (a) is called Kostant’s partition function.

Ky, ., (a) = # of ways of writing a as an N-combination of vectors
e;—ejforl <i<j<n+l

1 0
Do 1,1
L o -1 1 0 -1

(1,0,—1) — €1 — €3 (1,0,—1) = (61 —62)+(€2 —63)

Formulas for weight multiplicities and tensor product multiplicities of
type A semisimple Lie algebras in terms of K, . (a).



Lattice points: Kostant's partition function

lattice points of Fg(a) are integral flows on G with netflow a

let Kg(a) = #(fg(&) M Zm) = L]:G(a)(l)

K, ., (a) is called Kostant’s partition function.

Ky, ., (a) = # of ways of writing a as an N-combination of vectors
e;—ejforl <i<j<n+l

(1 he said to me that in any good mathematical theory there should be at
least one “transcendental” element ... should account for many of the subtleties
of the theory. In the Cartan-Weyl theory, he said that my partition function was

the transcendental element.”
\Bertram Kostant on profile of I. M. Gelfand (Notices of the AMS, Jan. 2013)

y,




Fundamental theorem volume of tlow polytopes

et Kg(a) = #(Fala) NZ™)

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,72,%3,..., — > 1 k),
\where i is indeg(k) — 1
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Fundamental theorem volume of tlow polytopes

et Kg(a) = #(Fala) NZ™)

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,72,%3,..., — > 1 k),
\where i is indeg(k) — 1

Example
1 —1
1 2
0 T 1 22 0

volume = 2.



Fundamental theorem volume of tlow polytopes

et Kg(a) = #(Fala) NZ™)

>
Corollary

volume(CRY ,,) = Ky, ,(0,0,1,2,...,n — 2, _(ngl))

\

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09) )
volumeF(1,0,...,0,—1) = Kg(0,72,%3,..., — > 1 k),
\where i is indeg(k) — 1 )
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Fundamental theorem volume of tlow polytopes

et Kg(a) = #(Fala) NZ™)

\.

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09) )
Volumefg(l, O, ce ,O, _1) — KG(07 i27 i37 Tty Zk Zk)7
\where i is indeg(k) — 1 )
(Corollary )
VOlU_me(CRYn) — Kkn+1 (07 O) ]-7 27 ey U 27 _(ngl))

Zeilberger showed volume is Cat; - - - Cat,,_o using this
interpretation and the Morris constant term identity:



Fundamental theorem volume of flow polytopes

et Kg(a) = #(Fala) NZ™)

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,72,%3,..., — > 1 k),
\where i is indeg(k) — 1

>
Corollary

volume(CRY ,,) = Ky, ,(0,0,1,2,...,n — 2, _(ngl))

\.
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Zeilberger showed volume is Cat; - - - Cat,,_o using this
interpretation and the Morris constant term identity:

mn
constant term of Ha:;a“(l — CIZi)_b H (x; —x;) ¢ =

1=1 1<i<g<n

- 1+c/2 MNa+b—14+(n+75—1)c/2)
H
iy +1)¢/2)l(a+ je/2)I(b + je/2)



Fundamental theorem volume of flow polytopes

et Kg(a) = #(Fala) NZ™)

\.

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09) )
Volumef(;(l, O, ce ,O, _]-) — KG(07 i27 i37 Tty Zk: Zk)7
\where i is indeg(k) — 1 )
(Corollary )
VOlU_me(CRYn) — Kkn+1 (07 O) ]-7 27 I 27 _(ngl))

Zeilberger showed volume is Cat; - - - Cat,,_o using this
interpretation and the Morris constant term identity:

mn
constant term of Ha:;a“(l — CIZi)_b H (x; —x;) ¢ =

1=1 1<i<5<n

1:[ 1+c/2 MNa+b—14+(n+75—1)c/2)
iy +1)¢/2)l(a+ je/2)I(b + je/2)

ata =b=c=1 gives Cat1 Catn_g.




