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Abstract

In the first part of this thesis we study factorizations of the permutation (1, 2, . . . , n)
into k factors of given cycle type. Using representation theory, Jackson obtained for
each k an elegant formula for counting these factorizations according to the number
of cycles of each factor. For the case k = 2, Bernardi gave a bijection between these
factorizations and tree-rooted maps; certain graphs embedded on surfaces with a
distinguished spanning tree. This type of bijection also applies to all k and we use it
to show a symmetry property of a refinement of Jackson’s formula first exhibited in
the case k = 2, 3 by Morales and Vassilieva.

We then give applications of this symmetry property. First, we study the mixing
properties of permutations obtained as a product of two uniformly random permu-
tations of fixed cycle types. For instance, we give an exact formula for the proba-
bility that elements 1, 2, . . . , k are in distinct cycles of the random permutation of
{1, 2, . . . , n} obtained as product of two uniformly random n-cycles. Second, we use
the symmetry to give a short bijective proof of the number of planar trees and cacti
with given vertex degree distribution calculated by Goulden and Jackson.

In the second part we establish the relationship between volumes of flow polytopes
associated to signed graphs and the Kostant partition function. A special case of this
relationship, namely, when the graphs are signless, has been studied combinatorially
by Postnikov and Stanley and by Baldoni and Vergne using residues. As a special
family of flow polytopes, we study the Chan-Robbins-Yuen polytope whose volume
is the product of the consecutive Catalan numbers. We introduce generalizations of
this polytope and give intriguing conjectures about their volume.

In the third part we consider the problem of finding the number of matrices over
a finite field with a certain rank and with support that avoids a subset of the entries.
These matrices are a q-analogue of permutations with restricted positions (i.e., rook
placements). Extending a result of Haglund, we show that when the set of entries is
a skew Young diagram, the numbers, up to a power of q − 1, are polynomials with
nonnegative coefficients. We apply this result to the case when the set of entries
is the Rothe diagram of a permutation. We end by giving conjectures connecting
invertible matrices whose support avoids a Rothe diagram and Poincaré polynomials
of the strong Bruhat order.
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Chapter 1

Introduction

One of the most fundamental structures in enumerative and algebraic combinatorics
are permutations. In each of the three parts of this thesis we study different aspects
of them; see Figure 1-1. In Chapter 2 we study the number of factorizations of
permutations into k factors. In the other two chapters we view permutations as
permutation matrices. In Chapter 3 we study the volumes of certain polytopes called
flow polytopes. An important example of these polytopes is a convex hull of certain
permutation matrices. And in Chapter 4 we view a n × n permutation matrix as
a placement of n non-attacking rooks and look at a q-analogue of these objects:
invertible matrices over finite fields. Next we give an overview of the problems we
study and the main results in each chapter.



a1 a2 a3
a4 a5 a6
0 a7 a8




A

#
{
A over Fq

rank 3

}
= (q − 1)3q8−3(1 + 2

q + 1
q2 )

(c)

x1

x3

x2



0 0 1
1 0 0
0 1 0






1 0 0
0 0 1
0 1 0






0 1 0
1 0 0
0 0 1






1 0 0
0 1 0
0 0 1






1 0 0
0 0 1
0 1 0






0 1 0
1 0 0
0 0 1






0 0 1
1 0 0
0 1 0






1 0 0
0 1 0
0 0 1




1
q

1
q

1 1
q2

1 0 0 −1

1
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= (1)(2, 3) ◦ (1, 3)(2) = (1, 2)(3) ◦ (2, 3)(1) = (1, 3, 2) ◦ (1, 3, 2)

(1, 2, 3)
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Figure 1-1: Examples of (a) factorizations of the cycle (1, 2, 3) viewed as graphs
embedded in surfaces, (b) a projection of a type A3 Chan-Robbins-Yuen polytope, a
flow polytope that is a convex hull of four 3× 3 permutation matrices, and (c) using
those four permutation matrices to count invertible 3 × 3 matrices over Fq with the
entry (3, 1) forced to be zero.
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1.1 Colored factorizations of permutations and their

symmetries

In Chapter 2 we study the enumeration of factorizations of a fixed n-cycle in the
symmetric group Sn into k permutations, each with a given number of cycles or a
specific cycle type. That is, given positive integers q1, . . . , qk ≥ 0, let k

(n)
q1,...,qk be the

number of factorizations π1 ◦ π2 ◦ · · · ◦ πk of the long cycle (1, 2, . . . , n), where πt is a
permutation with qt cycles. This number is called a connection coefficient of Sn.
With an additional transitivity condition, these numbers also count certain graphs,
called constellations, embedded on orientable surfaces [36] (see Figure 1-1 (a)).

These connection coefficients can be computed using representation theory of Sn

(see (2.2.11)), but except for a few cases there are no explicit or cancellation-free
expressions for them. We enumerate them indirectly using a coloring argument:
for each permutation we color the cycles allowing repeated colors and then count the
resulting colored factorizations by the number of colors used. Such coloring arguments
have been widely studied for related problems (for example by Lass [38], Goulden-
Nica [26], Schaeffer-Vassilieva [55], and Bernardi [6]). Using a very close analogue of a
bijection of Bernardi [6] we show that these colored factorizations are in bijection with
tree-rooted constellations, certain graphs embedded on surfaces with a distinguished
spanning tree. These structures are more manageable to count and have interesting
symmetry properties.

Explicitly, let C(n)
p1,...,pk be the set of colored k-factorizations. These are factoriza-

tions π1◦π2◦· · ·◦πk of (1, 2, . . . , n) where the cycles of πt are colored with {1, 2, . . . , pt}
(all colors are used but two cycles of πt can have the same color). One can obtain

#C(n)
p1,...,pk from k

(n)
q1,...,qk and vice versa via linear integral equations involving Stirling

numbers.
Using irreducible characters of Sn, Jackson [32] showed a surprising simple relation

between #C(n)
p1,...,pk and certain k-tuples of sets with empty intersection.

Theorem 2.1.4 (Jackson [32]). The number of colored k-factorizations in C1
p1,...,pk

(n)
satisfies

#C(n)
p1,...,pk

= n!k−1 ·M (n−1)
p1−1,...,pk−1, (1.1.1)

where M
(n)
p1,...,pk is the number of n-tuples (R1, . . . , Rn) of strict subsets Rt of [k] such

that each integer t ∈ [k] appears in exactly pt of the subsets R1, . . . , Rn.

This formula had resisted a combinatorial approach except for the nontrivial cases
k = 2 and k = 3 proven bijectively by Schaeffer and Vassilieva in [55] and [54] respec-
tively. In [10, 9], joint work with O. Bernardi, we prove this result combinatorially.
In Chapter 2 we focus on the first part of this proof: the symmetry of colored factor-
izations.
Symmetry: Next we consider a refinement of the colored factorizations in C(n)

p1,...,pk by
the number of elements of {1, 2, . . . , n} in cycles of πt with the same color. That is, if

γ(t) is a composition of n with pt parts, then Cγ(1),··· ,γ(k) is the subset of C(n)
p1,··· ,pk with

colored factorizations where γ
(t)
j elements of πt are colored j.
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In [46, 48], joint work with E. Vassilieva, we extended the construction in [55, 54]
to give Bijective formulas for #Cγ(1),...,γ(k) for k = 2 and k = 3. For example, when
k = 2 we have: #Cγ(1),γ(2) = n(n − p1)!(n − p2)!/(n + 1 − p1 − p2)!. Notice that

#Cγ(1),γ(2) only depends on n and the number of parts of γ(1) and γ(2). In Section 2.3
(based in [10, Sec. 3,4]) we show that this kind of symmetry holds for #Cγ(1),...,γ(k) in
general:

Theorem 2.1.6 (Symmetry of colored factorizations). Let γ(1), δ(1), . . . , γ(k), δ(k) be
compositions of n. If for every t ∈ [k] the length of the compositions γ(t) and δ(t) are
equal, then #Cγ(1),...,γ(k) = #Cδ(1),...,δ(k).

This symmetry can be shown algebraically (see Section 2.2) but this approach
provides little insight. In Section 2.3 we use an analogue of a bijection of Bernardi [6]
to exhibit this symmetry elucidating why colored factorizations have this property.

In the rest of this chapter we present the following applications of this symmetry
result:

1. We can compute #C1
γ(1),...,γ(k)

for small k like 2, 3 choosing easy compositions γ(t)

like hooks (1pt−1, n+ 1−pt) (see Section 2.4). It also implies that #C1
γ(1),...,γ(k)

=

#C(n)
p1,...,pk/

∏k
t=1

(
n−1
pt−1

)
, since there are

(
n−1
pt−1

)
compositions of n with pt parts.

2. Another application of the symmetry is to easily enumerate planar objects like
rooted trees and cacti [8]. Then by looking at hooks for special values of pt,
one can easily recover classical numbers like the Narayana numbers, and the
number of rooted planar k-cacti calculated in [24] (see Section 2.5).

3. Lastly, we use the bijections and symmetries to study separation probabil-
ities for products of permutations. The archetypal question can be stated as
follows: In the symmetric group Sn, what is the probability that the elements
1, 2, . . . , r are in distinct cycles of the product of two n-cycles chosen uniformly
randomly? The answer is very elegant: the probability is 1

r!
if n− r is odd and

1
r!

+ 2
(r−2)!(n−r+1)(n+r)

if n− r is even. This result was originally conjectured by

Bóna [13] for r = 2 and n odd and subsequently Du and Stanley proved for all
r and n and proposed additional conjectures [59]. In Section 2.6 (based on [7],
joint work with O. Bernardi, R.X. Du, and R.P. Stanley) we prove this result
and the conjectures (Corollary 2.6.15) using the symmetry and the formula for
#Cγ(1),γ(2) .

1.2 Flow polytopes and the Kostant partition func-

tion

In Chapter 3, based on [44] joint work with K. Mészáros, we study the volumes of a
family of polytopes called flow polytopes of graphs.

Given a collection X of m vectors and a vector a all in Zn, let kX(a) be the number
of ways of writing a as an N-linear combination of vectors in X. The function kX(a)
is called a vector partition function. The most salient property of vector partition
functions is that they are piecewise (quasi) polynomial [17, 62]. Also, this function
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can be interpreted as the number of lattice points of a polytope FX(a) = {u ∈ Rm |
MXu = a, ui ≥ 0}, where MX is the n×m matrix whose columns are the vectors in
X.

An important case is when X is the set of positive roots of a root system, for
example for type An−1 we have X = {ei − ej | 1 ≤ i < j ≤ n} (where ei is the ith
standard vector), and for other types like Dn we have X = {ei ± ej | 1 ≤ i < j ≤
n}. In this case, the partition function is called the Kostant partition function.
These partition functions are very useful in representation theory for calculations of
multiplicities of weights and tensor products.

If G is a directed acyclic graph on n vertices, let XG be the multiset of vectors
ei − ej for each edge (i, j) in G with i < j. Note that XG is also a subset of the
positive roots of An−1 mentioned above. The polytope FG(a) := FXG(a) is called a
flow polytope since it consists of nonnegative real flows on the directed edges of G
such that the netflow on vertex i is ai.

Postnikov and Stanley [53, 58] and Baldoni-Vergne [2, 4, 3] showed that when a
is the highest root e1− en then the volume of FG(e1− en) is given by the value of the
partition function kG(a′) where a′ only depends on G. This means that the volume of
a flow polytope is given by the number of lattice points/integer flows of a very similar
flow polytope.

One natural question to ask is whether there is an analogue of this result for other
classical root systems. For this setting, we work with signed graphs G that have
negative edges (i, j,−) corresponding to the roots ei − ej (i < j) and positive edges
(i, j,+) corresponding to the roots ei + ej (i < j). For this graph, the flow polytope
FG(a) is defined accordingly. We show that when a = 2e1, the highest type C root,
then the volume of FG±(2e1) is given by a variant of the partition function:

Theorem 3.6.16. Given a signed graph G with vertices {1, 2, . . . , n} then the volume
of the flow polytope FG(2e1) is

vol(FG(2e1)) = kdynG (0, d2, . . . , dn−1, dn),

where di is the number of incoming negative edges to vertex i minus one, and kdynG

has the following generating series:

∑

a∈Zn
kdynG (a)xa =

∏

edge (i,j,−) in G

(1− xix−1
j )−1

∏

edge (i,j,+) in G

(1− xi − xj)−1. (1.2.1)

Note that kdynG is not the Kostant partition function for XG. However, kdynG can
be interpreted as counting certain integer flows on G called dynamic.

An intriguing application of the result by Postnikov-Stanley and Baldoni-Vergne is
the case when G is the complete graph Kn on n vertices. The polytope FKn(e1−en) is
called the Chan-Robbins-Yuen (CRY ) polytope [14, 15]. It is the convex hull of certain
permutation matrices (see Figure 1-1(b)) and its volume is given by the value of the
partition function kKn at (0, 1, 2, . . . , n − 2,−

(
n−1

2

)
). This value is the captivating

product Cat1Cat2 . . . Catn−3 of Catalan numbers Catk = 1
k+1

(
2k
k

)
. This was proved
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analytically by Zeilberger in [64] using an identity closely related to Selberg’s integral
(see Lemma 3.7.1) and no combinatorial proof is known.

In Section 3.6.2 we look at the flow polytope FK±n (2e1) where K±n is the complete
signed graph with all edges (i, j,±). We call this the type D Chan-Robbins-Yuen
(CRYDn) polytope. By Theorem 3.6.16, its volume is given by kdyn

K±n
(0, 1, 2, 3, . . . , n−

1). Computer calculations up to n = 8 suggest that this volume is as interesting as
that of the CRY polytope:

Conjecture 3.7.10. The volume of FK±n (2e1) is 2(n−2)2Cat1Cat2 . . . Catn−2.

1.3 Counting matrices over finite fields with re-

stricted positions

In Chapter 4 we study certain q-analogues of permutations with restricted positions
or equivalently of placements of non-attacking rooks. It is based on [33], joint work
with A.J. Klein, J.B. Lewis and [39], joint work with R. I. Liu, J.B. Lewis, G. Panova,
S. V Sam, and Y. X Zhang.

The q-analogue of permutations we work with are invertible n×n matrices over the
finite field Fq with q elements [60]. Then the analogue of permutations with restricted
positions are matrices over Fq with some entries required to be zero. Specifically,
given a subset S of {1, 2, . . . , n} × {1, 2, . . . , n}, let matq(n, S, r) be the number of
n × n matrices over Fq with rank r and whose support avoids S. In [39] we showed
that matq(n, S, r)/(q− 1)r is indeed an enumerative q-analogue of permutations with
restricted positions by showing that when it is given by a (quasi) polynomial its value
at q = 1 counts the placements of r non-attacking rooks on the complement of S.

When S = ∅ then matq(n, ∅, n) is the number of n × n invertible matrices over

Fq which is q(
n
2)(q − 1)n

∏n
i=1(1 + q + · · · + qi−1). In this case we obtain a poly-

nomial of the form (q − 1)nf(q) where f(q) has nonnegative integer coefficients.
Interestingly, matq(n, S, r) is not always a polynomial in q. Stembridge [61] (fol-
lowing a suggestion of Kontsevich) found a set S when n = 7 such that matq(7, S, 7)
is two distinct polynomials depending on whether q is even or odd. Also, even if
matq(n, S, r) is a polynomial, it might have negative coefficients (after dividing by
(q − 1)r). For example when n = 3 and S is the diagonal {(1, 1), (2, 2), (3, 3)} then
matq(3, {(1, 1), (2, 2), (3, 3)}, 3) = (q−1)3(q3 +2q2−q). A general polynomial formula
for the number of invertible matrices over Fq with zero diagonal was also found in
[39], answering a question by Stanley. (This is a q-analogue of derangements.)

From these examples, one natural question we study is

Question 4.1.2. What families of sets S are there such that matq(n, S, r)/(q − 1)r

is (i) not a polynomial in q, (ii) a polynomial in q, or (iii) a polynomial in q with
nonnegative integer coefficients?

For instance, Haglund [27] showed that one obtains polynomials with nonnegative
integer coefficients when S is given by the shape of a partition λ (see Figure 1-1(c)). In
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this case the answer is given by the Garsia-Remmel q-rook numbers [21]: a generating
polynomial of inversions over placements of r non-attacking rooks. In Section 4.4 we
extended Haglund’s result to the case when S is the complement of a skew shape λ/µ.

Corollary 4.4.6. For skew shapes Sλ/µ, matq(n, Sλ/µ, r) = (q − 1)rf(q) where f(q)
is a polynomial with nonnegative integer coefficients.

Also, by a suggestion of Postnikov, in Section 4.5 we consider the family of sets
given by Rothe diagrams of permutations which are important in the study of
Schubert polynomials [41]. These are defined as follows: if w is a permutation in
Sn, we view it as the word w1w2 · · ·wn where wi = w(i). Let Iw be the subset of
{1, 2, . . . , n}×{1, 2, . . . , n} of entries (i, wi) and those below and to the right of (i, wi).
The complement Rw of Iw is called the Rothe diagram of w. Computational evidence
up to n ≤ 6 suggests that matq(n,Rw, r)/(q − 1)r is a polynomial with nonnegative
integer coefficients.

Conjecture 4.5.1. If Rw is the Rothe diagram of a permutation w in Sn, then
matq(n,Rw, r)/(q − 1)r is a polynomial with nonnegative integer coefficients.

By Theorem 4.4.6, we can chip away some cases of this conjecture by finding
criteria on permutations for their Rothe diagrams to be skew shapes (after permuting
rows and columns). For instance, Lascoux-Schützenberger [37] showed that Rw, up
to permuting rows and columns, is the shape of a partition if and only if w avoids the
pattern 2143 (i.e. there is no sequence i < j < k < l such that wj < wi < wl < wk).
We found an analogous criterion for the case of skew shapes (see Theorem 4.5.4).

Theorem 4.5.4. The Rothe diagram Rw of a permutation w, up to permuting its
rows and columns, is the diagram of a skew shape if and only if w can be decomposed
as a1a2 . . . akb1b2 . . . bn−k where ai < bj and both a1a2 . . . ak and b1b2 . . . bn−k are 2143
avoiding.

For such permutations, matn(n,Rw, n)/(q− 1)n is given by q-rook numbers which
are of the form

∑
some permutations u q

inversions(u). A similar type of polynomials are the

Poincaré polynomials Pw(q) of w. These are given by
∑

u≥w q
inversions(u) where the

sum is over all permutations u greater than w in the strong Bruhat order of Sn.
Computational evidence up to n ≤ 7 suggests that there are necessary and sufficient
conditions on w for matq(n,Rw, w)/(q − 1)n to be given by a Poincaré polynomial.

Conjecture 4.6.6. Fix a permutation w in Sn and let Rw be its Rothe diagram. We

have that matq(n,Rw, n)/(q−1)n is coefficient-wise less than or equal to q(
n
2)−inv(w)Pw(q).

We have equality if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

Interestingly, the reverse of the four patterns above, 4231, 35142, 42513, and 351624,
have appeared in related contexts in a conjecture of Postnikov [52] proved by Hultman-
Linusson-Shareshian-Sjöstrand [30], and in work by Gasharov-Reiner [22]. This sug-
gests interesting connections.
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Chapter 2

Colored factorizations of
permutations

In this chapter, Section 2.3 is from [10, Secs. 3,4] and Section 2.6 is from [8], both
joint work with O. Bernardi. Section 2.6 is from [7], joint work with O. Bernardi,
R.X. Du and R.P. Stanley.

2.1 Background on Jackson’s formula

2.1.1 Partitions, compositions and permutations

We use [n] to denote the set {1, 2, . . . , n}. A composition of an integer n is a tuple
γ = (γ1, γ2, . . . , γp) of positive integer summing to n. We then say that γ has size
|γ| = n and length `(γ) = p. An integer partition is a composition such that the
parts γi are in weakly decreasing order. We use the notation λ |= n (resp. λ ` n) to
indicate that λ is a composition (resp. integer partition) of n. We sometimes write
integer partitions in multiset notation: writing λ = [1n1(λ), 2n2(λ), . . . , jnj(λ)] means
that λ has ni(λ) parts equal to i. Also Autλ =

∏
i ni(λ)!.

We denote by Sn the symmetric group on [n]. Given a partition λ of n, we
denote by Cλ the set of permutations in Sn with cycle type λ. It is well known that
#Cλ = n!/zλ where zλ =

∏
i i
ni(λ)ni(λ)!.

2.1.2 Factorizations of a long cycle and Jackson’s formula

Definition 2.1.1. Given k partitions λ(1), . . . , λ(k) of n, we let k
(n)

λ(1)···λ(k) be the num-
ber of ordered factorizations in Sn of the long cycle (1, 2, . . . , n) as a product π1 ◦
· · · ◦ πk of k permutations where πt has cycle type λ(t). These numbers are called
the connection coefficients of Sn. Also for positive integers q1, . . . , qk, let k

(n)
q1,...,qk =∑

λ(i)`n,`(λ(i))=qi,i=1,...,k k
(n)

λ(1),...,λ(k)
.

By the general theory of group representations, the connection coefficients
k

(n)

λ(1),...,λ(k)
can be expressed in terms of the characters of the symmetric group, but this

expression involves cancellation and is not really explicit even for k = 2 (see (2.2.11)).
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However, Jackson established in [32] a remarkable formula for the generating function
of factorizations counted according to the number of cycles of the factors, namely,

∑

π1◦···◦πk=(1,2,...,n)

k∏

t=1

x
c(πi)
t =

∑

1≤p1,...,pk≤n

k∏

t=1

(
xt
pt

)
n!k−1M

(n−1)
p1−1,...,pk−1 (2.1.2)

where c(π) is the number of cycles of the permutation π, and M
(n)
p1,...,pk is the coefficient

of tp11 · · · tpkk in the polynomial (
∏k

i=1(1 + ti)−
∏k

i=1 ti)
n.

Jackson’s formula can equivalently be stated in terms of colored factorizations.

Definition 2.1.3. Given positives integers p1, . . . , pk, a (p1, . . . , pk)-colored factor-
ization of (1, 2, . . . , n) is a tuple (π1, . . . , πk, φ1, . . . , φk), where π1, . . . , πk are permu-
tations of [n] such that π1 ◦ · · · ◦πk = (1, 2, . . . , n) and for all t ∈ [k], ct is a surjective
mapping from [n] to [pt] such that ct(a) = ct(b) if a, b are in the same cycle of πt. In
other words, the mapping ct can be seen as a coloring of the cycles of the permutation
πt with colors in [pt] and we want all the colors to be used. Let c

(n)
p1,...,pk be the number

of such colored factorizations.

It is easy to see that (2.1.2) is equivalent to the following theorem.

Theorem 2.1.4 (Jackson’s counting formula [32]). The number C
(n)
p1,...,pk of (p1, . . . , pk)-

colored factorizations of the permutation (1, 2, . . . , n) is

c(n)
p1,...,pk

= n!k−1M
(n−1)
p1−1,...,pk−1, (2.1.5)

where M
(n)
p1,...,pk = [tp11 · · · tpkk ](

∏k
i=1(1 + ti) −

∏k
i=1 ti)

n is the cardinality of the set

M(n)
p1,...,pk of n-tuples (R1, . . . , Rn) of strict subsets Rt of [k] such that each integer

t ∈ [k] appears in exactly pt of the subsets R1, . . . , Rn.

The original proof of Theorem 2.1.4 in [32] is based on the representation theory
of the symmetric group. An explicit version of this algebraic proof will be given
in Section 2.2. Bijections explaining the cases k = 2, 3 were subsequently given by
Schaeffer and Vassilieva [55, 54]. The case k = 2 of Theorem 2.1.4 is actually closely
related to the celebrated Harer-Zagier formula [28], which was proved bijectively
by Goulden and Nica [26]. In Section 2.3 we shall give a bijection based on the
construction by Bernardi in [6] which extends the results in [55, 54] to arbitrary k
(however, for a general k, this bijection does not directly imply Theorem 2.1.4).

We now consider a refined enumeration problem. Let γ(1), . . . , γ(k) be compositions
of n, where γ(t) = (γ

(t)
1 , γ

(t)
2 , . . . , γ

(t)
pt ). We say that a (p1, . . . , pk)-colored factorization

(π1, . . . , πk, φ1, . . . , φk) has color-compositions (γ(1), . . . , γ(k)) if the permutation πt
has γ

(t)
i elements colored i (i.e. γ

(t)
i = |φ−1

t (i)|) for all t ∈ [k] and all i ∈ [pt]. Let
cγ(1),...,γ(k) be the number of colored factorizations of color-compositions (γ(1), . . . , γ(k)).
In Section 2.3 we shall prove bijectively the following surprising symmetry property.

Theorem 2.1.6 (Symmetry property). Let γ(1), δ(1), . . . , γ(k), δ(k) be compositions of
n. If for every t ∈ [k] the length of the compositions γ(t) and δ(t) are equal, then
cγ(1),...,γ(k) = cδ(1),...,δ(k).
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Given that there are
(
n−1
`−1

)
compositions of n with ` parts, the symmetry property

together with Theorem 2.1.4 gives the following refined formula.

Corollary 2.1.7. For any compositions γ(1), . . . , γ(k) of n where `(γ(t)) = pt, the
number of colored factorizations of color-compositions (γ(1), . . . , γ(k)) is

cγ(1),...,γ(k) =
n!k−1M

(n−1)
p1−1,...,pk−1∏k

t=1

(
n−1
pt−1

) , (2.1.8)

We will prove (2.1.8) explicitly using the algebraic approach of Jackson in Sec-
tion 2.2. Then in Section 2.3 we will present the bijection from [10] which proves
Theorem 2.1.6: the symmetry of colored factorizations. We will then apply this sym-
metry to prove combinatorially (2.1.8) in [46, 48] for the cases k = 2, 3 (Section 2.4), to
compute planar k-cacti (Section 2.5), and to compute certain separation probabilities
(Section 2.6).
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(a) (b) (c)

Figure 2-1: Examples of (a) a Young diagram of shape λ = 4331, (b) a skew Young
diagram of shape λ/µ = 4331/211, and (c) a skew Young diagram of shape λ/µ =
5322/211 that is also a rim hook.

2.2 Algebraic proof Jackson’s formula

In this section we give an algebraic proof of Jackson’s formula (2.1.2). Specifically, we
prove Corollary 2.1.7. We are interested in counting certain factorizations π1 ◦ · · · ◦πk
of permutations with respect to number of cycles (or colors) of each permutation
πt. In terms of generating series we encode such factorizations with monomials
x
c(π1)
1 · · ·xc(πk)

k (or
(
x1
p1

)
· · ·
(
xk
pk

)
). We are also interested in counting such factoriza-

tions with respect to cycle type (or number of elements in [n] with the same color).
In order to encode this extra information we use symmetric functions. We give some
background on symmetric functions and on irreducible characters of Sn.

2.2.1 Symmetric functions and irreducible characters of Sn

Before discussing symmetric functions we need more terminology related to partitions.
A Young diagram of the partition λ is a finite collection of cells arranged in rows
of λ1, λ2, . . . cells that are left-justified and organized from top to bottom (this is
called English notation for tableaux). The diagram of a skew Young diagram of
partitions λ and µ such that λi ≥ µi is the set theoretic difference of the Young
diagrams of λ and µ. See Figure 2-1(a)-(c) for examples of Young diagrams and skew
Young diagrams. We say a skew shape λ/µ is connected if the union of cells is
a connected set and each cell of the shape shares and edge with another cell. See
Figure 2-1(b),(c) for examples of skew shapes that are not connected and connected,
respectively.

We shall consider symmetric functions in an infinite number of variables x =
{x1, x2, . . .}. For any sequence of nonnegative integers, α = (α1, α2, . . . , αk) we denote
xα := xα1

1 x
α2
2 . . . xαkk . Let Λ be the ring of symmetric functions over Q. For more

background on this ring see [57, Ch. 7.] and [40, Ch 1.]. If {vλ(x)} is a basis of
Λ, for an element f(x) in Λ, we denote by [pλ(x)]f(x) the coefficient of vλ(x) of the
decomposition of f(x) in this basis. Next we mention three important bases of this
ring that we will use in Part 1 of this thesis.

For an integer partition λ = (λ1, . . . , λk) we denote by mλ(x) the monomial
symmetric function indexed by λ. That is, mλ(x) =

∑
α xα where the sum is over

all the distinct sequences α whose positive parts are {λ1, λ2, . . . , λk} (in any order).

We denote by pλ(x) the power symmetric function indexed by λ (see e.g. [57]).

That is, pλ(x) =
∏`(λ)

i=1 pλi(x) where pk(x) =
∑

i≥1 x
k
i .
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1 1 2 3
2 3 3
4 4 5
5

1 2 4 5
3 6 8
7 5 11
10

1 1 2
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4

5 5

1 1 1 2 3 3
1 2 2 2 4
2 2 5 4 4
5 5 5

(a) (b) (c) (d)

Figure 2-2: Examples, in English notation, of (a) a semistandard Young tableau
(SSYT) of shape 4331 and type (2, 2, 3, 2, 2), (b) a standard Young tableau (SYT)
of shape 4331, (c) a semistandard skew Young tableau of shape 5433/211 and type
(2, 2, 1, 1, 2), and (d) a rim-hook tableau of shape 6553 of type (4, 6, 2, 3, 4) and height
3. The rim-hooks with the value i = 1, 2, . . . , 5 are in color.

Proposition 2.2.1 ([57, Prop.7.7.1, Cor. 7.7.2]). If we expand pλ(x) in terms of the
monomial basis {mλ(x)} as

pλ(x) =
∑

µ`n
Rλµmµ(x), (2.2.2)

then Rλµ is the number of ordered set partitions (B1, . . . , Bk) of the set [`(λ)] such that
µj =

∑
i∈Bj λi for j = 1, . . . , k. Moreover, Rλµ = 0 unless λ ≤ µ in the dominance

order and Rλλ =
∏

j nj(λ)! hence {pλ(x)} is a Q-basis for Λ.

Before we introduce the next basis, we give an identity relating monomial sym-
metric functions and power symmetric functions.

Proposition 2.2.3 ([57, Prop. 7.7.4.]).

∑

λ

mλ(x)y|λ| =
∏

i≥1

(1− xiy)−1

= exp(
∑

j≥1

1

j
pj(x)yj

=
∑

λ

1

zλ
pλ(x)y|λ|.

To introduce the next basis we need the following objects: given a partition λ, a
(standard) semistandard Young tableau, or (SYT) SSYT in short, T of shape λ
is a function from the cells of the Young diagram of λ to the positive integers such that
the values are (strictly) weakly increasing on the rows and strictly increasing on the
columns. The type α = (α1, α2, . . .) of a tableau T indicates that the tableau has αi
cells with the value i. One generalization of SSYT is to consider skew semistandard
tableau of skew shapes λ/µ which are functions from the cells of the skew Young
diagram of λ/µ to the positive integers such that the values are weakly increasing in
the rows and strictly increasing on the columns. See Figure 2-2 for illustrations of
tableaux.

We denote by sλ(x) the Schur function indexed by λ. It is defined to be sλ(x) =∑
T xT where the sum is over semistandard Young tableau (SSYT) of shape λ
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7 5 4 1
5 3 2
4 2 1
1

Figure 2-3: Example of the hook-length formula to compute the number of SYT of
shape 4331. The numbers in blue in each cell c are the hook-lengths h(c). The number
of SYT of shape λ = 4331 is 11!/(7 · 52 · 42 · 3 · 22) = 1188.

and type µ and xT = xα1
1 x

α2
2 · · · where αi is the number of entries i in T . It is not

clear from the definition that sλ(x) is a symmetric function but this is in fact true
(see [57, Thm. 7.10.2]), moreover {sλ(x)} is a Z-basis of Λ. Then expanding sλ(x)
in the monomial basis gives

sλ(x) =
∑

µ

Kλµmµ(x), (2.2.4)

where Kλµ is the number of SSYT of shape λ and type µ. This number is called the
Kostka number. If µ = 1n and instead we count SYT, we write fλ := Kλ 1n to
denote the number of SYT of shape λ with n entries. There is no general explicit
formula for the Kostka numbers, however there is a celebrated product formula for
fλ, the hook-length formula, of Frame, Robinson and Thrall [19].

fλ =
n!∏

c∈λ h(c)
, (2.2.5)

where h(c) is the hook-length of the cell c of the Young diagram λ, this is the total
number of cells in the same row and east of c (including c) and in the same column
and south of c. See Figure 2-3 for an example of this formula to compute the number
of SYT of shape λ = 4331.

Next, we give the relation between power sum symmetric functions in terms of
Schur functions. This relation is called the Murnaghan-Nakayama rule. To state
this rule we need to define rim-hook tableau. A rim-hook B is a connected skew
shape with no 2×2 square (see Figure 2-1(c) for an example). A rim-hook tableau
of shape λ/µ is a function from the cells of a skew shape λ/µ to the positive integers
such that the values are weakly increasing on the rows and columns, and the set of
cells with the value i form a rim-hook. The notion of type for these tableaux is the
same as before. The height ht(T ) of a rim-hook tableau T is the number of rows of
T minus one. See Figure 2-2(d) for an example of a rim-hook tableau of height 3.

Theorem 2.2.6 ([57, Cor. 7.17.4]). For a composition α = (α1, α2, . . .) we have

pα(x) =
∑

λ

χλαsλ(x), (2.2.7)

where χλα =
∑

T (−1)ht(T ) and the sum is over rim-hook tableaux of shape λ and type
α.

26



Example 2.2.8. If α = (n) then to compute χλn we have to consider rim-hook tableaux
of shape λ and type (n). These tableaux are just hooks (n − a, 1a) whose cells have
ones. The height of such hooks is a. Thus

p(n)(x) =
n∑

a=1

(−1)as(n−a,1a)(x).

Remark 2.2.9. If we view χλ(µ) in (2.2.7) as a function over partitions µ ` n and
define χλ : Sn → C to be χλ(π) = χλµ where µ is the cycle type of π, then we obtain
the irreducible characters of Sn. �

We will use a formula in terms of characters for connection coefficients like k
(n)

λ(1),...,λ(k)

defined in Section 2.1.2.

Theorem 2.2.10 (Fröbenius). For partitions µ, λ(1), . . . , λ(k) of n, let kµ
λ(1),...,λ(k)

be

the number of ordered factorizations π1 ◦ · · · ◦ πk of a fixed permutation π in Sn with
cycle type µ where πt has cycle type λ(t) for t = 1, . . . , k then

kµ
λ(1),...,λ(k)

=

∏k
t=1 #Cλ(i)
#Sn

∑

θ`n

1

fk−1
θ

χθµ

k∏

t=1

χθλ(t) , (2.2.11)

where fθ is the number of SYT of shape θ.

We are interested in the case when µ = n. In this case (2.2.11) simplifies consid-
erably.

Corollary 2.2.12.

k
(n)

λ(1),...,λ(k)
=

nk−1

∏k
t=1 zλ(t)

n−1∑

a=0

(−1)a(a!(n− 1− a)!)k−1χ
(n−a,1a)

λ(1)
· · ·χ(n−a,1a)

λ(k)
. (2.2.13)

Proof. In the case µ = n, χθn is zero if θ is not a hook (see Example 2.2.8). We
obtain the desired formula from (2.2.11) and from the hook-length formula (2.2.5)
f(n−a,1a) = n!

n(n−1−a)!a!
for this case.

To conclude this background section we mention how can we specialize symmetric
functions pλ(x) and mλ(x) to obtain t`(λ) and

(
t

`(λ)

)
. Let f ∈ Λ be a symmetric func-

tion, then ps1
n(f) := f(1, . . . , 1︸ ︷︷ ︸

n

) is the evaluation of the principal specialization of

order n of f (see [57, Prop.7.8.3]). Then ps1
n(pλ) = n`(λ) and ps1

n(mλ) =
(

n
n1(λ),n2(λ),...

)

where ni(λ) is the number of i-parts of λ. Since n is arbitrary then we can extend this
to a specialization pspoly : Λ → Q[t] defined on the power sum symmetric functions

by pspoly(pλ) = t`(λ). It then follows that pspoly(mλ) =
(

t
`(λ)

)(
`(λ)

n1(λ),n2(λ),...

)
.
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2.2.2 Generating functions for (colored) factorizations

Recall that for partitions λ(1), . . . , λ(k) of n, k
(n)

λ(1),...,λ(k)
is the number of factorizations

of (1, 2, . . . , n) as a product π1 ◦ · · · ◦πk of k permutations where πt has cycle type λ(t)

and for positive integers q1, . . . , qk, k
(n)(q1, . . . , qk) =

∑
λ(t)`n,`(λ(t))=qt,t=1,...,k k

(n)

λ(1),...,λ(k)
.

Also for compositions γ(1), . . . , γ(k) of n, cγ(1),...,γ(k) is the number of colored factoriza-

tions of color-compositions (γ(1), . . . , γ(k)) and for positive integers p1, . . . , pk, c
(n)
p1,...,pk

is the number of (p1, . . . , pk)-colored factorizations.

If we consider the generating series
∑

qi
k

(n)
q1,...,qkt

q1
1 · · · tqkk and evaluate ti at a

nonnegative integer ni, then k
(n)
q1,...,qkn

q1
1 · · ·nqkk counts the number of factorizations

π1 ◦ · · · ◦ πk of (1, 2, . . . , n) where each of the qi cycles of πi has been colored with

some of the colors in [ni]. Then c
(n)
p1,...,pk is the number of such factorizations where pi

colors of [ni] are actually used. It immediately follows that

n∑

qi=1

k(n)
q1,...,qk

tq11 · · · tqkk =
n∑

pi=1

cp1,...,pk

(
t1
p1

)
· · ·
(
tk
pk

)
. (2.2.14)

There is an analogue relation between the generating series of k
(n)

λ(1),...,λ(k)
and of

cγ(1),...,γ(k) . Instead of using the bases {tmi } and {
(
ti
m

)
} we use the bases {pλ(x(t))} and

{mλ(x
(t))} of symmetric functions:

∑

λ(1),λ(2),...,λ(k)`n
k

(n)

λ(1),...,λ(k)

k∏

t=1

pλ(t)(x
(t)) =

∑

λ(1),λ(2),...,λ(k)`n
cλ(1),...,λ(k)

k∏

t=1

mλ(t)(x
(t)).

(2.2.15)
One can go from (2.2.15) to (2.2.14) by doing a principal specialization pspoly as
defined in Section 2.2.1. Also (2.2.15) is equivalent to the relation

cµ(1),...,µ(k) =
∑

λ(t)≤µ(t)
k

(n)

λ(1),...,λ(k)

k∏

t=1

Rλ(t)µ(t) , (2.2.16)

where≤ is the dominance order and Rλµ are the change of basis coefficients between
the power symmetric functions and the monomial symmetric functions (see (2.2.2)).

2.2.3 Changing basis from power sums to monomial sums

Recall that (2.1.8) in Corollary 2.1.7 states that cγ(1),...,γ(k) = n!k−1M
(n−1)
p1−1,...,pk−1/

∏k
t=1

(
n−1
pt−1

)

where M
(n)
p1,...,pk is the coefficient of tp11 · · · tpkk in the polynomial (

∏k
i=1(1+ti)−

∏k
i=1 ti)

n

and γ(t) for t ∈ [k] are compositions of n with pt parts. We interpret M
(n)
p1,...,pk in terms

of certain tuples of sets.

Definition 2.2.17. For positive integers n, p1, . . . , pk, let M(n)
p1,...,pk be the set of of
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n-tuples (R1, . . . , Rn) of strict subsets Rt of [k] such that each integer t ∈ [k] appears
in exactly pt of the subsets R1, . . . , Rn.

It is clear that #M(n)
p1,...,pk is the coefficient M

(n)
p1,...,pk defined above. Note that

M
(n)
p1,p2 =

(
n

p1,p2

)
, however M

(n)
p1,p2,p3 6=

(
n

p1,p2,p3

)
since the sets R1, R2 and R3 have more

than one element.
By (2.2.15), Corollary 2.1.7 will follow from the following Lemma.

Lemma 2.2.18.

∑

λ(1),λ(2),...,λ(k)`n
k

(n)

λ(1),...,λ(k)

k∏

t=1

pλ(t)(x
(t)) = n!k−1

∑

λ(1),λ(2),...,λ(k)`n

M
(n)

`(λ(1)),...,`(λ(k))∏k
t=1

(
n−1

`(γ(t))−1

)
k∏

t=1

mλ(t)(x
(t)).

(2.2.19)

The rest of this section is devoted to the proof of this lemma.

Proof. Let ψn :=
∑

λ(1),...,λ(k)`n k
(n)

λ(1),...,λ(k)

∏k
t=1 pλ(t)(x

(t)). We change ψn from the

power sum basis {pλ(x)} to the Schur basis {sλ(x)}, and from the Schur basis to the
monomial basis {mλ(x)}.

First we go from {pλ(x)} to {sλ(x)} in ψn. By (2.2.7) and the formula (2.2.13)

for k
(n)

λ(1),...,λ(k)
we obtain

ψn(x(1), . . . ,x(k)) = nk−1

n−1∑

a=0

(−1)a(a!(n− 1− a)!)k−1

k∏

t=1

s(n−a,1a)(x
(t)). (2.2.20)

Now we go from {sλ(x)} to {mλ(x)} in ψn. By (2.2.4) s(n−a,1a)(x) =
∑

λ`nK(n−a,1a),λmλ(x)
where K(n−a 1a),λ is the number of SSYT of shape (n−a, 1a) and type λ. This Kostka
number is very easy to evaluate and only depends on a, n and `(λ).

Proposition 2.2.21. The number K(n−a,1a),λ of SSYT of shape (n− a, 1a) and type

λ is
(
`(λ)−1
a

)
.

Proof. A SSYT of hook shape (n− a, 1a) has the entry 1 in the first cell of the first
row. We claim that the SSYT is determined by the entries on the other a cells on
the first column which have to be distinct, different from 1, and in strictly increasing
order. Once this column is determined the entries on the other n − a − 1 cells in
the first row will be the remaining entries of the multiset {1λ1 , 2λ2 , . . .} organized in
weakly increasing order. It follows that K(n−a,1a),λ =

(
`(λ)−1
a

)
since this is number of

ways of choosing the a other entries of the first column.

Hence by this proposition (2.2.20) becomes,

ψn(x(1), . . . ,x(k)) =

= nk−1
∑

λ(1),...,λ(k)`n

k∏

t=1

mλ(t)(x)

(
n−1∑

a=0

(−1)a(a!(n− 1− a)!)k−1

k∏

t=1

(
`(λ(t))− 1

a

))
.

(2.2.22)
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To complete the proof we need the following identity.

Lemma 2.2.23.

M (n)
p1,...,pk

=
n∑

a=0

(−1)a
(
n

a

)(
n− a
p1 − a

)
· · ·
(
n− a
pk − a

)
. (2.2.24)

Proof. First note that
(
n
a

)(
n−a
p1−a

)
· · ·
(
n−a
pk−a

)
counts the number of n-tuples (R1, . . . , Rn)

of subsets of [k] (not necessarily strict) such that: (i) each integer t ∈ [k] appears in
exactly pt of the subsets R1, . . . , Rn and (ii) at least a of the n subsets R1, . . . , Rn are
equal to [k]. Then by the principle of Inclusion-Exclusion (see [60, Thm. 2.1.1.]) the
alternating sum of these terms counts precisely the number of n-tuples (R1, . . . , Rn)
of subsets of [k] where (i) holds and none of the subsets R1, . . . , Rn are equal to [k].

This is precisely the cardinality of M(n)
p1,...,pk .