Zeilberger’s entire paper

arXiv:math/9811108v2 [math.CO] 19 Nov 1998

PROOF OF A CONJECTURE OF CHAN, ROBBINS, AND YUEN

Doron ZEILBERGER *

Abstract: Using the celebrated Morris Constant Term Identity, we deduce a recent conjecture of
Chan, Robbins, and Yuen (math.CO/9810154), that asserts that the volume of a certain n(n—1)/2-
dimensional polytope is given in terms of the product of the first n — 1 Catalan numbers.

Chan, Robbins, and Yuen[CRY] conjectured that the cardinality of a certain set of triangular arrays
A,, defined in pp. 6-7 of [CRY] equals the product of the first » — 1 Catalan numbers. It is easy
to see that their conjecture is equivalent to the following constant term identity (for any rational
function f(z) of a variable z, CT}, f(z) is the coeff. of z° in the formal Laurent expansion of f(z)
(that always exists)):

n

L., ..or, [[0-z02 [ (z-=)" ﬁ —1(2’) . (CRY)

i=1 1<i<j<n i=1

But this is just the special case a = 2, b = 0, ¢ = 1/2, of the Morris Identity[M] (where we made
some trivial changes of discrete variables, and ‘shadowed’ it)

_ +b+(n—1+j))(c)
T, [[ —z) [« -z - .
-C 11_[ @) ll_llz 1<E<nZ] %) n'HFa+]cF(c+]U) T'(b+jc+1)

(Chip)

To show that the right side of (Chip) reduces to the right side of (CRY) upon the specialization

= 2,b = 0,¢ = 1/2, do the plugging in the former and call it M,,. Then manipulate the

products to simplify M, /M,,_1, and then use Legendre’s duplication formula T'(2)I'(z + 1/2) =
['(22)(1/2)/22*~! three times, and woild, up pops the Catalan number (2:)/(n +1).0

Remarks: 1. By converting the left side of (Chip) into a contour integral, we get the same
integrand as in the Selberg integral (with @ - —a, b — —b— 1, ¢ = —c). Aomoto’s proof of the
Selberg integral (SIAM J. Math. Anal. 18(1987), 545-549) goes verbatim. 2. Conjecture 2 in
[CRY] follows in the same way, from (the obvious contour-integral analog of) Aomoto’s extension
of Selberg’s integral. Introduce a new variable ¢, stick CT;t~* in front of (CRY), and replace
(1- zi)*r" by (1 — zi)*l(t +z;/(1 — z;)). 3. Conjecture 3 follows in the same way from another
specialization of (Chip).

References

[CRY] Clara S. Chan, David P. Robbins, and David S. Yuen, On the volume of a certain polytope,
math.C0/9810154.

[M] Walter Morris, “Constant term identities for finite and affine root systems, conjectures and
theorems”, Ph.D. thesis, University of Wisconsin, Madison, Wisconsin, 1982.

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@math.temple. edu
http://www.math.temple.edu/~ zeilberg/ . Nov. 17, 1998. Supported in part by the NSF.
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Postnikov—Stanley gave a recursive triangulation of F with
simplices indexed by integer flows in a similar flow polytope.
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Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,i2,%3, ..., — > ;. i),
Example

SRR

volume = K(0,1,1,—-2) = 2.

0 1‘12—2 0 m2

Postnikov—Stanley gave a recursive triangulation of Fg with

simplices indexed by integer flows in a similar flow polytope.
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Fundamental theorem + symmetry

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,i2,%3, ..., — > ;. i),
Example

SRR

volume = K(0,1,1,—-2) = 2.

0 1‘12—2 0 m2

Postnikov—Stanley gave a recursive triangulation of Fg with
simplices indexed by integer flows in a similar flow polytope.
Question 1:

Can we describe this triangulation explicitly? i.e. what simplex
corresponds to each integer flow?




Fundamental theorem + symmetry

‘Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

_ volumeFg(1,0,...,0,—1) = Kg(0,42,73,...,— > 1 k),
‘Corollary
Ka(0,12,03,...,— >, ik) = Kgr(0,45,%5, ..., — >, 1}.)