Letting bt = `(λ(t)) − 1 in (2.2.22), by Lemma 2.2.23 (for n − 1 instead of n)
(2.2.22) becomes

n−1∑

a=0

(−1)a(a!(n− 1− a)!)k−1

k∏

t=1

(
bt
a

)
=

(n− 1)!k−1M
(n−1)
b1,...,bk∏k

t=1

(
n−1
bt

) .

In summary

ψn(x(1), . . . ,x(k)) =
∑

µ(1),...,µ(k)`n

n!k−1M
(n−1)
p1−1,...,pk−1∏k

t=1

(
n−1
pt−1

)
k∏

t=1

mµ(t)(x
(t)),

as desired.

We make a few remarks on this algebraic proof.

Remarks 2.2.25. (i) Note that the symmetry property of cγ(1),...,γ(k) (Theorem 2.1.6)
is evident from the formula (2.1.8). Also Jackson’s formula (2.1.2) follows from
(2.1.8) since there are

(
n−1
pt−1

)
compositions γ(t) of n with pt parts.

(ii) In the algebraic proof above, the instance where the symmetry property becomes
evident is when we compute the Kostka numbers K(n−a,1a),λ =

(
`(λ)−1
a

)
when

going from (2.2.20) to (2.2.22). In other words, cγ(1),...,γ(k) only depends on n,

k and the number of parts of the compositions γ(1), . . . , γ(k) because the Kostka
number K(n−a,1a),λ only depends on n, a and `(λ). Although the “symmetry” of
colored factorizations boils down to another “symmetry” of a simple calculation
of the number of SSYT of a hook shape, it remains obscure why the former
objects have this property. In Section 2.3 we elucidate on why the property
holds via a clear bijective argument.

We finish the section by calculating explicit expressions for cγ(1),...,γ(k) for k = 2.
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Corollary 2.2.26 ([46]). Let γ(1) and γ(2) be compositions of n with p1 and p2 parts.
Then the number cγ(1),γ(2) of colored factorizations is

cγ(1),γ(2) =
n(n− p1)!(n− p2)!

(n+ 1− p1 − p2)!
. (2.2.27)

Proof. Equation (2.2.27) follows from (2.1.8) and the fact thatM
(n−1)
p1−1,p2−1 =

(
n−1

p1−1,p2−1

)
.

In Section 2.4 we use the symmetry of colored factorizations (Theorem 2.1.6) to
obtain (2.2.27) and the following expression for the case k = 3: if γ(1), γ(2), γ(3) are
compositions of n with p1, p2, p3 parts then

cγ(1),γ(2),γ(3)∏3
t=1(n− pt)!

=
∑

a≥0

(n− a− 2)! ·Θ
a!(p3 − 1− a)!(p2 − 1− a)!(p1 − 1)!(n− p1 − a)!(n+ 2− p2 − p3 + a)!

,

(2.2.28)
where Θ = (n+ 2− p2 − p3 + a) ((n− a− 1)(p3 − a) + (p1 − 1)(n− p3)) +
+(n−a1−p1) ((n+ 1− p2 − p3 + a)(n+ 2− p2 − p3 + a) + (n+ 1− p2)(p2 − 1− a)) .
A more compact formula for cγ(1),γ(2),γ(3) was first computed bijectively in [48] by re-
fining a construction by Schaeffer and Vassilieva in [54].

2.2.4 Coloring some of the permutations

Lastly, as a corollary of Theorems 2.1.4 and 2.1.6 we obtain a formula by Jackson
[32] for counting factorizations where we color some of the permutations in the fac-
torization. For a partition λ of n and positive integers p1, . . . , pk let cp1,...,pk(λ) be the
number of factorizations of (1, 2, . . . , n) as a product π ◦π1 ◦ · · · ◦πk where π has cycle
type λ and the cycles of πt have been colored with pt colors as in Definition 2.1.3.
Note that the cycles of π are not colored. Jackson [32, Thm. 4.3] showed the following
formula for cp1,...,pk(λ).

Corollary 2.2.29 ([32, Thm.4.3]).

cp1,...,pk(λ) =
n!k

zλ
M̃p1−1,...,pk−1(λ), (2.2.30)

where M̃p1,...,pk(λ) is the coefficient of zp11 · · · zpkk in (
∏`(λ)

i=1 Uλi(z1, . . . , zk))/U1(z1, . . . , zk)

for Um(z1, . . . , zk) =
∏k

t=1(1 + zt)
m −∏k

t=1 z
m
t .

Note that (2.2.30) implies (2.1.4) by setting π to be the identity (i.e., λ = 1n).
However, one can go the other way by starting with a colored factorization of k + 1
permutations and uncoloring one of these permutations. We devote the rest of this
section to following this direction to obtain (2.2.30).

Fix k and denote by Um the polynomial Um(z1, . . . , zk) and let Uλ =
∏`(λ)

i=1 Uλi .
For a composition γ of n and positive integers p1, . . . , pk Let cγ;p1,...,pk be the number
of (`(γ), p1, . . . , pk)-colored factorizations (π, π1, . . . , πk, φ, φ1, . . . , φk) of (1, 2, . . . , n)
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where π has color composition γ. For fixed p1, . . . , pk, the following equation relates
cp1,...,pk(λ) with cγ;p1,...,pk :

∑

λ

cp1,...,pk(λ)pλ(x) =
∑

λ

cλ;p1,...,pkmλ(x). (2.2.31)

As in Corollary 2.1.7, cγ;p1,...,pk = c
(n)
`(γ),p1,...,pk

/
(
n−1
`(γ)−1

)
. Then by (2.1.4)

cγ;p1,...,pk =
n!k(
n−1
`(λ)−1

) [z`(λ)−1zp1−1
1 · · · zpk−1

k ]((1 + z)
k∏

t=1

(1 + zt)− z
k∏

t=1

zt)
n−1

= n!k[zp1−1
1 · · · zpk−1

k ](
k∏

t=1

(1 + zt)−
k∏

t=1

zt)
`(λ)−1(

k∏

t=1

(1 + zt))
n−`(λ).

Thus the RHS of (2.2.31) is equal to [zp1−1
1 · · · zpk−1

k ]
∑

λ |λ|!k−1U
`(λ)−1
1 V |λ|−`(λ)mλ(x)

where V =
∏k

t=1(1 + zt). Since we want to show that the LHS of (2.2.31) is equal
to [zp1−1

1 · · · zpk−1
k ]

∑
λ(|λ|!k−1/zλ)(Uλ/U1)mλ(x), then to prove Corollary (2.2.29) it

suffices to show the following identity.

Lemma 2.2.32. ∑

λ

1

zλ
Uλpλ(x) =

∑

λ

U
`(λ)
1 V |λ|−`(λ)mλ(x), (2.2.33)

where V =
∏k

t=1(1 + zt) and Uλ =
∏`(λ)

i=1 Uλi for Um =
∏k

t=1(1 + zt)
m −∏k

t=1 z
m
t .

Proof. To prove the Lemma we use the following identities of symmetric functions
that follow easily from Proposition 2.2.3.

Proposition 2.2.34.

∑

λ

w`(λ)y|λ|mλ(x) =
∏

i≥1

(1− wyxi(1− xi)−1). (2.2.35)

and ∑

λ

1

zλ
uλpλ(x) = exp(

∑

j≥1

ujpj(x)/j), (2.2.36)

where uλ =
∏`(λ)

i=1 uλi.

Substituting y =
∏k

t=1(1 + zt) and w = U1/V in (2.2.35) we get

∑

λ

U
`(λ)
1 V |λ|−`(λ)mλ(x) =

∏

i≥1

(1− U1xi/(1− xiV )−1). (2.2.37)

Since 1 − U1xi/(1 − xiV )−1 =
1−xi

∏k
t=1 zt

1−xi
∏k
t=1(1+zt)

, then by Proposition 2.2.3 the RHS of

32



(2.2.37) becomes

∏

i≥1

(1− U1xi/(1− xiV )−1) =
exp(

∑
j≥0

1
j
pj(x)

∏k
t=1(1 + zt)

j)

exp(
∑

j≥0
1
j
pj(x)

∏k
t=1 z

j
t )

= exp(
∑

j≥0

1

j
Ujpj(x)). (2.2.38)

By Proposition 2.2.3, exp(
∑

j≥0
1
j
Ujpj(x)) =

∑
λ

1
zλ
Uλpλ(x). Combining (2.2.37) and

(2.2.38) we finish the proof of the Lemma.

Having proved Lemma 2.2.32 we conclude the proof of Corollary 2.2.29.
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2.3 Symmetry colored factorizations all k

This section is from Sections 3 and 4 of [10], joint work with O. Bernardi.

2.3.1 Background on maps

Graphs and maps. Our graphs are undirected and can have loops and multiple
edges. A digraph, or directed graph, is a graph where every edge is oriented;
oriented edges are called arcs. An Eulerian tour of a directed graph is a directed
path starting and ending at the same vertex and taking every arc exactly once. An
edge e of a graph defines two half-edges each of them incident to an endpoint of e.
A rotation system for a graph G is an assignment for each vertex v of G of a cyclic
ordering for the half-edges incident to v.

We now review the connection between rotation systems and embeddings of graphs
in surfaces. We call surface a compact, connected, orientable, 2-dimensional manifold
without boundary (such a surface is characterized by its genus g ≥ 0). A map
is a cellular embedding of a connected graph in an oriented surface considered up
to orientation preserving homeomorphism1. By cellular we mean that the faces
(connected components of the complement of the graph) are simply connected. For a
map, the angular section between two consecutive half-edges around a vertex is called
a corner. The degree of a vertex or a face is the number of incident corners. A map
M naturally defines a rotation system ρ(M) of the underlying graph G by taking the
cyclic order of the half-edges incident to a vertex v to be the clockwise order of these
half-edges around v. The following classical result (see e.g. [45]) states the relation
between maps and graphs with rotation systems.

Lemma 2.3.1. For any connected graph G, the function ρ is a bijection between the
set of maps having underlying graph G and the set of rotation systems of G.

Constellations and cacti. A k-constellation, or constellation for short, is a
map with two types of faces black and white, and k types of vertices 1, 2, . . . , k,
such that:

(i) each edge separates a black face and a white face,
(ii) each black face has degree k and is incident to vertices of type 1, 2, . . . , k in this

order clockwise around the face.
Two constellations are shown in Figure 2-4. The black faces are also called hyper-
edges. The size of a constellation is the number of hyperedges. A constellation of
size n is labelled if its hyperedges receive distinct labels in [n].

We now recall the link between constellations and products of permutations. We
call k-hypergraph a pair G = (V,E) where V is a set of vertices, each of them having
a type in [k], and E is a set of hyperedges which are subsets of V containing exactly
one vertex of each type. A rotation-system for the hypergraph G is an assignment
for each vertex v of a cyclic order of the hyperedges incident to v (i.e., containing

1Maps can be considered on non-orientable surfaces [51, 23, 35] where coloring arguments are
also useful for enumeration [6, 47, 63].
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Figure 2-4: Two hyperedge-labelled 3-constellations of size 5 (the shaded triangles
represent the hyperedges). The 3-constellation on the left (which is embedded in the
sphere) encodes the triple (π1, π2, π3), where π1 = (1, 2, 5)(3, 4), π2 = (1, 3)(2)(4)(5),
π3 = (1, 4)(2)(3)(5), so that π1π2π3 = (1, 3, 2, 5)(4). The 3-cactus on the right (which
is embedded in the torus) encodes the triple (π1, π2, π3), where π1 = (1, 3, 5)(2, 4),
π2 = (1, 4)(2, 3)(5), π3 = (1)(2, 4)(3)(5), so that π1π2π3 = (1, 2, 3, 4, 5).

v). Clearly each k-constellation defines a connected k-hypergraph together with a
rotation system (the clockwise order of the hyperedges around each vertex). In fact
Lemma 2.3.1 readily implies the following result.

Lemma 2.3.2. For any connected k-hypergraph G, there is a bijection between k-
constellations of underlying k-hypergraph G and the rotation systems of G.

Now given a hyperedge-labelled k-constellation C of size n, we define some permu-
tations π1, . . . , πk as follows: for each t ∈ [k] we define the cycles of the permutation
πt to be the counterclockwise order of the hyperedges around the vertices of type
t. Examples are given in Figure 2-4. We then say that the hyperedge-labelled k-
constellation C represents the tuple %(C) = (π1, . . . , πk). From Lemma 2.3.2 it is
easy to establish the following classical result (see e.g. [36]).

Lemma 2.3.3. The representation mapping % is a bijection between hyperedge-labelled
k-constellations of size n and tuples of permutations (π1, . . . , πk) of [n] acting transi-
tively on [n]. Moreover the number of white faces of the constellation is equal to the
number of cycles of the product π1π2 · · · πk.

An edge of a constellation has type t ∈ [k] if its endpoints have types t and t+ 1
(the types of the vertices and edges are considered modulo k). A k-constellation has
type (p1, . . . , pk) if it has pt vertices of type t for all t ∈ [k]. The hyperdegree of
a vertex is the number of incident hyperedges. A constellation of type (p1, . . . , pk) is
vertex-labelled if for each t ∈ [k] the pt vertices of type t have distinct labels in [pt].
We say that such a constellation has vertex-compositions (γ(1), . . . , γ(k)) if for all
t ∈ [k], γ(t) is a composition of size n and length pt whose ith part is the hyperdegree
of the vertex of type t labelled i.

A k-constellation is rooted if one of its hyperedges is distinguished as the root
hyperedge. The vertex of type k incident to the root hyperedge is called root
vertex. There are n! distinct ways of labelling a rooted constellation of size n (because
a rooted constellation has no symmetry preserving the root hyperedge). Hence, there
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is a 1-to-(n−1)! correspondence between rooted constellations of size n and hyperedge-
labelled constellations of size n.

A k-cactus is a k-constellation with a single white face. By Lemma 2.3.3 the
hyperedge-labelled k-cacti correspond bijectively to the factorizations of one of the
(n−1)! long cycles into k factors (transitivity is redundant in this case), while rooted
cacti correspond bijectively to the factorizations of the permutation (1, 2, . . . , n).
Since Jackson’s counting formula is about colored factorizations of (1, 2, . . . , n)
(see Definition 2.1.3), we now consider vertex-colored cacti. Given some posi-
tive integers q1, . . . , qk, a (q1, . . . , qk)-colored cacti is a k-cacti together with an
assignment of colors to vertices, such that for every t ∈ [k] the vertices of type t
are colored using every color in [qt]. A (2, 1, 3)-colored cacti is represented in Fig-
ure 2-5. The color-compositions of a (q1, . . . , qk)-colored cacti of size n is the tuple
(γ(1), . . . , γ(k)), where for all t ∈ [k], γ(t) is a composition of size n and length qt
whose ith part is the number of hyperedges incident to vertices of type t colored
i. It is clear from the representation mapping %, that (q1, . . . , qk)-colored cacti of
color-compositions (γ(1), . . . , γ(k)) are in bijection with the (q1, . . . , qk)-colored factor-
izations of (1, 2, . . . , n) with color-compositions (γ(1), . . . , γ(k)).

1

5 2 3

4

Type 2 (colors

Type 3 (colors

Type 1 (colors

)

)

)

Figure 2-5: A (2, 1, 3)-colored cacti (embedded in the sphere) with color-compositions
(γ(1), γ(2), γ(3)), where γ(1) = (1, 4), γ(2) = (5) and γ(3) = (2, 1, 2).

From now on, all our results and proofs are stated in terms of constellations and
cacti.

2.3.2 From cacti to tree-rooted constellations

In this section we establish a bijection between vertex-colored cacti and certain con-
stellations with a distinguished spanning tree. Let C be a k-constellation and let
v0 be a vertex. We call v0-arborescence of C a spanning tree A such that every
vertex v 6= v0 of type t is incident to exactly one edge of type t in A (equivalently,
the spanning tree A is oriented from the leaves toward v0 by orienting every edge of
A of type t ∈ [k] from its endpoint of type t toward its endpoint of type t + 1). A
tree-rooted constellation is a pair (C,A) made of a rooted constellation C together
with a v0-arborescence A, where v0 is the root vertex of C. An example of tree-rooted
constellation is given in Figure 2-6 (bottom right).
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Theorem 2.3.4. Let p1, . . . , pk be positive integers. There is a bijection Φ between the
set C(n)

p1,...,pk of (p1, . . . , pk)-colored rooted k-cacti of size n (these encode the (p1, . . . , pk)-
colored factorizations of (1, 2, . . . , n)), and the set T np1,...,pk of vertex-labelled tree-rooted
k-constellations of size n and type (p1, . . . , pk).

Moreover, the bijection has the following degree preserving property: for any
vertex-colored cactus C, the number of edges joining vertices of type t and color i to
vertices of type t+1 and color j in C is equal to the number of edges joining the vertex
of type t labelled i to the vertex of type t+ 1 labelled j in the tree-rooted constellation
Φ(C).

Remark. The degree preserving property of Theorem 2.3.4 implies that for any
tuple of compositions (γ(1), . . . , γ(k)), the mapping Φ establishes a bijection between
cacti of color-compositions (γ(1), . . . , γ(k)) and tree-rooted constellations of vertex-
compositions (γ(1), . . . , γ(k)).

Remark. In the case k = 2 the tree-rooted k-constellations can be identified with
rooted bipartite maps with a distinguished spanning tree (simply by considering the
hyperedges as edges). These objects are easy to count (see [6]), so that the case k = 2
of Theorem 2.1.4 follows easily from Theorem 2.3.4 in this case.

The remaining of this section is devoted to the proof of Theorem 2.3.4. Our
strategy parallels the one developed in [6] (building on some ideas of Lass [38]) in
order to prove extensions of the Harer-Zagier formula. This proof is illustrated in
Figure 2-6. We shall recombine the information given by a vertex-colored cactus into
the information given by a tree-rooted constellation through the BEST Theorem (see
Lemma 2.3.6 below).

We call k-digraph a directed graph with k types of vertices 1, . . . , k, such that
every vertex has as many ingoing and outgoing arcs, and every arc goes from a vertex
of type t to a vertex of type t + 1 for some t ∈ [k] (as usual the types of vertices
are considered modulo k). An arc going from a vertex of type t to a vertex of type
t + 1 is said to have type t. Note that a k-digraph has as many arcs of each type,
and we say that it has size n if it has n arcs of each type. An arc-labelling of a
k-digraph of size n is an assignment of distinct labels in [n] to the n arcs of type t, in
such a way that for any (t, i) ∈ [k]× [n] the end of the arc of type t and label i is the
origin of the arc of type t+ 1 and label i. Observe that arc-labelled k-digraphs easily
identify with hyperedge-labelled k-hypergraphs. A k-digraph has type (p1, . . . , pk)
if for each t ∈ [k] there are pt vertices of type t. It is vertex-labelled by assigning
distinct labels in [pt] to its pt vertices of type t for all t ∈ [k].

Lemma 2.3.5. There is a bijection Ξ between the set of hyperedge-labelled rooted
(p1, . . . , pk)-colored cacti of size n, and the set of pairs (G, η) where G is a arc-labelled
vertex-labelled k-digraph of type (p1, . . . , pk) and η is an Eulerian tour of G starting
and ending at a vertex of type k.

Lemma 2.3.5 is illustrated in the top part of Figure 2-6.
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Figure 2-6: From a vertex-colored cactus to a tree-rooted constellation via the BEST
Theorem.

Proof. We call black k-gon a polygon with k vertices of type 1, 2, . . . , k in clockwise
order, and white kn-gon a polygon with kn vertices, such that the type of vertices
increases by one (modulo k) along each edge in counterclockwise order (modulo k).
A white kn-gon is rooted if a corner incident to a vertex of type k is distinguished
as the root-corner; it is (p1, . . . , pk)-colored if for all t ∈ [k] the vertices of type t
are colored using every color in [pt].

Observe that the n hyperedges of a k-cactus of size n are black k-gons, while its
white face is a white kn-gon (since faces of cactus are simply connected). Moreover
the k-cactus is completely determined (up to homeomorphism) by specifying the
gluing of the black k-gons with the white kn-gon (that is specifying the pair of edges
to be identified). Thus, a rooted hyperedge-labelled (p1, . . . , pk)-colored cactus is
obtained by taking a rooted (p1, . . . , pk)-colored white kn-gon, and gluing its edges to
the edges of n labelled black k-gon so as to respect the color and type of the vertices
(certain vertices of the white kn-gon are identified by the gluing). Now, a rooted
(p1, . . . , pk)-colored white kn-gon is bijectively encoded by a pair (G̃, η), where G̃ is
a vertex-labelled k-digraph of type (p1, . . . , pk) and η is an Eulerian tour of G̃ (the
Eulerian tour gives the order of the colors around the white kn-gon in counterclockwise
direction starting from the root-corner). Moreover, the gluings of the n labelled black
k-gons (respecting the type and coloring) are in bijection with the arc-labellings of
G̃. This establishes the claimed bijection.

We now recall the BEST Theorem for Eulerian tours2. Let G be a directed graph

2This Theorem is due to de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte. See [57, Theorem
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and let v0 be a vertex. We call v0-Eulerian tour an Eulerian-tour starting and
ending at vertex v0. Observe that a v0-Eulerian tour is completely characterized
by its local-order, that is, the assignment for each vertex v of the order in which
the outgoing edges incident to v are used. Note however that not every local order
corresponds to an Eulerian tour. We call v0-arborescence a spanning tree A of G
oriented from the leaves toward v0 (i.e., every vertex v 6= v0 has exactly one outgoing
arc in A).

Lemma 2.3.6 (BEST Theorem). Let G be an arc-labelled directed graph where every
vertex has as many ingoing arcs as outgoing ones, and let v0 be a vertex of G. A local
order corresponds to a v0-Eulerian tour if and only if the set of last outgoing arcs
out of the vertices v 6= v0 form a v0-arborescence. Consequently, there is a bijection
between the set of v0-Eulerian tours of G and the set of pairs (A, τ), where A is a v0-
arborescence, and τ is an assignment for each vertex v of a total order of the incident
outgoing arcs not in A.

We now complete the proof of Theorem 2.3.4. By combining Lemma 2.3.5 and the
BEST Theorem, one gets a bijection between rooted hyperedge-labelled (p1, . . . , pk)-
colored cacti and triples (G,A, θ) where G is an arc-labelled vertex-labelled k-digraph
of type (p1, . . . , pk), A is a v0-arborescence of G for a vertex v0 of type k, and τ is
an assignment for each vertex v of a total order of the arcs not in A going out of
v. Observe that τ encodes the same information as a pair (a0, τ

′), where a0 is an
arc going out of v0 and τ ′ is an assignment for each vertex v of a cyclic order of the
arcs going out of v. Now the arc-labelled vertex-labelled k-digraph G encodes the
same information as a hyperedge-labelled vertex-labelled k-hypergraph G′, and τ ′ can
be seen as a rotation system for G′. Thus, by Lemma 2.3.2 the pair (G, τ) encodes
the same information as a rooted hyperedge-labelled vertex-labelled k-constellation C
of type (p1, . . . , pk) (note that the hypergraph G′ is clearly connected since it has an
arborescence A). Lastly, the v0-arborescence A of G clearly encodes a v0-arborescence
of the constellation C, where v0 is the root vertex of C.

We thus have obtained a bijection between rooted hyperedge-labelled (p1, . . . , pk)-
colored cacti and the hyperedge-labelled vertex-labelled tree-rooted constellations.
The labelling of the hyperedges can actually be disregarded since there are n! distinct
ways of labelling the hyperedges of a rooted constellation of size n. This gives the
bijection announced in Theorem 2.3.4. Moreover it is easy to check that it has the
claimed degree preserving property. �

2.3.3 Symmetries for tree-rooted constellations

In this section we prove that for vertex-labelled tree-rooted constellations of a given
type (p1, . . . , pk), every vertex-compositions is equally likely. This together with The-
orem 2.3.4 proves the symmetry property stated in Theorem 2.1.6.

We denote by Tγ(1),...,γ(k) the set of vertex-labelled tree-rooted constellations of

vertex-compositions (γ(1), . . . , γ(k)).

5.6.2] for a proof.
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Theorem 2.3.7. If γ(1), . . . , γ(k), δ(1), . . . , δ(k) are compositions of n such that `(γ(t)) =
`(δ(t)) for all t ∈ [k], then the sets Tγ(1),...,γ(k) and Tδ(1),...,δ(k) are in bijection.

Remark. Theorem 2.3.7 gives the hope of counting tree-rooted constellations of
given type, by looking at the simplest possible vertex-compositions. For instance,
one can try to enumerate the set Tγ(1),...,γ(k) where γ(t) = (n − pt + 1, 1, 1, . . . , 1) for
all t ∈ [k] (similar ideas lead to a very easy way of counting k-cacti embedded in the
sphere [8]). However, our efforts in this direction only led to a restatement of Jackson
counting formula as a probabilistic puzzle similar to [10][Thm. 1.6.] which we could
not easily solve for k ≥ 3.

Proof. Let t ∈ [k] and i, j ∈ [pt]. In order to prove Theorem 2.3.7 it suffices to exhibit
a bijection ϕt,i,j between Tγ(1),...,γ(k) and Tδ(1),...,δ(k) when γ(s) = δ(s) for all s 6= t,

γ
(t)
x = δ

(t)
x for all x 6= i, j, γ

(t)
i − 1 = δ

(t)
i and γ

(t)
j + 1 = δ

(t)
j . In other words, we

want to construct a bijection ϕt,i,j which decreases by one the hyperdegree of the
vertex of type t labelled i and increases by one the hyperdegree of the vertex of type t
labelled j. Recall from Lemma 2.3.2 that a k-constellation is defined by a (connected)
k-hypergraph together with a rotation system (clockwise order of hyperedges around
the vertices); therefore it is well defined to unglue a hyperedge from a vertex of type
t and reglue it in a specified corner of another vertex of type t. We will use these
operations to define the mapping ϕt,i,j below; see Figure 2-7.
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Figure 2-7: The bijection ϕt,i,j applied to a tree-rooted constellation in T ′t,i,j (left),
or in T ′′t,i,j (right). The tree-rooted k-constellations are represented as k-hypergraphs
together with a rotation system (so the overlappings of the hyperedges in this figure
are irrelevant).

Let Tt,i be the set of vertex-labelled tree-rooted constellations of type (p1, . . . , pk)
such that the vertex of type t labelled i has hyperdegree at least two. Let T be a
tree-rooted constellation in Tt,i, let ui and uj be the vertices of type t labelled i and
j respectively, let r be the root vertex, and let A be the marked r-arborescence. If
ui 6= r we denote by hi be hyperedge incident to the edge joining ui to its parent in
A, while if ui = r we denote by hi the the root hyperedge. We define hj similarly.
Let h′i be the hyperedge preceding hi in clockwise order around ui and let ei be the
edge of type t− 1 incident to h′i. Observe that hi 6= h′i since the hyperdegree of ui is
at least two.
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In order to define the mapping ϕt,i,j we need to consider two cases which are
illustrated in Figure 2-7. We first define a partition Tt,i = T ′t,i,j ∪ T ′′t,i,j by declaring
that T is in T ′t,i,j if the edge ei is not on the path from uj to the root vertex r in the
arborescence A, and that T is in T ′′t,i,j otherwise. Suppose first that T is in T ′t,i,j. In
this case we define ϕt,i,j(T ) as the constellation (with marked edges) obtained from the
tree-rooted constellation T (with marked edges corresponding to the arborescence A)
by ungluing the hyperedge h′i from ui and gluing it to uj in the corner preceding the
hyperedge hj in clockwise order around uj; see Figure 2-7(a). Observe that ϕt,i,j(T )
is a tree-rooted constellation (in particular the marked edges form an r-arborescence
A′ of ϕt,i,j(T )). Moreover ϕt,i,j(T ) is in Tt,j and more precisely in T ′t,j,i. It is also
easy to see that ϕt,j,i(ϕt,i,j(T )) = T . Suppose now that T is in T ′′t,i,j. In this case
we define ϕt,i,j(T ) as the constellation (with marked edges) obtained from T (with
marked edges corresponding to the arborescence A) as follows: we unglue all the
hyperedges incident to ui except hi and h′i, we unglue all the hyperedges incident to
uj except hj, we reglue the hyperedges unglued from uj to ui in the corner preceding
h′i in clockwise order around ui (without changing their clockwise order), we reglue
the hyperedges unglued from ui to uj (in the unique possible corner), and lastly we
exchange the labels i and j of the vertices ui and uj; see Figure 2-7(b). It is easy to
see that ϕt,i,j(T ) is a tree-rooted constellation (in particular the marked edges form
an r-arborescence of ϕt,i,j(T )). Moreover ϕt,i,j(T ) is in Tt,j and more precisely in T ′′t,j,i.
It is also easy to see that ϕt,j,i(ϕt,i,j(T )) = T .

We have shown that ϕt,i,j is a mapping from Tt,i to Tt,j. Moreover ϕt,j,i◦ϕt,i,j = Id
for all i, j, thus ϕt,i,j = ϕ−1

t,j,i is a bijection. Lastly, the bijection ϕt,i,j decreases by one
the hyperdegree of the vertex of type t labelled i and increases by one the hyperdegree
of the vertex of type t labelled j. Thus ϕt,i,j has all the claimed properties.

A natural question is whether there is also symmetry for colored factorizations of
a permutation with more than one cycle. Let Cγ(1),...,γ(k)(f) be the set of colored fac-

torizations of a fixed permutation with f cycles of color compositions (γ(1), . . . , γ(k)).
Thus Cγ(1),...,γ(k)(1) ∼= Cγ(1),...,γ(k) . Computer experiments for n ≤ 7 give evidence for
symmetry of colored factorizations for two or three cycles but not for four cycles.

Conjecture 2.3.8. Let γ(1), δ(1), . . . , γ(k), δ(k) be compositions of n such that for every
t ∈ [k] `(γ(t)) = `(δ(t)). Then for f = 2 and 3 (but not for f = 4) #Cγ(1),...,γ(k)(f) =
#Cδ(1),...,δ(k)(f).
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2.4 Applications of symmetry I: enumerating col-

ored factorizations of two and three factors

In this section we use the symmetry of colored factorizations (Theorem 2.1.6) to
compute explicit formulae for cγ(1),...,γ(k) when k = 2, 3 (see (2.2.27) and (2.2.28)).
The approach consists of working with vertex-labelled tree-rooted k-constellations
which are in bijection with colored factorizations (by Theorem 2.3.4). Then applying
the symmetry to these tree-rooted constellations we choose a convenient composition
γ(t) of n with a given length like a hook. This greatly simplifies the enumeration
and one can obtain explicit expressions for cγ(1),γ(2) and cγ(1),γ(2),γ(3) . These formulae
were first obtained in [46, 48] by Morales and Vassilieva via a bijective argument and
multivariate Lagrange inversion.

The proof below of the formula for cγ(1),γ(2) is from [7, Sec. 5.2.], joint work with
O. Bernardi, R.X. Du and R.P. Stanley.
Case k = 2:

Corollary 2.4.1 ([46]). If γ(1), γ(2) are compositions of n with p1, p2 parts then the
number cγ(1),γ(2) of colored factorizations of two factors is

cγ(1),γ(2) =
n(n− p1)!(n− p2)!

(n+ 1− p1 − p2)!
.

Proof. If γ(1), δ(1), γ(2), δ(2) are compositions of n such that `(γ(1)) = `(δ(1)) = p1

and `(γ(2)) = `(δ(2)) = p2 then by Theorem 2.1.6 cγ(1),γ(2) = cδ(1),δ(2) . From this
property one can compute the cardinality of #T n

γ(1),γ(2)
= cγ(1),γ(2) by choosing the

most convenient compositions γ(1), γ(2) of length p1 and p2. We take the hooks γ(1) =
(n−p1 +1, 1, 1, . . . , 1) and γ(2) = (n−p2 +1, 1, 1, . . . , 1), so that cγ(1),γ(2) is the number
of (p1, p2)-labelled bipartite tree-rooted maps with the type 1 and type 2 vertices
labelled 1 of degrees n−p1 +1 and n−p2 +1 respectively, and all the other vertices of
degree 1. In order to construct such an object (see Figure 2-8), one must choose the
unrooted plane tree (1 choice), the labelling of the vertices ((p1−1)!(p2−1)! choices),
the n−p1−p2+1 edges not in the tree (

(
n−p1

n−p1−p2+1

)(
n−p2

n−p1−p2+1

)
(n−p1−p2+1)! choices),

and lastly the root (n choices). This gives (2.2.27): that cγ(1),γ(2) = n(n−p1)!(n−p2)!
(n+1−p1−p2)!

.

Case k = 3: If γ(1), γ(2), γ(3), the number cγ(1),γ(2),γ(3) was computed bijectively by
Morales and Vassilieva [48]. That calculation used the the multivariate Lagrange’s
Implicit Function Theorem [25, Sec. 1.2.9.]. Instead of using this theorem, we use
the symmetry to obtain an equivalent formula.

Corollary 2.4.2. If γ(1), γ(2), γ(3) are compositions of n with p1, p2, p3 parts then the
number cγ(1),γ(2),γ(3) of colored factorizations of three factors is

cγ(1),γ(2),γ(3) = (n− p1)!(n− p2)!(n− p3)!×
∑

a≥0

(n− a− 2)! ·Θ
a!(p3 − 1− a)!(p2 − 1− a)!(p1 − 1)!(n− p1 − a)!(n+ 2− p2 − p3 + a)!

, (2.4.3)
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4

11

5

3
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Figure 2-8: A tree-rooted map in Tγ(1),γ(2) , where γ(1) = (8, 1, 1, 1, 1), γ(2) = (9, 1, 1, 1).
Here the map is represented using the “rotation system interpretation”, so that the
edge-crossings are irrelevant.

where

Θ = (n+ 2− p2 − p3 + a) ((n− a− 1)(p3 − a) + (p1 − 1)(n− p3)) +

+(n−a1−p1) ((n+ 1− p2 − p3 + a)(n+ 2− p2 − p3 + a) + (n+ 1− p2)(p2 − 1− a)) .

Remark 2.4.4. The expression in [48] for cγ(1),γ(2),γ(3) is more compact:

cγ(1),γ(2),γ(3) = n2(n− p1)!(n− p2)!(n− p3)!
∑

r≥0

r!(n− 1− r)!
(
p1−1
r

)(
p2−1
r

)

(n+ 1− p1 − p2 − r)!(n− p3 − r)!
.

�

Proof. If γ(1), δ(1), γ(2), δ(2), γ(3), δ(3) are compositions of n such that `(γ(t)) = `(δ(t)) =
pt for t = 1, 2, 3 then by Theorem 2.1.6 cγ(1),γ(2),γ(3) = cδ(1),δ(2),δ(3) . From this prop-
erty one can compute the cardinality of #T n

γ(1),γ(2),γ(3)
= cγ(1),γ(2),γ(3) by choosing the

most convenient compositions γ(t) of length pt. We take the hooks γ(t) = (n − pt +
1, 1, 1, . . . , 1), so that cγ(1),γ(2),γ(3) is the number of (p1, p2, p3)-labelled tree-rooted con-
stellations with the type t vertex labelled 1 of hyperdegrees n − pt + 1, and all the
other vertices of hyperdegree 1.

We do a refined counting of such objects. For nonnegative integers a1, a2, a3, let
cγ(1),γ(2),γ(3))(a1, a2, a3) be the number of tree-rooted constellations of vertex-compositions

(γ(1), γ(2), γ(3)) where γ(t) = (n + 1 − pt, 1, 1, . . . , 1) for t = 1, 2, 3 where the type t
vertex labelled 1 is incident to at 3-gons whose other two vertices are of hyperdegree
1. The following lemma gives a formula for cγ(1),γ(2),γ(3)(a1, a2, a3).

Lemma 2.4.5. For positive integers n, p1, p2, p3 and nonnegative integers a1, a2, a3 if
γ(t) = (n+ 1− pt, 1, 1, . . . , 1) is a composition of n for t = 1, 2, 3 then

cγ(1),γ(2),γ(3)(a1, a2, a3) =

∏3
t=1(pt − 1)!(n− pt)!

(n− 1)!
×

×
(

n

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)
·∆,
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where

∆ = (n−
3∑

t=1

at)(n+ 3−
3∑

t=1

pt + at) +
3∑

t=1

(pt− 1− at+1− at+2)(pt+1− 1− at+2− at),

and the last sum is modulo 3.

Proof. A tree-rooted constellation (C,A) counted in cγ(1),γ(2),γ(3)(a1, a2, a3) is built in
the following way: we first choose the part of the arborescence A incident to the
vertices labelled 1 (of hyperdgree n + 1 − pt) and the 3-gons of C with the edges
of the part of the arborescence. There are eight possible cases. See Figure 2-9 for
an illustration of these cases. Note that Case 4. can be obtained from Case 3. by
identifying the type 1 vertices. Similarly, Cases 6.,7., and 8. can be obtained from
Case 5. by identifying the type 3 vertices, or the type 1 vertices, or both type 3 and
type 1 vertices respectively.

11

Case 1.

Case 5.

Case 2. Case 3.

1

1

1

1

1

1

1

1

11

1

1

1

Case 6.

11

Case 7.

11

1 11

Case 4.
1

11

1

11

Case 8.

1

11

p1 − 1− a2 − a3
p2 − 1− a1 − a3
p3 − 1− a1 − a2

p1 − 1− a2 − a3
p2 − 2− a1 − a3
p3 − 2− a1 − a2

p1 − 2− a2 − a3
p2 − 1− a1 − a3
p3 − 2− a1 − a2

p1 − 2− a2 − a3
p2 − 1− a1 − a3
p3 − 1− a1 − a2

p1 − 1− a2 − a3
p2 − 1− a1 − a3
p3 − 2− a1 − a2

p1 − 1− a2 − a3
p2 − 1− a1 − a3
p3 − 1− a1 − a2

p1 − 2− a2 − a3
p2 − 2− a1 − a3
p3 − 1− a1 − a2

p1 − 1− a2 − a3
p2 − 2− a1 − a3
p3 − 1− a1 − a2

a23 :
a13 :
a12 :

a23 :
a13 :
a12 :

a123 : n+ 2−∑3
t=1 pt + at n+ 3−∑3

t=1 pt + at n+ 3−∑3
t=1 pt + at n+ 2−∑3

t=1 pt + at

a123 : n+ 3−∑3
t=1 pt + at n+ 2−∑3

t=1 pt + at n+ 2−∑3
t=1 pt + at n+ 1−∑3

t=1 pt + at

Figure 2-9: Possible choices for the part of the tree-rooted 3-constellation with hook
type γ(t) = (n− pt + 1, 1pt−1) incident to the vertices labelled 1 (thus of hyperdegree
n − pt + 1). For each case we indicate the values of att′ : the number of additional
3-gons whose vertices of types t and t′ are labelled 1, and of att′t′′ : the number of
additional 3-gons whose all vertices are labelled 1.
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For t 6= t′, let att′ be the number of 3-gons whose vertices of types t and t′ are
labelled 1, and thus have hyperdegree n+ 1− pt and n+ 1− pt′ respectively, but the
other vertex is of hyperdegree 1, and a123 is the number of 3-gons with all vertices
labelled 1.

The contribution for each case i = 1, 2, . . . , 8 will be
∏3

t=1(pt − 1)! · Ni · n, for
the choices of the labels of the vertices of each type of hyperdegree 1 (

∏3
t=1(pt − 1)!

choices), the choices of the at, att′ , a123 3-gons for case i (Ni choices that will be
computed below), and lastly choosing the root (n choices). Then

cγ(1),γ(2),γ(3)(a1, a2, a3) = n ·
3∏

t=1

(pt − 1)! · (N1 +N2 + · · ·+N8). (2.4.6)

Next we find Ni for i = 1, 2, . . . , 8.

Proposition 2.4.7.

N1 =

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, a12, a23, a13, a123

)
, (2.4.8)

and for i = 2, 3, . . . , 8,

Ni =

∏3
t=1(n− pt)!
(n− 2)!

(
n− 2

a1, a2, a3, a12, a23, a13, a123

)
, (2.4.9)

where a23, a13, a12, and a123 for each case are given in Figure 2-9.

Proof. For the first case note that p1 − 1 = a2 + a3 + a23, p2 − 1 = a1 + a3 + a13 and
p3 − 1 = a1 + a2 + a13. There are

(
n−p1

a1,a12,a13

)(
n−p2

a2,a23,a12

)(
n−p3

a3,a23,a13

)
choices for the kind

of 3-gons incident to type t vertex labelled 1. Then there are a12!a13!a23!(a123!)2 ways
of identifying the 3-gons (see Figure 2-10). Recombining the binomials we obtain∏3
t=1(n−pt)!
(n−1)!

(
n−1

a1,a2,a3,a12,a23,a13,a123

)
.

By a similar argument to that of Case 1. one can show the formula in (A.0.2) for
Ni, i = 2, 3, . . . , 8.

By using the formulas in (A.0.1), (A.0.2) for Ni for i = 1, 2, . . . , 8 in (2.4.6) we
obtain the desired expression for cγ(1),γ(2),γ(3)(a1, a2, a3). This finishes the proof of
Lemma 2.4.5.

Since cγ(1),γ(2),γ(3) =
∑

a1,a2,a3≥0 cγ(1),γ(2),γ(3)(a1, a2, a3), from Lemma 2.4.5 and (2.4.6)
we can obtain (2.4.3) via manipulations with binomials and using the Chu-Vandermonde
identity repeatedly. This is done in the Appendix A to complete the proof of Corol-
lary 2.4.2.

Remark 2.4.10. In this section we have seen that using the symmetry of colored fac-
torizations reduces the calculation of cγ(1),γ(2) to one case (see Figure 2-8) but reduces
the calculation of cγ(1),γ(2),γ(3) to eight cases (see Figure 2-9) and several manipulations
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Case 1.

a23a13

a1

a3

1

1 1

a2

type 2

type 3

type 1

a123

a12

1 1

1

Figure 2-10: Illustration for Case 1. of the 3-gons counted by a1, a2, a3 (one vertex of
hyperdegree n+ 1− pt, the other two of hyperdegree 1) , by a12, a13, a23 (two vertices
of hyperdegree n + 1 − pt, the other of hyperdegree 1), and by a123 (all vertices of
hyperdegree n + 1 − pt). Here the 3-constellation is represented using the “rotation
system interpretation”, so that the crossings of the 3-gons are irrelevant.

with binomials. Thus, the symmetry alone does not seem to be sufficient to tractably
compute cγ(1),...,γ(k) for all k and thus to prove Jackson’s formula (Corollary (2.1.7)).
In [10] there are two more combinatorial constructions starting from tree-rooted k-
constellations aimed at fully proving this formula. �
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2.5 Applications of symmetry II: enumerating pla-

nar cacti

This section is from [8], joint work with O. Bernardi.

2.5.1 Introduction

We study the enumeration of rooted planar k-cacti by given vertex degree distribu-
tions. We carry out this enumeration by showing, via simple bijective arguments, two
symmetry properties that these objects satisfy. These symmetry properties reduce
the complexity of the enumeration to a calculation of a particular simple case. We
recover the classical formulas of Goulden-Jackson [24] that were obtained using the
multivariate Lagrange’s Implicit Function Theorem [25, Sec. 1.2.9.].

type 2

type 3

type 1

type 4

k = 2 k = 3 k = 4

Figure 2-11: Examples of rooted planar k-cacti for k = 2, 3 and 4.