\G" reverse of G, iy (4},) is indegree —1 vertex k in G (G").
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Fundamental theorem + symmetry

‘Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

_ volumeFg(1,0,...,0,—1) = Kg(0,42,73,...,— > 1 k),
‘Corollary
Kqg(0,92,13,...,— >, 1k) = Kgr(0,75,15, ..., — >, %)
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Bijection between lattice points K5 and K-

° K(;(a) = #(Fg(a) M Zm)

‘Corollary
KG(O7/[:277:37"'7_Z]{;7;I€) :KGT(O7Z/27Zé7'°.7_Zk}Z;{J)
\G" reverse of G, 1,1, is indegree —1 vertex k in G and G". |

Question 2:
s there a bijection between lattice points of F(0,i2,%3,...,— >, ik)

and lattice points of Fgr (0,145,145, ..., — Y, ©.)7



Summary

o let Kg(a) :=#(Fa(a)Nz™)

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

_ volumeF(1,0,...,0,—1) = Kg(0,72,%3, ..., — >, i),
‘Corollary
Kqg(0,42,93,...,— > k) = Kgr(0,15,15, ..., — >, 1})

(G" reverse of G, i (i},) is indegree —1 vertex k in G (G").

Question 1:
Can we describe this triangulation explicitly? i.e. what simplex
corresponds to each integer flow?

Question 2:
s there a bijection between lattice points of F(0,i2,%3,...,— >, ik)
and lattice points of Fgr (0,145,145, ..., — Y, 13.)7
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DKK triangulation of tlow polytopes

In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of Fg
characterizing the vertices of each simplex

setup

e recall vertices of F are indexed by routes/paths
e for a route P with vertex v, Pv and v P are the subpaths ending and
starting at v.

e a framing of a graph is an ordering of the incoming and outgoing
edges on each vertex 2,3,...,n.

e routes P and () are coherent if at shared vertex v, Pv, Qv have
same relative order as v P, v( in the framing.

e a clique C is a maximal collection of pairwise coherent routes
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DKK triangulation of tlow polytopes

In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of Fg
characterizing the vertices of each simplex
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Theorem (Danilov-Karzanov-Koshevoy 12)

Given a framed graph G, the simplices {A¢} whose vertices
are routes in cliques C give a unimodular triangulation of Fg.
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In 2012 Danilov-Karzanov-Koshevoy gave another triangulation of Fg
characterizing the vertices of each simplex

7~

(.

Theorem (Danilov-Karzanov-Koshevoy 12)

Given a framed graph G, the simplices {A¢} whose vertices
are routes in cliques C give a unimodular triangulation of Fg.

Example: ) Fo

1009




Summary

let Kg(a) = #(.F(;(a) M Zm)

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)
volumeF(1,0,...,0,—1) = Kg(0,i2,%3, ..., — > ; i),
Question 1:

Can we describe the Postnikov-Stanley triangulation explicitly? i.e. what
simplex corresponds to each integer flow?
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Summary

let Kg(a) = #(.F(;(a) M Zm)

(Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09)

_ volumeF(1,0,...,0,—1) = Kg(0,72,%3, ..., — >, i),
‘Corollary
K (0,i9,43,...,— Zk ix) = Kgr (0,145,105, ..., — Zk z;f)
(G" reverse of G, i (i},) is indegree —1 vertex k in G (G").
Question 2:
s there a bijection between lattice points of F(0,%2,%3,...,— >, ik)

and lattice points of Fgr (0,145,145, ..., — Y, )7
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Summary

e Fi(a) flow polytope of a graph G netflow a

e volumes and lattice points important in representation theory

e if G is planar then volumeFs(1,0,...,0,—1) is the
number of linear extensions of a poset P.
o let Kg(a) := #(Fa(a)Nz™)