2.5.2 Enumeration of planar rooted k-cacti using symmetry

A k-cactus is a connected simple graph such that every edge lies on exactly one
k-cycle which we call a k-gon. We say a k-cactus is planar if it is embedded in the
plane such that every edge is part of the unbounded region. Thus the planar cacti
consists of an unbounded face and the bounded connected regions which are precisely
the k-gons. A planar k-cacti has size n if it has n k-gons and it is rooted if it has a
distinguished edge. The degree of a vertex is the number of k-gons incident to the
vertex.

We associate to a rooted planar k-cacti the following canonical coloring or assign-
ment of types to the vertices. Starting at the root edge, we traverse the boundary of
the unbounded region always keeping it to the left. As we traverse the region we as-
sign to the vertices types 1, 2, . . . , k cyclically starting by assigning the vertices of the
root edge types k and 1 respectively. It is clear that the assignment is well-defined,
meaning that if a vertex has degree j it will be visited j times by the traversal of the
unbounded face but it will be assigned the same type each time. We call the type 1
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vertex of the root edge the root vertex. Also note that between any two vertices
u and v of a planar k-cacti there is a unique shortest path of k-gons between two
k-gons with vertices u and v.

We say the cacti is vertex-labelled if for each t ∈ [k] the pt type t vertices
have distinct labels in [pt]. The degree distribution of the type t vertices is the
composition γ(t) of n with pt parts whose ith part gives the degree of the type t
vertex labelled i. If γ(1), . . . , γ(k) are compositions of n, a planar cacti has vertex-
degree distribution (γ(1), . . . , γ(k)) if for all t ∈ [k], the type t vertices have degree
distribution γ(t). Let Cγ(1),...,γ(k) be the set of such vertex-labelled rooted planar cacti,
and Cγ(1),...,γ(k) = #Cγ(1),...,γ(k) . See Figure 2-11 for examples of vertex-labelled rooted
planar k-cacti for k = 2, 3 and 4.

If pt = `(γ(t)) then 1 ≤ pt ≤ n and by the Euler characteristic of the cacti we have
that

∑k
t=1 pt = (k − 1)n + 1. In [24, Thm. 3.2] Goulden and Jackson counted these

rooted planar k-cacti (but with unlabelled vertices) using the multivariate Lagrange
Inversion Theorem [25, Sec. 1.2.9.].

Theorem 2.5.1 ([24, Theorem 3.2]). Let γ(1), . . . , γ(k) be k compositions of n with
`(γ(t)) = pt parts such that

∑k
t=1 pt = (k − 1)n+ 1 then the number of vertex-labelled

rooted planar k-cacti where the type t vertices have degree distribution given by γ(t) is

Cγ(1),...,γ(k) = nk−1 ·
k∏

t=1

(pt − 1)!. (2.5.2)

Remark 2.5.3. The rooted planar k-cacti counted in [24] have unlabelled vertices.
Thus the number of k-cacti they consider is Cγ(1),...,γ(k)/

∏k
t=1

∏
j nj(γ

(t))! where nj(γ
(t))

is the number of parts of γ(t) equal to j. �
If instead we count rooted planar k-cacti with unlabelled vertices not by degree

distribution but by the number of vertices of each type we get the Narayana num-
bers 1

n

(
n
p1

)(
n

p1−1

)
for k = 2 and for general k we obtain the following formula for these

numbers.

Corollary 2.5.4. For positive integers p1, . . . , pk such that 1 ≤ pt ≤ n and
∑k

t=1 pt =
(k− 1)n+ 1, let C(n; p1, . . . , pk) be the number of rooted planar k-cacti of size n with
unlabelled vertices and pt vertices of type t for t = 1, . . . , k. Then

C(n; p1, . . . , pt) = nk−1 ·
k∏

t=1

1

pt

(
n− 1

pt − 1

)
. (2.5.5)

Proof. The set of rooted planar k-cacti of size n with pt labelled vertices of type
t has cardinality (

∏k
t=1 pt!) · C(n; p1, . . . , pt). Also this set is the disjoint union⋃

γ(t)|=n, `(γ(t))=pt Cγ(1),...,γ(k) . But since Cγ(1),...,γ(k) only depends on n, k and pt and

there are
(
n−1
pt−1

)
compositions of n with pt parts we have that

∑

γ(t)|=n,`(γ(t))=pt

Cγ(1),...,γ(k) =
k∏

t=1

(
n− 1

pt − 1

)
· nk−1 ·

k∏

t=1

(pt − 1)!.
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Using this equation and doing some straightforward cancellations we obtain the de-
sired formula for C(n; p1, . . . , pk).

type 2

type 3

type 1

1

2

6

5

4

3

1

4

3

2

1
4

3

5

2

Figure 2-12: A rooted planar 3-cacti of size 7 with labelled vertices and vertex degree
distribution (γ(1), γ(2), γ(3)) where γ(1) = (3, 1, 1, 2), γ(2) = (1, 1, 2, 2, 1) and γ(3) =
(1, 1, 1, 2, 1, 1).

Remark 2.5.6. Rooted planar k-cacti are related to minimal factorizations of the
cycle (1, 2, . . . , n) into k permutations (see [24][Thm. 2.1] and [36][Sec. 1.3]). �

Symmetry of degree distribution by type for planar cacti

The first symmetry result states that Cγ(1),...,γ(k) only depends on n, k and on the

number of parts of γ(t).

Theorem 2.5.7 (Symmetry of degree distribution of cacti). Let γ(1), . . . , γ(k) and
δ(1), . . . , δ(k) be compositions of n such that `(γ(t)) = `(δ(t)) for all t ∈ [k] then

Cγ(1),...,γ(k) = Cδ(1),...,δ(k) . (2.5.8)

This means that we can compute Cγ(1),...,γ(k) where pt = `(γ(t)) by choosing simple

compositions of n with pt parts like hooks γ(t) = (n+ 1− pt, 1pt−1).

Corollary 2.5.9. Theorem 2.5.1 is equivalent to showing that the number of rooted
planar k-cacti of vertex-degree distribution (γ(1), . . . , γ(k)) where γ(t) is the hook (n+
1− pt, 1pt−1) is

C(n+1−p1,1p1−1),...,(n+1−pk,1pk−1) = nk−1 ·
k∏

t=1

(pt − 1)!.

In Section 2.5.2 we finish the proof of Theorem 2.5.1 by computing the number of
such particular planar k-cacti using another “symmetry”. The rest of this section is
devoted to the proof of Theorem 2.5.7.
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Proof. Let t ∈ [k] and i, j ∈ [pt]. In order to prove Theorem 2.5.7 it suffices to give
a bijection Φt;i,j between Cγ(1),...,γ(k) and Cδ(1),...,δ(k) where γ(s) = δ(s) for s 6= t, but

γ
(t)
x = δ

(t)
x for all x 6= i, j and γ

(t)
i − 1 = δ

(t)
i and γ

(t)
j + 1 = δ

(t)
j . In other words, we

want to give a bijection Φt;i,j which decreases by one the degree of the type t vertex
labelled i and increases by one the degree of the type t vertex labelled j and leaves
unchanged the degrees of all the other vertices. Note that since the k-cacti are planar
it is well defined to unglue a k-gon from a vertex of type t and reglue it in a specified
corner of another vertex of type t. We will use these operations to define the mapping
Φt;i,j below; see Figure 2-13.

Let C(t;i) be the set of vertex-labelled rooted planar k-cacti with pt type t vertices
for t = 1, . . . , k such that the vertex of type t labelled i has degree at least two. Let C
be a cacti in C(t;i), let ui and uj be the vertices of type t labelled i and j respectively
and let P be the path of k-gons from ui to uj.

We denote by gi be the k-gon in P with vertex ui. We define gj to be the k-gon
in P with vertex uj. Let g′i be the k-gon preceding gi in clockwise order around ui.
Observe that gi 6= g′i since the degree of ui is at least two. We define Φt;i,j(C) as the
planar cacti obtained from C by ungluing the k-gon g′i from ui and gluing it to uj
in the corner preceding the k-gon gj in clockwise order around uj; see Figure 2-13.
Observe that Φt;i,j(C) is in C(t;j). It is also easy to see that Φt;j,i(Φt;i,j(C)) = C.

We have shown that Φt;i,j is a mapping from C(t;i) to C(t;j). Moreover Φt;j,i◦Φt;i,j =
Id for all i, j, thus Φt;i,j = Φ−1

t;j,i is a bijection. Lastly, the bijection Φt;i,j decreases by
one the degree of the vertex of type t labelled i and increases by one the degree of
the vertex of type t labelled j. Thus Φt;i,j has all the claimed properties.

uj

C ∈ C(t;i,j)

ui

gi

g′i

type t

gj
uj

ui

gi

gj

g′i

uj

ui

gi

gj

g′i

Φt;i,j(C) ∈ C(t;j,i)

j

i

j j

i i

Figure 2-13: The bijection Φt;i,j applied to a planar cacti in C(t;i). The k-gons with a
bold border are part of the path P of k-gons from ui to uj.

Symmetry of number of vertices by type for planar hook cacti

From Corollary 2.5.9 the number of rooted planar k-cacti of degree distribution
(γ(1), . . . , γ(k)) is the same as the number of rooted planar k-cacti of degree distribu-
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tion given by hooks γ(t) = (n + 1− pt, 1pt−1) where pt = `(γ(t)). Thus, we now focus
on this hook case and so given positive integers p1, . . . , pk such that 1 ≤ pt ≤ n and∑k

t=1 pi = (k− 1)n+ 1, let H(n)
p1,...,pk be the set Cγ(1),...,γ(k) of rooted planar k-cacti with

vertex degree distribution (γ(1), . . . , γ(k)) where γ(t) is the hook (n + 1 − pt, 1
pt−1).

Note that the type t vertex labelled 1 is the vertex of degree n+ 1− pt. We call such
cacti: rooted planar hook k-cacti and we let H

(n)
p1,...,pk = #H(n)

p1,...,pk . See Figure 2-14
(a) for an example.

Counting H
(n)
p1,...,pk directly for small k like k = 2, 3 is tractable but for bigger

k the computations and case analysis gets trickier. So instead of counting planar
hook k-cacti directly we use another symmetry that these hook k-cacti satisfy. This
symmetry states that H

(n)
p1,...,pk , up to some easy factors from vertex labelling, depends

only on n and k.

Theorem 2.5.10 (Symmetry of number of vertices of hook cacti). Let p1, . . . , pk be
positive integers such that 1 ≤ pi ≤ n and

∑k
t=1 pt = (k − 1)n + 1. If there is an

index s ∈ {1, . . . , k} such that pa < n then pb > 1 for all other b in [k]\{s}. For each
such b there is a (pb− 1)-to-pa correspondence between the sets of planar hook k-cacti

H(n)
p1,...,pk and H(n)

p1,...,pb−1,...,pa+1,...,pk
.

The proof of this theorem is at the end of this section. By this symmetry we
can compute H

(n)
p1,...,pk by repeatedly increasing the number of type t-vertices for t =

2, . . . , k and decreasing the number of say type 1-vertices. Therefore we can relate
H

(n)
p1,...,pk with the extreme case when p1 = 1 and p2 = p3 = · · · = pk = n.

Corollary 2.5.11. Let p1, . . . , pk be positive integers such that 1 ≤ pt ≤ n and∑k
t=1 pt = (k − 1)n+ 1. Then

H(n)
p1,...,pk

=
(p1 − 1)!∏k

t=2(n− 1)n+1−pt
·H(n)

1,n,...,n,

where (x)m = x(x− 1) · · · (x−m+ 1).

Proof. If there is an index a in {2, . . . , k} such that pa < n then by Theorem 2.5.10
for b = 1 we have that

H(n)
p1,...,pk

=
p1 − 1

pa
·H(n)

p1−1,p2,...,ps−1,ps+1,ps+1,...,pk
.

Then by repeated application of this result we reach to p1 = 1 and p2 = p3 = · · · =
pt = n and obtain the desired formula.

Thus by Corollaries 2.5.9 and 2.5.11, proving Theorem 2.5.1 is equivalent to show-
ing that H

(n)
1,n,...,n = (n!)k−1. Computing this number H

(n)
1,n,...,n of rooted planar hook

k-cacti is very easy.

Proposition 2.5.12. The number of rooted planar k-cacti of size n with one type 1
vertex and n type t vertices for t = 2, . . . , k is

H
(n)
1,n,...,n = (n!)k−1.
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Proof. A rooted planar hook k-cacti with p1 = 1 and p2 = p3 = · · · = pk = n has
only one type 1 vertex of degree n which is the root labelled 1. For t = 2, . . . , k, the
k-cacti has n type t vertices of degree 1 with distinct labels in [n]. See Figure 2-14
(b) for an illustration of such a planar hook k-cacti with the restriction on `′1.

Thus we calculate H
(n)
1,n,...,n in the following way: there is one k-cacti consisting of

a type 1 vertex which is the root incident to n k-gons whose vertices (except for the
root) have all degree 1. And for each type t = 2, . . . , k, there are n! ways of labelling
the n vertices with the distinct labels [n]. This gives (n!)k−1.

type 2

type 3

type 1

1
2

3
n

(a) (b)

1

4

2

1

3

4

2
3

1

3

5

2

4

1

i1

i2

i3

in

j1

j2

j3

jn

Figure 2-14: (a) Example of a hook cacti of size 6 with p1 = 4, p2 = 4, p3 = 5. (b)
Illustration of hook cacti of size n with p1 = 1, p2 = p3 = n. There are (n!)2 such
hook cacti since this is the number of ways to label the n vertices of type 2 and type
3.

Now to complete the combinatorial proof of Theorem 2.5.1 we need to prove
bijectively Theorem 2.5.10. We devote the rest of this section on this proof. We
exhibit a map in the same spirit as the bijection Φt;i,j in Theorem 2.5.7.

Proof. Since the positive integers p1, . . . , pk satisfy 1 ≤ pt ≤ n and
∑k

t=1 pt = (k −
1)n+1 if pa < n for some a ∈ {2, . . . , k} then pb > 1 for all other b in [k]\{a}. Fix one
such b. To prove Theorem 2.5.10 it suffices to exhibit a (pb− 1)-to-pa correspondence

between the sets H(n)
p1,...,pk and H(n)

q1,...,qk where qa = pa + 1, qb = pb − 1 and qt = pt for
t ∈ [k]\{a, b}.

Given a planar hook k-cacti H in H(n)
p1,...,pk its type a vertex va labelled 1 has degree

n + 1 − pa > 1. Let ga be the k-gon on Q with vertex va and let g′a be the k-gon
preceding ga in clockwise order around va. Note that ga 6= g′a since va has degree
n + 1 − pa > 1. Let v′b be the type b vertex of g′a. Since H is a planar hook cacti
and ga 6= g′a then v′a 6= va and so v′a has degree one and label `′b ∈ {2, . . . , pb}. For

simplicity we will consider those hook cacti where `′b = pb. That is, let H(n;a,b)
p1,...,pk be

the set of planar hook k-cacti in H(n)
p1,...,pk where the type b vertex v′b of the k-gon g′a

is labelled `′b = pb. Note that there is a (pb− 1)-to-1 correspondence between H(n)
p1,...,pk

and H(n;a,b)
p1,...,pk .
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Next we build a map Ψa,b between H(n;a,b)
p1,...,pk and H(n;b,a)

q1,...,qk . Given a planar hook

k-cacti H in H(n;a,b)
p1,...,pk , let the vertices va, v

′
b and the k-gons ga, g

′
a be as defined in the

previous paragraph. Let vb be the type b vertex in H labelled 1 which has degree
n + 1 − pb. Let Q be the path of k-gons from va to vb. Let gb be the k-gon on Q
with vertex vb. We define Ψa,b(H) to be the planar k-cacti obtained from H by (i)
ungluing the k-gon g′a from va, (ii) unlabelling v′b and the unglued type a vertex v′a of
g′a and (iii) gluing the k-gon via v′b to the vertex vb of type b in the corner preceding
gb in clockwise order around vb. Finally: (iv) we relabel v′a with the label pa + 1; see

Figure 2-15. The resulting planar k-cacti Ψa,b(H) is in H(n;b,a)
q1,...,qk . That is, it is a hook

cacti with qt = pt type t vertices for t ∈ [k]\{a, b}, qb = pb − 1 type b vertices, and
qa = pa + 1 type a vertices where the type a vertex v′a of degree one in the k-gon
preceding gb in clockwise order around the root r has label qa = pa + 1.

The map Ψa,b ◦ Ψb,a = Id for all a, b ∈ [k], thus Ψa,b = Ψ−1
b,a is a bijection. See

Figure 2-15 for an illustration of this bijection.
Finally, since qq = pq + 1, then there is a 1-to-pa correspondence between H(n;b,a)

q1,...,qk

and H(n)
q1,...,qk .

Putting it all together we obtain a (pb− 1)-to-pa correspondence between H(n)
p1,...,pk

and H(n)
q1,...,qk as desired.

gb

vb

ga

va

1

pb

gb

ga

pa+1

va

vb

type a

type b

gb

vb

ga

va

1

g′a
1

g′a

g′a 1

1 1

H ∈ H(n;a,b)
p1,...,pk Ψa,b(H) ∈ H(n;b,a)

q1,...,qk

Figure 2-15: The bijection Ψa,b. The k-gons with a bold border are part of the path
Q of k-gons from va to vb.

With the proof of Theorem 2.5.10 we complete the combinatorial proof of Theo-
rem 2.5.1.

Remark 2.5.13. Theorem 2.5.7, the symmetry of degree distribution of planar k-
cacti, is a special case of a symmetry property of vertex colored one-face k-
constellations proved in [10][Thm. 1.3]. However, Theorem 2.5.10, the symmetry
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of number of vertices of planar hook k-cacti, does not hold is this more general setting
of colored constellations. �
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2.6 Applications of symmetry III: separation prob-

abilities

This section is from [7], joint work with O. Bernardi, R.X. Du and R.P. Stanley.

2.6.1 Background on separation

Now we apply the symmetry of colored factorizations of the long cycle (1, 2, . . . , n)
(Theorem 2.1.6) to study separation probabilities for products of permutations. The
archetypal question can be stated as follows: In the symmetric group Sn, what is
the probability that the elements 1, 2, . . . , k are in distinct cycles of the product of two
n-cycles chosen uniformly randomly?

The answer is very elegant: the probability is 1
k!

if n−k is odd and 1
k!

+ 2
(k−2)!(n−k+1)(n+k)

if n − k is even. This result was originally conjectured by Bóna [13] for k = 2 and
proved for all k by Du and Stanley [59]. Du and Stanley also proposed additional
conjectures related to this question. In this section we prove such conjecture and
study further generalizations. The approach here is different from the one used in
[59].

Let us define a larger class of problems. Given a tuple A = (A1, . . . , Ak) of k dis-
joint non-empty subsets of {1, . . . , n}, we say that a permutation π is A-separated
if no cycle of π contains elements of more than one of the subsets Ai. Now, given
two integer partitions λ, µ of n, one can wonder about the probability Pλ,µ(A) that
the product of two uniformly random permutations of cycle type λ and µ is A-
separated. The example presented above corresponds to A = ({1}, . . . , {k}) and
λ = µ = (n). Clearly, the separation probabilities Pλ,µ(A) only depend on A through
the size of the subsets #A1, . . . ,#Ak, and we shall denote σαλ,µ := Pλ,µ(A), where

α = (#A1, . . . ,#Ak) is a composition (of size m ≤ n). Note also that σαλ,µ = σα
′

λ,µ

whenever the composition α′ is a permutation of the composition α. Below, we focus
on the case µ = (n) and we further denote σαλ := σαλ,(n).

In this section, we first express the separation probabilities σαλ as some coefficients
in an explicit generating function. Using this expression we then prove the following
symmetry property: if α = (α1, . . . , αk) and β = (β1, . . . , βk) are compositions of the
same size m ≤ n and of the same length k, then

σαλ∏k
i=1 αi!

=
σβλ∏k
i=1 βi!

. (2.6.1)

Moreover, for certain partitions λ (including the cases λ = (n) and λ = 2N) we obtain
explicit expressions for the probabilities σαλ for certain partitions λ. For instance, the
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separation probability σα(n) for the product of two n-cycles is found to be

σα(n) =
(n−m)!

∏k
i=1 αi!

(n+ k)(n− 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +
m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1
m

)
(
n+k+r

r

)
)
. (2.6.2)

This includes the case α = 1k proved by Du and Stanley [59].

Our general expression for the separation probabilities σαλ is derived using the

formula for c
(n)

γ(1),γ(2)
in Equation (2.2.27). This formula, proved bijectively in [46] and

later in [6], displays the symmetry mentioned in Theorem 2.1.6 which turns out to
be of crucial importance for our method.

Outline. In Section 2.6.2 we present our strategy for computing the separation
probabilities. This involves counting certain colored factorizations of the n-cycle. We
then gather our main results in Section 2.6.3. In particular we prove the symmetry
property (2.6.1) and obtain formulas for the separation probabilities σαλ for certain
partitions λ including λ = (n) or when λ = 2N .

2.6.2 How to go from separation probabilities to colored fac-
torizations

In this section, we first translate the problem of determining the separation prob-
abilities σαλ into the problem of enumerating certain sets Sαλ . Then, we introduce
a symmetric function Gα

n(x, t) whose coefficients in one basis are the cardinalities
#Sαλ , while the coefficients in another basis count certain “colored” separated factor-
izations of the permutation (1, . . . , n). Lastly, we give exact counting formulas for
these colored separated factorizations. Our main results will follow as corollaries in
Section 2.6.3.

For a composition α = (α1, . . . , αk) of size m ≤ n, we denote by Aαn the set of
tuples A = (A1, . . . , Ak) of pairwise disjoint subsets of [n] with #Ai = αi for all i in
[k]. Observe that #Aαn =

(
n

α1,α2,...,αk,n−m
)
.

Now, recall from Section 2.6.1 that σαλ is the probability for the product of a
uniformly random permutation of cycle type λ with a uniformly random n-cycle to
be A-separated for a fixed tuple A in Aαn. Alternatively, it can be defined as the
probability for the product of a uniformly random permutation of cycle type λ with
a fixed n-cycle to be A-separated for a uniformly random tuple A in Aαn (since the
only property that matters is that the elements in A are randomly distributed in the
n-cycle).

Definition 2.6.3. For an integer partition λ of n, and a composition α of m ≤ n,
we denote by Sαλ the set of pairs (π,A), where π is a permutation in Cλ and A is a
tuple in Aαn such that the product π ◦ (1, 2, ..., n) is A-separated.
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From the above discussion we obtain for any composition α = (α1, . . . , αk) of size
m,

σαλ =
#Sαλ(
n

α1,α2,...,αk,n−m
)
#Cλ

. (2.6.4)

Enumerating the sets Sαλ directly seems rather challenging. However, we will show
below how to enumerate a related class of “colored” separated permutations denoted
by T αγ (r). Similar to Definition 2.1.3, we define a cycle coloring of a permutation
π ∈ Sn in [q] to be a mapping c from [n] to [q] such that if i, j ∈ [n] belong to the
same cycle of π then c(i) = c(j). We think of [q] as the set of colors, and c−1(i) as
set of elements colored i.

Definition 2.6.5. Let γ = (γ1, . . . , γ`) be a composition of size n and length `, and
let α = (α1, . . . , αk) be a composition of size m ≤ n and length k. For a nonneg-
ative integer r we define T αγ (r) as the set of quadruples (π,A, c1, c2), where π is a
permutation of [n], A = (A1, . . . , Ak) is in Aαn, and

(i) c1 is a cycle coloring of π in [`] such that there are γi element colored i for all
i in [`],

(ii) c2 is a cycle coloring of the product π ◦ (1, 2, . . . , n) in [k + r] such that every
color in [k + r] is used and for all i in [k] the elements in the subset Ai are
colored i.

Note that condition (ii) in Definition 2.6.5 and the definition of cycle coloring
implies that the product π ◦ (1, 2, . . . , n) is A-separated.

In order to relate the cardinalities of the sets Sαλ and T αγ (r), it is convenient to
use symmetric functions (in the variables x = {x1, x2, x3, . . .}). Namely, given a
composition α of m ≤ n, we define

Gα
n(x, t) :=

∑

λ`n
pλ(x)

∑

(π,A)∈Sαλ

texcess(π,A),

where the outer sum runs over all the integer partitions of n, and excess(π,A) is the
number of cycles of the product π ◦ (1, 2, . . . , n) containing none of the elements in A.
Recall that the power symmetric functions pλ(x) form a basis of the ring of symmetric
functions, so that the contribution of a partition λ to Gα

n(x, t) can be recovered by
extracting the coefficient of pλ(x) in this basis:

#Sαλ = [pλ(x)] Gα
n(x, 1). (2.6.6)

As we prove now, the sets T αγ (r) are related to the coefficients of Gα
n(x, t) in the basis

of monomial symmetric functions.
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Proposition 2.6.7. If α is a composition of length k, then

Gα
n(x, t+ k) =

∑

γ`n
mγ(x)

∑

r≥0

(
t

r

)
#T αγ (r), (2.6.8)

where the outer sum is over all integer partitions of n, and

(
t

r

)
:=

t(t− 1) · · · (t− r + 1)

r!
.

Proof. Since both sides of (2.6.8) are polynomial in t and symmetric function in
x it suffices to show that for any nonnegative integer t and any partition γ the
coefficient of xγ is the same on both sides of (2.6.8). We first determine the coefficient
[xγ]Gα

n(x, t + k) when t is a nonnegative integer. Let λ be a partition, and π be a
permutation of cycle type λ. Then the symmetric function pλ(x) can be interpreted
as the generating function of the cycle colorings of π, that is, for any sequence γ =
(γ1, . . . , γ`) of nonnegative integers, the coefficient [xγ]pλ(x) is the number of cycle
colorings of π such that γi elements are colored i, for all i > 0. Moreover, if π is A-
separated for a certain tuple A = (A1, . . . , Ak) in Aαn, then (t+ k)excess(S,π) represents
the number of cycle colorings of the permutation π ◦ (1, 2, . . . , n) in [k + t] (not
necessarily using every color) such that for all i ∈ [k] the elements in the subset Ai
are colored i. Therefore, for a partition γ and a nonnegative integer t, the coefficient
[xγ]Gα

n(x, t + k) counts the number of quadruples (π,A, c1, c2), where π,A, c1, c2 are
as in the definition of T αγ (t) except that c2 might actually use only a subset of the
colors [k + t]. Note however that all the colors in [k] will necessarily be used by c2,
and that we can partition the quadruples according to the subset of colors used by
c2. This gives

[xγ]Gα
n(x, t+ k) =

∑

r≥0

(
t

r

)
#T αγ (r).

Now extracting the coefficient of xγ in the right-hand side of (2.6.8) gives the same
result. This completes the proof.

In order to obtain an explicit expression for the series Gα
n(x, t) it remains to

enumerate the sets T αγ (r) which is done below.

Proposition 2.6.9. Let r be a nonnegative integer, let α be a composition of size m
and length k, and let γ be a partition of size n ≥ m and length `. Then the set T αγ (r)
specified by Definition 2.6.5 has cardinality

#T αγ (r) =
n(n− `)!(n− k − r)!
(n− k − `− r + 1)!

(
n+ k − 1

n−m− r

)
, (2.6.10)

if n− k − `− r + 1 ≥ 0, and 0 otherwise.

The rest of this section is devoted to the proof of Proposition (2.6.9). In order
to count the quadruples (π,A, c1, c2) satisfying Definition 2.6.5, we shall start by
choosing π, c1, c2 before choosing the tuple A. For compositions γ = (γ1, . . . , γ`),
δ = (δ1, . . . , δ`′) of n we denote by Bγ,δ the set of triples (π, c1, c2), where π is a
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permutation of [n], c1 is a cycle coloring of π such that γi elements are colored i for
all i ∈ [`], and c2 is a cycle coloring of the permutation π ◦ (1, 2, . . . , n) such that δi
elements are colored i for all i ∈ [`′]. The number of such sets is exactly cγ,δ from
Definition 2.1.3. By Equation (2.2.27) [46] we have that

cγ,δ =
n(n− `)!(n− `′)!
(n− `− `′ + 1)!

, (2.6.11)

if n− `− `′ + 1 ≥ 0, and 0 otherwise.
Again, the striking features of the counting formula (2.6.11) is that it depends on

the compositions γ, δ only through their lengths `, `′. This “symmetry” will prove
particularly handy for enumerating T αγ (r). Let r, α, γ be as in Proposition 2.6.9,
and let δ = (δ1, . . . , δk+r) be a composition of n of length k + r. We denote by T αγ,δ
the set of quadruples (π,A, c1, c2) in T αγ (r) such that the cycle coloring c2 has δi
elements colored i for all i in [k + r] (equivalently, (π, c1, c2) ∈ Bγ,δ). We also denote

dαδ :=
∏k

i=1

(
δi
αi

)
. It is easily seen that for any triple (π, c1, c2) ∈ Bγ,δ, the number dαδ

counts the tuples A ∈ Aαn such that (π,A, c1, c2) ∈ T αγ,δ. Therefore,

#T αγ (r) =
∑

δ|=n, `(δ)=k+r

#T αγ,δ =
∑

δ|=n, `(δ)=k+r

dαδ cγ,δ,

where the sum is over all the compositions of n of length k + r. Using (2.6.11) then
gives

#T αγ (r) =
n(n− `)!(n− k − r)!
(n− k − `− r + 1)!

∑

δ|=n, `(δ)=k+r

dαδ

if n− k − `− r + 1 ≥ 0, and 0 otherwise. In order to complete the proof of Proposi-
tion 2.6.9, it only remains to prove the following lemma.

Lemma 2.6.12. If α has size m and length k, then

∑

δ|=n, `(δ)=k+r

dαδ =

(
n+ k − 1

n−m− r

)
.

Proof. We give a bijective proof illustrated in Figure 2-16. One can represent a
composition δ = (δ1, . . . , δk+r) as a sequence of rows of boxes (the ith row has δi
boxes). With this representation, dαδ :=

∏k
i=1

(
δi
αi

)
is the number of ways of choosing

αi boxes in the ith row of δ for i = 1, . . . , k. Hence
∑

δ|=n, `(δ)=k+r d
α
δ counts α-marked

compositions of size n and length k+ r, that is, sequences of k+ r non-empty rows
of boxes with some marked boxes in the first k rows, with a total of n boxes, and αi
marks in the ith row for i = 1, . . . , k; see Figure 2-16. Now α-marked compositions
of size n and length k+ r are clearly in bijection (by adding a marked box to each of
the rows 1, . . . , k, and marking the last box of each of the rows k+ 1, . . . , k+ r) with
α′-marked compositions of size n + k and length k + r such that the last box of each
row is marked, where α′ = (α1 + 1, α2 + 1, . . . , αk + 1, 1, 1, . . . , 1) is a composition of
length k + r. Lastly, these objects are clearly in bijection (by concatenating all the
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rows) with sequences of n+k boxes with m+k+ r marks, one of which is on the last
box. There are

(
n+k−1
n−m−r

)
such sequences, which concludes the proof of Lemma 2.6.12

and Proposition 2.6.9.

Figure 2-16: A (2, 1, 2)-marked composition of size n = 12 and length 5 and its
bijective transformation into a sequence n+k = 15 boxes withm+k+r = 5+3+2 = 10
marks, one of which is on the last box.

2.6.3 Results on separation probabilities

In this section, we exploit Propositions 2.6.7 and 2.6.9 in order to derive our main
results. All the results in this section will be consequences of the following theorem.

Theorem 2.6.13. For any composition α of m ≤ n of length k, the generating
function Gα

n(x, t+ k) in the variables t and x = {x1, x2, . . .} has the following explicit
expression in the bases mλ(x) and

(
t
r

)
:

Gα
n(x, t+k) =

n−m∑

r=0

(
t

r

)(
n+ k − 1

n−m− r

) ∑

λ`n, `(λ)≤n−k−r+1

n(n− `(λ))!(n− k − r)!
(n− k − r − `(λ) + 1)!

mλ(x).

(2.6.14)
Moreover, for any partition λ of n, one has #Sαλ = [pλ(x)]Gα

n(x, 1) and σαλ =
#Sαλ(
n

α1,α2,...,αk,n−m
)
#Cλ

.

Theorem 2.6.13 is the direct consequence of Propositions 2.6.7 and 2.6.9. One
of the striking features of (2.6.14) is that the expression of Gα

n(x, t + k) depends on
α only through its size and length. This “symmetry property” then obviously also
holds for #Sαλ = [pλ(x)]Gα

n(x, 1), and translates into the formula (2.6.1) for separation
probabilities as stated below.

Corollary 2.6.15. Let λ be a partition of n, and let α = (α1, . . . , αk) and β =
(β1, . . . , βk) be compositions of the same size m and length k. Then,

#Sαλ = #Sβλ , (2.6.16)

or equivalently, in terms of separation probabilities,
σαλ∏k
i=1 αi!

=
σβλ∏k
i=1 βi!

.

We now derive explicit formulas for the separation probabilities for the product
of a uniformly random permutation π, with particular constraints on its cycle type,
with a uniformly random n-cycle. We focus on two constraints: the case where π is
required to have p cycles, and the case where π is a fixed-point-free involution (for n
even).
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Case when π has exactly p cycles

Let C(n, p) denote the set of permutations of [n] having p cycles. Recall that the
numbers c(n, p) = #C(n, p) = [xp]x(x+1)(x+2) · · · (x+n−1) are called the signless
Stirling numbers of the first kind. We denote by σα(n, p) the probability that
the product of a uniformly random permutation in C(n, p) with a uniformly random
n-cycle is A-separated for a given set A in Aαn. By a reasoning similar to the one used
in the proof of (2.6.4), one gets

σα(n, p) =
1(

n
α1,α2,...,αk,n−m

)
c(n, p)

∑

λ`n,`(λ)=p

#Sαλ . (2.6.17)

We now compute the probabilities σα(n, p) explicitly.

Theorem 2.6.18. Let α be a composition of m with k parts. Then,

σα(n, p) =
(n−m)!

∏k
i=1 αi!

c(n, p)

n−m∑

r=0

(
1− k
r

)(
n+ k − 1

n−m− r

)
c(n− k − r + 1, p)

(n− k − r + 1)!
,

(2.6.19)
where c(n, p) are signless Stirling numbers of the first kind.

For instance, Theorem 2.6.18 in the case m = n gives the probability that the
cycles of the product of a uniformly random permutation in C(n, p) with a uniformly
random n-cycle refine a given set partition of [n] having blocks of sizes α1, α2, . . . , αk.
This probability is found to be

σα(n, p) =

∏k
i=1 αi!

c(n, p)

c(n− k + 1, p)

(n− k + 1)!
.

We now prove Theorem 2.6.18. Via (2.6.17), this amounts to enumerating Sα(n, p) :=⋃
λ`n,`(λ)=p Sαλ , and using Theorem 2.6.13 one gets

#Sα(n, p) =
∑

λ`n,`(λ)=p

[pλ(x)]Gα
n(x, 1)

=
n−m∑

r=0

(
1− k
r

)(
n+ k − 1

n−m− r

) n−k−r+1∑

`=1

n(n− `)!(n− k − r)!
(n− k − r − `+ 1)!

A(n, p, `),(2.6.20)

where A(n, p, `) :=
∑

µ`n, `(µ)=p

[pµ(x)]
∑

λ`n, `(λ)=`

mλ(x). The next lemma gives a formula

for A(n, p, `).

Lemma 2.6.21. For any positive integers p, ` ≤ n

∑

µ`n, `(µ)=p

[pµ(x)]
∑

λ`n, `(λ)=`

mλ(x) =

(
n− 1

`− 1

)
(−1)`−pc(`, p)

`!
, (2.6.22)
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where c(a, b) are the signless Stirling numbers of the first kind.

Proof. For this proof we use the principal specialization of symmetric functions, that
is, their evaluation at x = 1a := {1, 1, . . . , 1, 0, 0 . . .} (a ones). Since pγ(1

a) = a`(γ) for
any positive integer a, one gets

∑

λ`n, `(λ)=`

mλ(1
a) =

n∑

p=1

ap
∑

µ`n, `(µ)=p

[pµ(x)]
∑

λ`n, `(λ)=`

mλ(x).

The right-hand side of the previous equation is a polynomial in a, and by extracting
the coefficient of ap one gets

∑

µ`n, `(µ)=p

[pµ(x)]
∑

λ`n, `(λ)=`

mλ(x) = [ap]
∑

λ`n, `(λ)=`

mλ(1
a).

Now, for any partition λ, mλ(1
a) counts the a-tuples of nonnegative integers such

that the positive ones are the same as the parts of λ (in some order). Hence∑

λ`n, `(λ)=`

mλ(1
a) counts the a-tuples of nonnegative integers with ` positive ones sum-

ming to n. This gives,

∑

λ`n, `(λ)=`

mλ(1
a) =

(
n− 1

`− 1

)(
a

`

)
.

Extracting the coefficient of ap gives (2.6.22) since [ap]

(
a

`

)
=

(−1)`−p c(`, p)

`!
.

Using Lemma 2.6.21 in (2.6.20) gives

#Sα(n, p) = n!
n−m∑

r≥0

(
1− k
r

)(
n+ k − 1

n−m− r

) n−k−r+1∑

`=1

(
n− k − r
`− 1

)
(−1)`−pc(`, p)

`!
,

(2.6.23)
which we simplify using the following lemma.

Lemma 2.6.24. For any nonnegative integer a,
a∑

q=0

(
a

q

)
(−1)q+1−p c(q + 1, p)

(q + 1)!
=

c(a+ 1, p)

(a+ 1)!
.

Proof. The left-hand side equals [xp]
∑a

q=0

(
a
q

)(
x
q+1

)
. Using the Chu-Vandermonde

identity this equals [xp]
(
x+a
a+1

)
which is precisely the right-hand side.

Using Lemma 2.6.24 in (2.6.23) gives

#Sα(n, p) = n!
n−m∑

r=0

(
1− k
r

)(
n+ k − 1

n−m− r

)
c(n− k − r + 1, p)

(n− k − r + 1)!
, (2.6.25)
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which is equivalent to (2.6.19) via (2.6.4). This completes the proof of Theorem 2.6.18.
�

In the case p = 1, the expression (2.6.19) for the probability σα(1) = σα(n) can be
written as a sum of m− k terms instead. We state this below.

Corollary 2.6.26. Let α be a composition of m with k parts. Then the separation
probabilities σα(n) (separation for the product of two uniformly random n-cycles) are

σα(n) =
(n−m)!

∏k
i=1 αi!

(n+ k)(n− 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +
m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1
m

)
(
n+k+r

r

)
)
.

The equation in Corollary 2.6.26, already stated in the introduction, is particularly
simple when m− k is small. For α = 1k (i.e. m = k) one gets the result stated at the
beginning of this paper:

σ1k

(n) =

{
1
k!

if n− k odd,
1
k!

+ 2
(k−2)!(n−k+1)(n+k)

if n− k even.
(2.6.27)

In order to prove Corollary 2.6.26 we start with the expression obtained by setting
p = 1 in (2.6.19):

σα(n) =
(n−m)!

∏k
i=1 αi!

(n− 1)!

n−m∑

r=0

(
1− k
r

)
1

n− k − r + 1

(
n+ k − 1

n−m− r

)

=
(n−m)!

∏k
i=1 αi!

(n− 1)!
[xn−m](1 + x)1−k

n+k−1∑

r=0

xr

r +m− k + 1

(
n+ k − 1

r

)
.(2.6.28)

We now use the following polynomial identity.

Lemma 2.6.29. For nonnegative integers a, b, one has the following identity between
polynomials in x:

a∑

i=0

xi

i+ b+ 1

(
a

i

)
=

1

(a+ 1)

(
1(

a+b+1
b

)
(−x)b+1

−
b∑

i=0

(
b
i

)
(x+ 1)a+i+1

(
a+i+1
i

)
(−x)i+1

)
. (2.6.30)

Proof. It is easy to see that the left-hand side of (2.6.30) is equal to 1
xb+1

∫ x
0

(1+t)atbdt.
Now this integral can be computed via integration by parts. By a simple induction
on b, this gives the right-hand side of (2.6.30).
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Now using (2.6.30) in (2.6.28), with a = n+ k − 1 and b = m− k, gives

σα(n) =
(n−m)!

∏k
i=1 αi!

(n+ k)(n− 1)!
[xn−m]

(
(1 + x)1−k

(
n+m
m−k

)
(−x)m−k+1

−
m−k∑

r=0

(
m−k
r

)
(1 + x)n+r+1

(
n+k+r

r

)
(−x)r+1

)

=
(n−m)!

∏k
i=1 αi!

(n+ k)(n− 1)!

(
(−1)n−m

(
n−1
k−2

)
(
n+m
m−k

) +
m−k∑

r=0

(−1)r
(
m−k
r

)(
n+r+1
m

)
(
n+k+r

r

)
)
.

This completes the proof of Corollary 2.6.26. �

Case when π is a fixed-point-free involution

Given a composition α of m ≤ 2N with k parts, we define

Hα
N(t) :=

∑

(π,A)∈Sα
2N

texcess(π,A),

where excess(π,A) is the number of cycles of the product π◦(1, 2, . . . , 2N) containing
none of the elements of A and where π is a fixed-point-free involution of [2N ]. Note
that Hα

N(t) = [p2N (x)]Gα
2N(x, t). We now give an explicit expression for this series.

Theorem 2.6.31. For any composition α of m ≤ 2N of length k, the generating
series Hα

N(t+ k) is given by

Hα
N(t+ k) = N

min(2N−m,N−k+1)∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
2k+r−N (2N − k − r)!

(N − k − r + 1)!
.

(2.6.32)
Consequently the separation probabilities for the product of a fixed-point-free involution
with a 2N-cycle are given by

σα2N =

∏k
i=1 αi!

(2N − 1)!(2N − 1)!!

min(2N−m,N−k+1)∑

r=0

(
1− k
r

)(
2N + k − 1

2N −m− r

)
2k+r−N−1 (2N − k − r)!

(N − k − r + 1)!
.

(2.6.33)

Remark 2.6.34. It is posible to show (2.6.32) directly following the idea of the proof
of Theorem (2.6.13). Since there is an analogue of (2.6.8), namely

Hα
2N(t+ k) =

2N−m∑

r=0

(
t

r

)
Uα(r),

where Uα(r) is the set of triples (π,A, c2) where π is a fixed-point free involution of
[2N ], A is in Aαn and c2 is a a cycle coloring of the product π ◦ (1, 2, . . . , 2N) in [k+r]
such that every color in [k + r] is used and for all i in [k] the elements in the subset
Ai are colored i.
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Then in an analogue to Proposition 2.6.9, we find that

#Uα(r) =
N(2N − k − r)!
(N − k − r + 1)!

(
2N + k − 1

2N −m− r

)
,

where we use Lemma 2.6.12 and the following analogue of (2.6.11): given a composi-
tion δ = (δ1, . . . , δ`) of 2N , let Cδ be the set of triples (π, c2), where π is a fixed-point
free involution of [2N ] and c2 is a cycle coloring of the permutation π ◦ (1, 2, . . . , 2N)
such that δi elements are colored i for all i ∈ [`] then

#Cδ =
N(2N − `)!
(N − `+ 1)!

2`−N .

�

Remark 2.6.35. One can interpret (2.6.32) in the case m = k = 0 (no marked
edges) as follows:

∑

M∈MN

t#vertices = H∅N(t) = N
N+1∑

r=1

(
t

r

)
2r−N

(2N − r)!
(N − r + 1)!