Theorem (Stanley-Postnikov 09, Baldoni-Vergne 09) ﬂ”“
volumeF(1,0,...,0,—1) = Kg(0,42,%3,...,— >, k)

e We give an explicit bijection between the integer flows of
Fa(0,i0,13,...) and the simplices of a DKK triangulation.

e The bijection depends on a framing of G and has interesting
symmetry properties.



e (with K. Mészaros, J. Striker) On flow polytopes, order
polytopes, and certain faces of the alternating sign matrix
polytope, arxiv:1510.03357v2, Discrete and
Computational Geometry, Volume 62 (2019) 128-163

e Triangulations of flow polytopes, in preparation

Panta Rhei = everything flows (Heraclitus)

Gracias
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Postnikov-Stanley triangulation of flow polytopes

( Subdivision Lemma

-FGO = -FGl U fGQ
and the intersection Fg, N Fg, is lower dimensional.

e fix a framing of GG, for each vertex ¢ = 2,...,n iterate
subdivision lemma until you get rid of vertex 1.

e encode choices with a bipartite noncrossing tree
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( Subdivision Lemma

-FGO = -FGl U fGQ
and the intersection Fg, N Fg, is lower dimensional.

e fix a framing of GG, for each vertex ¢ = 2,...,n iterate
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( Subdivision Lemma

-FGO = -FGl U fGQ
and the intersection Fg, N Fg, is lower dimensional.

e fix a framing of GG, for each vertex ¢ = 2,...,n iterate
subdivision lemma until you get rid of vertex 1.

e encode choices with a bipartite noncrossing tree
e bookkeep the noncrossing trees as an integer flow
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( Subdivision Lemma

-FGO = -FGl U fGQ
and the intersection Fg, N Fg, is lower dimensional.
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Postnikov-Stanley triangulation of flow polytopes

( Subdivision Lemma

-FGO = -FGl U fGQ
and the intersection Fg, N Fg, is lower dimensional.

e fix a framing of GG, for each vertex ¢ = 2,...,n iterate
subdivision lemma until you get rid of vertex 1.

e encode choices with a bipartite noncrossing tree
e bookkeep the noncrossing trees as an integer flow

Example:
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Go
.

Example: ezf ot f
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Proot sketch: correspondence

In subdivision view new edges as sum/path of original edges
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Proot sketch: correspondence

In subdivision view new edges as sum/path of original edges
Gl G2

e e
- ﬁ.\% ot A
a 1 a 1
Example:
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Connection to diagonal harmonics
G is the complete graph k41 T14

a=(1,1,...,1,—n)

Frensr(1,1,...,1,—n) is called the Tesler polytope

has n! vertices, dimension (7)) Q

e a weighted sum over lattice points gives Hilbert series of
the space of diagonal harmonics (Haglund 2011)

Theorem (Mészaros, M, Rhoades 2014)
(5)!

T 22ty . CatyCaty - - - Cat,, 1

volume equals
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Other results: Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08) )
graph G with m edges, n + 1 vertices, a; > 0
volumeFg(ay,...,an) = Z ( e >a{1 el
— \J1,---yJn
X Kg(jl —01,...,jn —On,O)
| Ov = outdeg(v) — 1 )
e Original proof uses Jeffrey—Kirwan iterated residues
e give a proof using polytope subdivisions (Mészaros-M 2019)
(Corollary: )
Ka(j1 —o01,...,Jn — 0n,0) are mixed volumes and so are

_log-concave in ji,...,jn.




Other results: Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley 08) )
graph G with m edges, n + 1 vertices, a; > 0
volumeFg(ay,...,an) = Z ( e >a{1 el
— \J1:---sJn
X Kg(jl —01,...,jn —On,O)

| Ov = outdeg(v) — 1 )

e Original proof uses Jeffrey—Kirwan iterated residues

e give a proof using polytope subdivisions (Mészaros-M 2019)

e define combinatorial objects like parking functions that index the
volume of Fx(a) (B-G-H-H-K-M-Y 2019)
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