(
2N − 1

2N − r

)
. (2.6.36)

This equation is exactly the celebrated Harer-Zagier formula [28]. �

The rest of this section is devoted to the proof of Theorem 2.6.31. Since Hα
N(t) =

[p2N (x)]Gα
2N(x, t), Theorem 2.6.13 gives

Hα
N(t+ k) = (2.6.37)

2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)N−k−r+1∑

s=0

2N(N − s)!(2N − k − r)!
(N − k − r − s+ 1)!

[p2N (x)]
∑

λ`2N, `(λ)=N+s

mλ(x).

We then use the following result.

Lemma 2.6.38. For any nonnegative integer s ≤ N ,

[p2N (x)]
∑

λ`2N, `(λ)=N+s

mλ(x) =
(−1)s

2ss!(N − s)! .

Proof. For partitions λ, µ of n, we denote Sλ,µ = [pλ(x)]mµ(x) andRλ,µ = [mλ(x)]pµ(x).
The matrices S = (Sλ,µ)λ,µ`n and R = (Rλ,µ)λ,µ`n are the transition matrices between
the bases {pλ}λ,`n and {mλ}λ`n of symmetric functions of degree n, hence S = R−1.
Moreover the matrix R is easily seen to be lower triangular in the dominance order
of partitions, that is, Rλ,µ = 0 unless λ1 + λ2 + · · · + λi ≤ µ1 + µ2 + · · · + µi for all
i ≥ 1 ([57, Prop. 7.5.3]). Thus the matrix S = R−1 is also lower triangular in the
dominance order. Since the only partition of 2N of length N + s that is not larger
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than the partition 2N in the dominance order is 12s2N−s, one gets

[p2N (x)]
∑

λ`2N, `(λ)=N+s

mλ(x) = [p2N (x)]m12s2N−s(x). (2.6.39)

To compute this coefficient we use the standard scalar product 〈·, ·〉 on symmetric
functions (see e.g. [57, Sec. 7]) defined by 〈pλ, pµ〉 = zλ if λ = µ and 0 otherwise,
where zλ =

∏
i i
ni(λ)ni(λ)!. From this definition one immediately gets

[p2N ]m12s2N−s =
1

z2N
〈p2N ,m12s2N−s〉 =

1

N !2N
〈p2N ,m12s2N−s〉. (2.6.40)

Let {hλ} denote the basis of the complete symmetric functions. It is well known
that 〈hλ,mµ〉 = 1 if λ = µ and 0 otherwise, therefore 〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N .
Lastly, since p2N = (p2)N and p2 = 2h2 − h2

1 one gets

〈p2N ,m12s2N−s〉 = [h12s2N−s ]p2N = [h2s
1 h

N−s
2 ] (2h2 − h2

1)N = 2N−s(−1)s
(
N

s

)
. (2.6.41)

Putting together (2.6.39), (2.6.40) and (2.6.41) completes the proof.

By Lemma 2.6.38, Equation (2.6.37) becomes

Hα
N(t+ k) =

2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)N−k−r+1∑

s=0

2N(N − s)!(2N − k − r)!
(N − k − r − s+ 1)!

(−1)s

2ss!(N − s)!

= 2N
2N−m∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
(2N − k − r)!

(N − k − r + 1)!

N−k−r+1∑

s=0

(
N − k − r + 1

s

)
(−1)s

2s

= 2N

min(2N−m,N−k+1)∑

r=0

(
t

r

)(
2N + k − 1

2N −m− r

)
(2N − k − r)!

(N − k − r + 1)!

1

2N−k−r+1
,

where the last equality uses the binomial theorem. This completes the proof of
Equation (2.6.32). Equation (2.6.33) then immediately follows from the case t = 1−k
of (2.6.32) via (2.6.4). This completes the proof of Theorem 2.6.31. �

Remark 2.6.42. In [7, Sec. 4] we also obtain a relation between the separation
probabilities σαλ and σαλ′, when the partition λ′ is obtained from λ by adding some
parts of size 1. �
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Chapter 3

Flow polytopes and the Kostant
partition function

This chapter is based on [44], joint work with K. Mészáros.

3.1 Introduction

In this chapter we use combinatorial techniques to establish the relationship between
volumes of flow polytopes associated to signed graphs and the Kostant partition
function. Our techniques yield a systematic method for computing volumes of flow
polytopes associated to signed graphs. We study special families of polytopes in
detail, such as the Chan-Robbins-Yuen polytope [15] and certain type Cn+1 and Dn+1

analogues of it. We also give several intriguing conjectures for their volume.
Our results on flow polytopes associated to signed graphs and the Kostant parti-

tion function specialize to the results of Baldoni and Vergne, in which they established
the connection between type An flow polytopes and the Kostant partition function
[4, 2]. Baldoni and Vergne use residue techniques, while in their unpublished work
Postnikov and Stanley took a combinatorial approach [53, 58]. In our study of type
An as well as type Cn+1 and Dn+1 flow polytopes we establish the above mentioned
connections by entirely combinatorial methods.

Traditionally, flow polytopes are associated to loopless (and signless) graphs in
the following way. Let G be a graph on the vertex set [n + 1], and let in(e) denote
the smallest (initial) vertex of edge e and fin(e) the biggest (final) vertex of edge e.
Think of fluid flowing on the edges of G from the smaller to the bigger vertices, so
that the total fluid volume entering vertex 1 is one and leaving vertex n + 1 is one,
and there is conservation of fluid at the intermediate vertices. Formally, a flow f
of size one on G is a function f : E → R≥0 from the edge set E of G to the set of
nonnegative real numbers such that

1 =
∑

e∈E(G),in(e)=1

f(e) =
∑

e∈E(G),fin(e)=n+1

f(e),

and for 2 ≤ i ≤ n
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∑

e∈E(G),fin(e)=i

f(e) =
∑

e∈E(G),in(e)=i

f(e).

The flow polytope FG associated to the graph G is the set of all flows f :
E → R≥0 of size one. A fascinating example is the flow polytope FKn+1 of the
complete graph Kn+1, which is also called the Chan-Robbins-Yuen polytope CRY An
[15] (Chan, Robbins and Yuen defined it in terms of matrices), and has kept the
combinatorial community in its magic grip since its volume is equal to

∏n−2
k=0 Cat(k),

where Cat(k) = 1
k+1

(
2k
k

)
is the kth Catalan number. This was proved analytically by

Zeilberger [64], yet, there is no combinatorial proof for this volume formula.
In their unpublished work [53, 58] Postnikov and Stanley discovered the following

remarkable connection between the volume of the flow polytope and the Kostant
partition function kG:

Theorem 3.6.2 ([53, 58]). Given a loopless (signless) connected graph G on the
vertex set [n + 1], let di = indegG(i) − 1, for i ∈ {2, . . . , n}. Then, the normalized
volume vol(FG) of the flow polytope FG associated to the graph G is

vol(FG) = kG(0, d2, . . . , dn,−
n∑

i=2

di). (3.1.1)

The notation indegG(i) stands for the indegree of vertex i in the graph G and kG
denotes the Kostant partition function associated to graph G.

In light of Theorem 3.6.2, Zeilberger’s result about the volume of the Chan-
Robbins-Yuen polytope CRY An can be stated as:

kKn−1

(
1, 2, . . . , n− 2,−

(
n− 1

2

))
=

n−2∏

k=1

Cat(k). (3.1.2)

Recall that the Kostant partition function kG evaluated at the vector a ∈ Zn+1

is defined as

kG(a) = #{(bk)k∈[N ] |
∑

k∈[N ]

bkvk = a and bk ∈ Z≥0}, (3.1.3)

where {{v1, . . . ,vN}} is the multiset of vectors corresponding to the multiset of edges
of G under the correspondence which associates an edge (i, j), i < j, of G with a
positive type An root ei − ej, where ei is the ith standard basis vector in Rn+1.

In other words, kG(a) is the number of ways to write the vector a as a N-linear
combination of the positive type An roots (with possible multiplicities) corresponding
to the edges of G, without regard to order. Note that for kG(a) to be nonzero, the
partial sums of the coordinates of a have to satisfy a1 + . . . + ai ≥ 0, i ∈ [n], and
a1 + . . .+ an+1 = 0. Also, kG has the following formal generating series:

∑

a∈Zn+1

kG(a)xa11 · · ·xan+1

n+1 =
∏

(i,j)∈E(G)

(1− xix−1
j )−1. (3.1.4)
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While endowed with combinatorial meaning, Kostant partition functions were
introduced in and are a vital part of representation theory. For instance for classi-
cal Lie algebras, weight multiplicities and tensor product multiplicities (Littlewood-
Richardson coefficients) can be expressed in terms of the Kostant partition function
(see [29, 16] and Steinberg’s formula in [31, Sec. 24.4]). Kostant partition functions
also come up in toric geometry and approximation theory. A salient feature of kG(a)
is that it is a piecewise quasipolynomial function in a if G is fixed [17, 62].

We generalize Theorem 3.6.2 to establish the connection between flow polytopes
associated to loopless signed graphs and a dynamic Kostant partition function
kdyn
G (a) with the following formal generating series:

∑

a∈Zn+1

kdyn
G (a)xa11 · · ·xan+1

n+1 =
∏

(i,j,−)∈E(G)

(1−xix−1
j )−1

∏

(i,j,+)∈E(G)

(1−xi−xj)−1, (3.1.5)

where G is a signed graph. By a signed graph we mean a graph where each edge has
a positive or a negative sign associated to it. A signless graph can be thought of as a
signed graph where all edges have a negative sign associated to them. The definition
of a flow polytope associated to a signed graph generalizes the case of flow polytopes
associated to signless graphs and can be found in Section 3.2.

We develop a systematic method for calculating volumes of flow polytopes of
signed graphs. There are several ways to state and specialize our results; we highlight
the next theorem as perhaps the most appealing special case.

Theorem 3.6.16. Given a loopless connected signed graph G on the vertex set [n+1],
let di = indegG(i) − 1 for i ∈ {2, . . . , n}, where indegG(i) is the indegree of vertex i
(the number of edges (·, i,−)). The normalized volume vol(FG) of the flow polytope
FG associated to graph G is

vol(FG) = Kdyn
G (0, d2, . . . , dn, dn+1),

where Kdyn
G has the generating series given in Equation (3.1.5).

Inspired by the intriguing CRY An polytope, we introduce its type Cn+1 and Dn+1

analogues, CRY Cn+1 and CRYDn+1, prove that their number of vertices are 3n and
3n − 2n, respectively and we conjecture the following.

Conjecture 3.1.6. The normalized volumes of the type C and type D analogues
CRY Cn+1 and CRYDn+1 of the Chan-Robbins-Yuen polytope CRY An are

vol(CRY Cn+1) = 2(n−1)2+n

n−1∏

k=0

Cat(k),

vol(CRYDn+1) = 2(n−1)2
n−1∏

k=0

Cat(k),

where Cat(k) = 1
k+1

(
2k
k

)
is the kth Catalan number.
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Outline: In the first part of this chapter we introduce flow polytopes associated to
signed graphs and characterize their vertices. In Section 3.2 the necessary background
on signed graphs, Kostant partition functions and flows is given. We also define
flow polytopes associated to signed graphs and remark that their Ehrhart functions
can be expressed in terms of Kostant partition functions. In Section 3.3 we give a
characterization of the vertices of flow polytopes associated to signed graphs, and
prove that the vertices of a special family of flow polytopes associated to signed
graphs are integral, noting that in general this is not the case. As an application of
the results from this section we find nice formulas for the number of vertices of the
type C and D generalizations of the Chan-Robbins-Yuen polytope.

The second part of the chapter is about subdivisions of flow polytopes. In Section
3.4 we show that certain operations on graphs, called reduction rules, are a way of
encoding subdivisions of flow polytopes. Using the reduction rules, in Section 3.5 we
state and prove the Subdivision Lemma, which is a key ingredient of our subsequent
explorations. The Subdivision Lemma gives a hands on way of subdividing, and
eventually triangulating, flow polytopes.

The last part of the chapter is about using the subdivision of flow polytopes
to compute their volumes. In Section 3.6 we use the Subdivision Lemma to prove
Theorems 3.6.2 and 3.6.16: namely that the volume of a flow polytope is equal to a
value of the dynamic Kostant partition function. To do the above, we introduce the
dynamic Kostant partition function in this section. The dynamic Kostant partition
function specializes to the Kostant partition function in the case of signless graphs and
has a nice and simple generating function, just like the Kostant partition function. We
apply the above results in Section 3.7 to the study of volumes of the Chan-Robbins-
Yuen polytope and its various generalizations. We conclude our chapter with several
intriguing conjectures on the volumes of the type C and D generalizations of the
Chan-Robbins-Yuen polytope. .

Supplementary code for calculating the volume of flow polytopes and for evaluat-
ing the (dynamic) Kostant partition function is available at the site:

http://sites.google.com/site/flowpolytopes/

3.2 Signed graphs, Kostant partition functions, and

flows

In this section we define the concepts of graphs, Kostant partition functions and
flows, all in the signed universe. One can think of these as the generalization of
these concepts’ signless counterparts from the type An (signless) root system to other
types, such as Cn+1 and Dn+1. We also define general flow polytopes, which are a
main objects of this chapter. We conclude the section by a simple expression for the
Ehrhart function of flow polytopes.

Throughout this section, the graphs G on the vertex set [n+1] that we consider are
signed, that is there is a sign ε ∈ {+,−} assigned to each of its edges. We allow loops
and multiple edges. The sign of a loop is always +, and a loop at vertex i is denoted
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e1 − e3

e2 − e3

e1 + e2 2e2

e1 − e2

MG =




1 1 1 0 0
−1 1 0 2 1
0 0 −1 0 −1




FG(a) = {b ∈ R5
≥0 |MGb = a}

b4

b1

b2

b3

b5
a1 a2 a3

(a)

1
4

1
4

1
2 3

4

3
21 3 −2

(b)

Figure 3-1: (a) A signed graph G on three vertices and the positive roots associated
with each of the five edges. The columns of the matrix MG correspond to these roots.
The flow polytope FG(a) consists of the flows b ∈ R4

≥0 such that MGb = a where a
is the netflow vector. The Kostant partition function kG(a) counts the lattice points
of FG(a), the number of ways of obtaining a as a N-integer combination of the roots
associated to G.
(b) A nonnegative flow on G with netflow vector a = (1, 3,−2). The flows on the
edges are in blue.

by (i, i,+). Denote by (i, j,−) and (i, j,+), i < j, a negative and a positive edge
between vertices i and j, respectively. A positive edge, that is, an edge labeled by +,
is positively incident, or, incident with a positive sign, to both of its endpoints.
A negative edge is positively incident to its smaller vertex and negatively incident
to its greater endpoint. See Figure 3-1(b) for an example of the incidences. Denote
by mε

ij the multiplicity of edge (i, j, ε) in G, i ≤ j, ε ∈ {+,−}. To each edge (i, j, ε),
i ≤ j, of G, associate the positive type Cn+1 root v(i, j, ε), where v(i, j,−) = ei − ej
and v(i, j,+) = ei + ej. Let {{v1, . . . ,vN}} be the multiset of vectors corresponding
to the multiset of edges of G (i.e., vk = v(ek)). Note that N =

∑
1≤i≤j≤n+1(m−ij+m

+
ij).

The Kostant partition function kG evaluated at the vector a ∈ Zn+1 is defined
as

kG(a) = #{(bk)k∈[N ] |
∑

k∈[N ]

bkvk = a and bk ∈ Z≥0}.

That is, kG(a) is the number of ways to write the vector a as an N-linear combina-
tion of the positive type Cn+1 roots corresponding to the edges of G, without regard
to order.

Example 3.2.1. For the signed graph G in Figure 3-1(a), kG(1, 3,−2) = 3, since
(1, 3,−2) = (e1− e3) + (2e2) + (e2− e3) = (e1 + e2) + 2(e2− e3) = (e1− e2) + (2e2) +
2(e2 − e3).

Just like in the type An case, we would like to think of the vector (bi)i∈[N ] as a
flow. For this we here give a precise definition of flows in the type Cn+1 case, of
which type An is of course a special case.

LetG be a signed graph on the vertex set [n+1]. Let {{e1, . . . , eN}} be the multiset
of edges of G, and XG := {{v1, . . . ,vN}} the multiset of positive type Cn+1 roots
corresponding to the multiset of edges of G. Also, let MG be the (n+ 1)×N matrix
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whose columns are the vectors in XG. Fix an integer vector a = (a1, . . . , an, an+1) ∈
Zn+1.

An a-flow fG on G is a vector fG = (bk)k∈[N ], bk ∈ R≥0 such that MGfG = a. That
is, for all 1 ≤ i ≤ n+ 1, we have

∑

e∈E(G),inc(e,v)=−
b(e) + av =

∑

e∈E(G),inc(e,v)=+

b(e) +
∑

e=(v,v,+)

b(e), (3.2.2)

where b(ek) = bk, inc(e, v) = − if e = (g, v,−), g < v, and inc(e, v) = + if e =
(g, v,+), g < v, or e = (v, j, ε), v < j, and ε ∈ {+,−}. When inc(e, v) = −
(respectively, inc(e, v) = +) we say that edge e is incident to v with a negative
(respectively, positive) sign.

Example 3.2.3. Figure 3-1(b) shows a signed graph G with three vertices with flow
assigned to each edge. The netflow is a = (1, 3,−2)

Call b(e) the flow assigned to edge e of G. If the edge e is negative, one can think
of b(e) units of fluid flowing on e from its smaller to its bigger vertex. If the edge e is
positive, then one can think of b(e) units of fluid flowing away both from e’s smaller
and bigger vertex to “infinity”. Edge e is then a “leak” taking away 2b(e) units of
fluid.

From the above explanation it is clear that if we are given an a-flow fG such that∑
e=(i,j,+),i≤j b(e) = y, then a = (a1, . . . , an, 2y −

∑n
i=1 ai).

An integer a-flow fG on G is an a-flow fG = (bi)i∈[N ], with bi ∈ Z≥0. It is a
matter of checking the definitions to see that for a signed graph G on the vertex set
[n+1] and vector a = (a1, . . . , an, 2y−

∑n
i=1 ai) ∈ Zn+1, the number of integer a-flows

on G are given by the Kostant partition function, as stated in the next lemma.

Lemma 3.2.4. Given a signed graph G on the vertex set [n + 1] and a vector a =
(a1, . . . , an, 2y −

∑n
i=1 ai) ∈ Zn+1, the integer a-flows are in bijection with ways of

writing a as a nonnegative linear combination of the roots associated to the edges of
G. Thus #{integer a-flows} = kG(a).

Define the flow polytope FG(a) associated to a signed graph G on the vertex
set [n + 1] and the integer vector a = (a1, . . . , an+1) as the set of all a-flows fG on G
i.e., FG = {fG ∈ RN

≥0 | MGfG = a}. The flow polytope FG(a) then naturally lives in
RN , where N is the number of edges of G.

Let XG be the multiset of N vectors corresponding to the edges of G and assume
they span an r-dimensional space. Also, let C(XG) be the cone generated by the
vectors in XG. A vector a is in the interior of C(XG) if and only if a can be expressed
as a =

∑N
i=1 bivi where bi > 0 for all i. We have the following proposition about the

dimension of FG(a).

Proposition 3.2.5. The flow polytope FG(a) is empty if a is not in the cone C(XG)
and if a is in the interior of C(XG) then dim(FG(a)) = N − r. This is also the
dimension of the kernel of MG.
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Figure 3-2: Graphs and netflow whose flow polytopes are: (i), (ii) simplices and
(iii),(iv),(v) instances of CRY An, CRYDn and CRY Cn.

Remark 3.2.6. For a signed connected graph G with vertex set [n+ 1] and N edges,
if a is in the interior of C(XG), then dim(FG(a)) = #E(G)−#V (G) + 1 = N −n if
G only has negative edges (since XG spans the hyperplane x1 + x2 + · · · + xn+1 = 0)
and dim(FG(a)) = #E(G)−#V (G) = N − n− 1 otherwise. �

Next, we give the main examples of the flow polytopes we study (see Figure 3-2):

Examples 3.2.7.

(i) Let G be the graph with vertices {1, 2} and edges (1, 2,−) with multiplicity m12;
and let a = (1,−1). Then FG(1,−1) is a (m12 − 1)-dimensional simplex.

(ii) Let G be the signed graph with one vertex {1} and loops (1, 1,+) with multiplicity
m11; and let a = 2. Then FG(2) is a (m11 − 1)-dimensional simplex.

(iii) Let G = Kn+1 be the complete graph with n + 1 vertices (all edges (i, j,−)
1 ≤ i < j ≤ n + 1) and a = e1 − en+1. Then FKn+1(e1 − en+1) is the type
An Chan-Robbins-Yuen polytope or CRY An [14, 15]. Such polytope is a face
of the Birkhoff polytope of all n × n doubly stochastic matrices. It has dimen-
sion

(
n
2

)
, 2n−1 vertices, and Zeilberger [64] showed that its normalized volume

is vol(CRY An) =
∏n−2

k=0 Cat(k) where Cat(k) = 1
k+1

(
2k
k

)
is the kth Catalan

number.
(iv) Let G = KD

n be the complete signed graph with n vertices (all edges (i, j,±)
1 ≤ i < j ≤ n) and a = 2e1. Then CRYDn = FKD

n
(2e1) is a type Dn ana-

logue of CRY An. We show it is integral (see Theorem 3.3.11) with dimension
n(n− 2) and 3n−1 − 2n−1 vertices (see Proposition 3.3.14). We conjecture (see
Conjecture 3.1.6) that its normalized volume is 2(n−2)2 · vol(CRY An).

(v) Let G = KC
n be the complete signed graph with n vertices and with loops (i, i,+)

corresponding to the type C positive roots 2ei. Then CRY Cn = FKB
n

(2e1) is a
type Cn analogue of CRY An. We show it is integral (see Theorem 3.3.11) with
dimension n(n − 2) and 3n−1 vertices (see Proposition 3.3.15). We conjecture
(see Conjecture 3.1.6) that its normalized volume is 2n−1 · vol(CRYDn).

There is a vast amount of research pertaining to flow polytopes associated to
graphs with only negative edges and no loops and the special a-vector (1, 0, . . . , 0,−1)
[4, 1, 18]. Note that (1, 0, . . . , 0,−1) is the highest root in the type An root system,
and the edges of graphs with only negative signs correspond to type An positive roots.
In this light, it is natural to consider this generalization to signed graphs and special
vectors a, such as the highest roots of other root systems.
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3.2.1 The Ehrhart function of the flow polytope FG(a)

It this subsection we explain how to write down the Ehrhart function of FG(a) in
terms of Kostant partition functions. This turns out to be an easy task.

Recall that given a polytope P ⊂ RN , the t dilate of P is

tP = {(tx1, . . . , txN) | (x1, . . . , xN) ∈ P}.

The number of lattice points of tP where t is a nonnegative integer and P is a
convex polytope is given by the Ehrhart function LP(t). If P has (rational) integral
vertices then LP(t) is a (quasi) polynomial (for background on the theory of Ehrhart
polynomials see [5]).

Baldoni and Vergne [4] showed that LFG(a)(t) is given by the Kostant partition
function.

Lemma 3.2.8. ([4]) For a signed graph G with no loops on the vertex set [n+ 1] and
a vector a ∈ Zn+1, the Ehrhart function LFG(a)(t) of FG(a) is

LFG(a)(t) = kG(ta). (3.2.9)

, where kG is the Kostant partition function associated to the signed graph G.

Proof. For any t ∈ Z≥0 the number of integer points of tFG(a) is the number of
integer ta-flows on G. Thus, there are kG(ta) of them. Equation (3.2.9) follows.

3.3 The vertices of the flow polytope FG(a)
3.3.1 Vertices of FG(a)

In this section we characterize the vertices of the flow polytope FG(a). Remarkably,
if G is a graph with only negative edges, then for any integer vector a the vertices
of FG(a) are integer. Such a statement is not true for signed graphs G in general.
However, we show, using our characterization of the vertices of FG(a) that for special
integer vectors a the vertices of FG(a) are integer. As an application of our vertex
characterization, we show that the number of vertices of the type Cn+1 and type Dn+1

analogue of the Chan-Robbins-Yuen polytope from Examples 3.2.7 (iv),(v) are 3n and
3n − 2n, respectively.

That the vertices of FG(a) are integer for any signless graph G and any integer
vector a follows from the fact that the matrix MG whose columns are the positive type
A roots associated to the edges of G is totally unimodular. However, as mentioned
above, for signed graphs G the polytope FG(a) does not always have integer vertices
as the following simple example shows.

Example 3.3.1. Let G be the graph −
+

the flow polytope FG(1, 0) is a zero di-
mensional polytope with a vertex (1/2, 1/2).

In the rest of the section G denotes a signed graph. Recall that we defined a-flows
to be nonnegative. In this section we use the term nonzero signed 0-flow to refer to

74



a flow where we allow flows to be negative or positive or zero (as signified by signed),
which is not zero everywhere (signified by nonzero) and where the net flow is 0.

Lemma 3.3.2. An a-flow fG on G is a vertex of FG(a) if and only if there is no
nonzero signed 0-flow f εG such that fG − f εG and fG + f εG are flows on G.

Lemma 3.3.2 follows from definitions, but since it is the starting point of the
characterization of the vertices of FG(a), we include a proof for clarity.

Proof of Lemma 3.3.2. If there is a nonzero signed 0-flow f εG such that fG − f εG and
fG + f εG are flows on G (and thus a-flows on G), then

fG = ((fG − f εG) + (fG + f εG))/2,

so fG is not a vertex of FG(a).

If fG is not a vertex of FG(a), then fG can be written as

fG = (f1
G + f2

G)/2,

for some a-flows f1
G and f2

G on G. Thus,

f1
G = fG − f εG

and
f2
G = fG + f εG,

for some nonzero signed 0-flow f εG.

Lemma 3.3.3. There is a nonzero signed 0-flow f εG such that fG− f εG and fG + f εG are
flows on G if and only if there is a nonzero signed 0-flow f εG on G whose support is
contained in the support of fG.

Proof. One implication is trivial, and the other one follows by observing that given
a nonzero signed 0-flow f εG on G whose support is contained in the support of fG, we
can obtain another nonzero signed 0-flow f ε

′
G on G whose support is contained in the

support of fG such that the absolute value of the values f ε
′
G(e), for edges e ∈ G, is

arbitrarily small, by simply letting f ε
′
G = f εG/M, for some large value of M . Thus if

there is a nonzero signed 0-flow f εG on G whose support is contained in the support of
fG, then we can construct a nonzero signed 0-flow f ε

′
G such that fG − f ε

′
G and fG + f ε

′
G

are flows on G.

Corollary 3.3.4. An a-flow fG on G is a vertex of FG(a) if and only if there is no
nonzero signed 0-flow f εG on G whose support is contained in the support of fG.

Proof. Corollary 3.3.4 follows from Lemmas 3.3.2 and 3.3.3.

Lemma 3.3.5. If H ⊂ G is the support of a nonzero signed 0-flow f εG, then H
contains no vertices of degree 1.
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Figure 3-3: Regardless of how we order the edges above to form a cycle, the number
of turns in the cycle will be 1 in (a) and even in (b). Thus, the resulting cycle in (a)
is odd and in (b) is even.

Proof. If H contained a degree 1 vertex, f εG with support H could not be a 0-flow.

A cycle C is a sequence of oriented edges e1, . . . , ek such that the second vertex
of ei is the first vertex of ei+1 for i ∈ [k] and with k+1 identified with 1. The number
of turns in C is the number of times two consecutive edges meet at a vertex of C
such that the edges of C are incident with the same sign to that vertex (repetition of
vertices allowed). A cycle C of the graph G is called even if it has an even number
of turns and odd otherwise. See Figure 3-3.

Lemma 3.3.6. Given a set of edges which can be ordered to yield a cycle C, the
parity of the number of turns of C is the same as that of any other cycle that the
edges can be ordered to give.

We leave the proof of Lemma 3.3.6 as an exercise to the reader. For examples see
Figures 3-3(a) and 3-3(b).

Lemma 3.3.7. If H ⊂ G is the support of a nonzero signed 0-flow f εG, then H
contains an even cycle.

Proof. Since by Lemma 3.3.5 H contains no vertices of degree 1, each edge of H is
contained in at least one cycle. Let k be the number of linearly independent cycles
in H. If k = 1 and the nonzero signed 0-flow f εG has support H, then it follows by
inspection that H is an even cycle. If k > 1 and the nonzero signed 0-flow f εG has
support H, let P ⊂ H be a path such that H−P contains k−1 linearly independent
cycles and no vertices of degree 1. If P is contained in an even cycle in H, then we
are done. If P is not contained in an even cycle of H, then there are two paths C1

and C2 in H such that P +C1 and P +C2 are cycles, but not even. Inspection shows
that the cycle C1 + C2 is even.

Lemma 3.3.8. If C ⊂ G is an even cycle, then there exists a nonzero signed 0-flow
f εG with support C.

Proof. Set f εG(e) = 0 for e ∈ G− C and f εG(e) ∈ {+ε,−ε} for e ∈ C. Note that since
C is even there will be two such nonzero signed 0-flows f εG.

Lemma 3.3.9. There is a nonzero signed 0-flow f εG on G whose support is contained
in the support of the a-flow fG if and only if the support of fG contains an even cycle.
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Figure 3-4: Illustration of forms (i) and (ii) of Proposition 3.3.12

Proof. By Lemma 3.3.7 if there is a nonzero signed 0-flow f εG on G with support H,
then H contains an even cycle. Thus, in particular, if there is a nonzero signed 0-flow
f εG on G whose support is contained in the support of fG, then the support of fG
contains an even cycle. Conversely, by Lemma 3.3.8 if C is an even cycle contained
in the support of fG, then there is a nonzero signed 0-flow f εG on G whose support is
C, and thus contained in the support of fG.

Theorem 3.3.10. An a-flow fG on G is a vertex of FG(a) if and only if the support
of fG contains no even cycle.

Proof. Corollary 3.3.4 and Lemma 3.3.9 imply the statement of Theorem 3.3.10.

Theorem 3.3.11. If a = (2, 0, . . . , 0), then the vertices of FG(a) are integer. In
particular, the set of vertices of FG(a) is a subset of the set of integer a-flows on G.

By Theorem 3.3.10, in order to prove Theorem 3.3.11, it suffices to show that if
the support of the (2, 0, . . . , 0)-flow fG contains no even cycle, then fG is an integer
flow. To achieve this, we characterize all possible odd cycles with no even subcycles
in the support of a (2, 0, . . . , 0)-flow fG. By a subcycle C ′ of a cycle C we mean a
cycle C ′ whose edges are a subset of the edges of C.

Proposition 3.3.12. A cycle C contained in the support of a (2, 0, . . . , 0)-flow fG
contains no even subcycles if and only if its set of edges is of one of the three following
forms:

(i) {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(w1, w2,−), . . . , (wl−1, wl,−)} ∪ {(wl, vk,+)},
where v1 = w1, 2 ≤ k, l and v1, . . . , vk, w2, . . . , wl are distinct. See Figure 3-
4(a).

(ii) {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(v1, vk,+)}, where v1, . . . , vk are distinct. See
Figure 3-4(b).

(iii) {(v1, v1,+)}

Proof. One direction is trivial.
To prove the other direction, let G′ be the support of fG. Observe that all vertices

in G′ must have a negative edge incident to them in order for the net flow to be 0
at all but the first vertex, unless G′ is simply a loop at vertex 1. Note that a cycle
with only negative edges is even. Note that a path of negative edges (which is not
a cycle) can be contracted without affecting the parity of the number of turns of a
cycle. The above observations together are sufficient to prove the non-trivial direction
of the proposition.
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Proof of Theorem 3.3.11. Suppose that the (2, 0, . . . , 0)-flow fG is a vertex of FG(2, 0, . . . , 0).
Let G′ be the support of fG. Theorem 3.3.10 and Proposition 3.3.12 imply that G′

contains exactly one cycle C which contains no even subcycle and whose smallest
vertex is v. If v = 1 then G′ = C and if v > 1 then G′ is the union of C and a path
(1, z1,−), (z1, z2,−), . . . , (zm, v,−). In both cases it is evident that the flow fG has to
be integer in order to be a (2, 0, . . . , 0)-flow.

Note that the proof of Theorem 3.3.11 characterizes all vertices of FG(2, 0, . . . , 0)
very concretely. We summarize the results in Theorem 3.3.13.

Theorem 3.3.13. A (2, 0, . . . , 0)-flow fG on G is a vertex of FG((2, 0, . . . , 0)) if and
only if it is the unique integer (2, 0, . . . , 0)-flow on G with support of one of the
following forms:

(i) {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(w1, w2,−), . . . , (wl−1, wl,−)} ∪ {(wl, vk,+)},
where v1 = w1 = 1, 2 ≤ k, l and v1, . . . , vk, w2, . . . , wl are distinct.

(ii) {(1, z1,−), (z1, z2,−), . . . , (zm, v1,−)} ∪ {(v1, v2,−), . . . , (vk−1, vk,−)}∪
∪{(w1, w2,−), . . . , (wl−1, wl,−)} ∪ {(wl, vk,+)}, where v1 = w1, 2 ≤ k, l and
v1, . . . , vk, w2, . . . , wl are distinct.

(iii) {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(v1, vk,+)}, where 1 = v1, . . . , vk are distinct.
(iv) {(1, z1,−), (z1, z2,−), . . . , (zm, v1,−)}∪{(v1, v2,−), . . . , (vk−1, vk,−)}∪{(v1, vk,+)},

where v1, . . . , vk are distinct.
(v) {(v1, v1,+)}

(vi) {(1, z1,−), (z1, z2,−), . . . , (zm, v1,−)} ∪ {(v1, v1,+)}

3.3.2 Vertices of the type Cn+1 and type Dn+1 Chan-Robbins-
Yuen polytope

Theorem 3.3.13 gives a hands on characterization of the vertices of any type Cn+1 and
type Dn+1 flow polytope. In this section we show how to use it to count the number
of vertices of the type Cn+1 and type Dn+1 Chan-Robbins-Yuen polytopes CRYDn+1

and CRY Cn+1.
Recall that the flow polytope FKn+1(1, 0, . . . , 0,−1) of the complete graph Kn+1

is the Chan-Robbins-Yuen polytope CRY An [15]. One way to generalize CRY An is
to consider the complete signed graphs in type Cn+1 and type Dn+1.

Let KD
n+1 be the complete signed graph on n+1 vertices of type Dn+1 (all edges of

the form (i, j,±) for 1 ≤ i < j ≤ n+ 1 corresponding to all the positive roots in type
Dn+1). Then the polytope CRYDn+1 = FKD

n+1
(2, 0, . . . , 0) is an analogue of the Chan-

Robbins-Yuen polytope. The vector (2, 0, . . . , 0) is the highest root of type Cn+1, and
we pick this vector as opposed to the highest root of type Dn+1, because we would
like the vertices of CRYDn+1 to be integral. If we were to study FKD

n+1
(1, 1, 0, . . . , 0),

where (1, 1, 0, . . . , 0) is the highest root of type Dn+1, the vertices of this polytope
would not be integral. Note that any signed graph on the vertex set [n+1], including
KD
n+1, can be considered a type Cn+1 graph, so that the choice of the highest root of

Cn+1 is not unnatural in any sense.
Let KC

n+1 be the complete signed graph together with loops (i, i,+), 1 ≤ i ≤ n+1,
corresponding to the type Cn+1 positive roots 2ei and let CRY Cn+1 = FKC

n+1
(2, 0, . . . , 0).
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Proposition 3.3.14. The polytope CRYDn+1 has 3n − 2n vertices.

Proof. We prove the statement by induction. The base of induction is clear. Suppose
that CRYDn has 3n−1−2n−1 vertices. Using Theorem 3.3.13 we see that the vertices
of CRYDn+1 have to be the unique integer (2, 0, . . . , 0)-flows on G with support of
the form:

• {(1, i,−)} ∪ S(i, n + 1), where 2 ≤ i ≤ n and S(i, n + 1) is the support of a
vertex of CRYDn+2−i where we consider the flow graph of CRYDn+2−i to be
on the vertex set {i, i+ 1, . . . , n+ 1}.

• {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(w1, w2,−), . . . , (wl−1, wl,−)} ∪ {(wl, vk,+)},
where v1 = w1 = 1, 2 ≤ k, l and v1, . . . , vk, w2, . . . , wl are distinct.

• {(v1, v2,−), . . . , (vk−1, vk,−)} ∪ {(v1, vk,+)}, where 1 = v1, . . . , vk are distinct.

Call the supports of the above forms of type I, II and II, respectively.
By induction, the number of vertices of CRYDn+1 of type I is

n∑

i=2

(3n+1−i − 2n+1−i).

By inspection, the number of vertices of CRYDn+1 of type II is

∑

1<i<j≤n+1

(3i−22j−i−1).

Finally, the number of vertices of CRYDn+1 of type III is

n+1∑

i=2

2i−2.

It is a matter of simple algebra to show that

n∑

i=2

(3n+1−i − 2n+1−i) +
∑

1<i<j≤n+1

(3i−22j−i−1) +
n+1∑

i=2

2i−2 = 3n − 2n.

Proposition 3.3.15. The polytope CRY Cn+1 has 3n vertices.

Proof. Using Theorem 3.3.13 we see that the set of vertices of CRY Cn+1 is equal
to the set of vertices of CRYDn+1 together with the vertices which are the unique
integer (2, 0, . . . , 0)-flows on G with support of the form:

• {(v1, v1,+)}

• {(1, z1,−), (z1, z2,−), . . . , (zm, v1,−)} ∪ {(v1, v1,+)}
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By Proposition 3.3.14 the number of vertices of CRYDn+1 is 3n − 2n and the
number of vertices of the form described above is 2n. Thus, Proposition 3.3.15 follows.

3.4 Reduction rules of the flow polytope FG(a)
In this section we propose an algorithmic way of triangulating the flow polytope
FG(a). This also yields a systematic way to calculate the volume of FG(a) by summing
the volumes of the simplices in the triangulation. The process of triangulation of
FG(a) is closely related to the triangulation of root polytopes by subdivision algebras,
as studied by Mészáros in [42, 43].

Given a signed graph G0 on the vertex set [n+1], if we have two edges incident to
vertex i with opposite signs, e.g. (a, i,−), (i, b,+) with flows p and q, we will add a
new edge not incident to i, e.g. (a, b,+), and discard one or both of the original edges
to obtain graphs G1, G2, and G3 respectively. We then reassign flows to preserve the
original netflow on the vertices. We look at all possible cases and obtain the reduction
rules (R1)-(R6) in Figure 3-5.

3.4.1 Reduction rules for signed graphs

Given a graph G0 on the vertex set [n + 1] and (a, i,−), (i, b,−) ∈ E(G0) for some
a < i < b, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,−)} ∪ {(a, b,−)},
E(G2) = E(G0)\{(i, b,−)} ∪ {(a, b,−)}, (R1)

E(G3) = E(G0)\{(a, i,−)}\{(i, b,−)} ∪ {(a, b,−)}.

Given a graph G0 on the vertex set [n + 1] and (a, i,−), (i, b,+) ∈ E(G0) for some
a < i < b, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,+)} ∪ {(a, b,+)},
E(G2) = E(G0)\{(i, b,−)} ∪ {(a, b,+)}, (R2)

E(G3) = E(G0)\{(a, i,−)}\{(i, b,+)} ∪ {(a, b,+)}.

Given a graph G0 on the vertex set [n + 1] and (a, i,−), (b, i,+) ∈ E(G0) for some
a < b < i, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,−)} ∪ {(a, b,+)},
E(G2) = E(G0)\{(b, i,+)} ∪ {(a, b,+)}, (R3)

E(G3) = E(G0)\{(a, i,−)}\{(b, i,+)} ∪ {(a, b,+)}.
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Given a graph G0 on the vertex set [n + 1] and (a, i,+), (b, i,−) ∈ E(G0) for some
a < b < i, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,+)} ∪ {(a, b,+)},
E(G2) = E(G0)\{(b, i,−)} ∪ {(a, b,+)}, (R4)

E(G3) = E(G0)\{(a, i,+)}\{(b, i,−)} ∪ {(a, b,+)}.

Given a graph G0 on the vertex set [n+1] and (a, i,−), (a, i,+) ∈ E(G0) for some
a < i, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,+)} ∪ {(a, a,+)},
E(G2) = E(G0)\{(a, i,−)} ∪ {(a, a,+)}, (R5)

E(G3) = E(G0)\{(a, i,+)}\{(a, i,+)} ∪ {(a, a,+)}.

Given a graph G0 on the vertex set [n+ 1] and (a, i,−), (i, i,+) ∈ E(G0) for some
a < i, let G1, G2, G3 be graphs on the vertex set [n+ 1] with edge sets

E(G1) = E(G0)\{(a, i,−)} ∪ {(a, i,+)},
E(G2) = E(G0)\{(i, i,+)} ∪ {(a, i,+)}, (R6)

E(G3) = E(G0)\{(a, i,−)}\{(i, i,+)} ∪ {(a, i,+)}.

We say thatG0 reduces toG1, G2, G3 under the reduction rules (R1)-(R6). Figure
3-5 shows these reduction rules graphically.

Proposition 3.4.1. Given a signed graph G0 on the vertex set [n + 1], a vector
a ∈ Zn+1, and two edges e1 and e2 of G0 on which one of the reductions (R1)-(R6)
can be performed yielding the graphs G1, G2, G3, then

FG(a) = FG1(a)
⋃
FG2(a), FG1(a)

⋂
FG2(a) = FG3(a), and FG1(a)◦

⋂
FG2(a)◦ = ∅,

where P◦ denotes the interior of P.

The proof of Proposition 3.4.1 is left to the reader. Figure 3-5 and the definition
of a flow polytope is all that is needed!

3.5 Subdivision of flow polytopes

In this section we use the reduction rules for signed graphs given in Section 3.4,
following a specified order, to subdivide flow polytopes. The main result of this
section is the Subdivision Lemma as stated below, and again in Lemma 3.5.7. While
the notation of this lemma seems complicated at first, the subsections below contain
all the definitions and explanations necessary to understand it. This lemma is key in
all our pursuits: it lies at the heart of the relationship between flow polytopes and
Kostant partition functions. It also is a tool for systematic subdivisions, and as such
calculating volumes of particular flow polytopes.
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Figure 3-5: Reduction rules from Equations (R1)-(R6).

Subdivision Lemma. Let G be a signed graph on the vertex set [n+1] and FG(a) be
its flow polytope for a ∈ Zn+1 with ai = 0, for a fixed i ∈ [n]. Then the flow polytope
subdivides as:

FG(a) =
⋃

T∈T ±Ii,Oi (O
+
i )

F
G

(i)
T

(a1, . . . , ai−1, ai+1, . . . , an, 2y −
n∑

i=1

ai), (3.5.1)

where G
(i)
T are graphs on the vertex set [n + 1]\{i} as defined in Section 3.5.2; and

and T ±Ii,Oi(O
+
i ) is the set of signed trees (signed trees are defined in Section 3.5.1.

First we define the trees or equivalently weak compositions that are important
for the subdivision (Sections 3.5.1 and 3.5.2), we then define the order of application
of reduction rules and restate and prove the Subdivision Lemma (Section 3.5.3). In
the next section we use this lemma to compute volumes of flow polytopes for both
signless graphs H and signed graphs G.

3.5.1 Noncrossing trees

The subdivisions mentioned above are encoded by bipartite trees with negative and
positive edges that are noncrossing. We start by defining such trees.

A negative bipartite noncrossing tree T with left vertices x1, . . . , x` and right
vertices x`+1, . . . , x`+r is a bipartite tree of negative edges that has no pair of edges
(xp, x`+q,−), (xt, x`+u,−) where p < t and q > u. If L and R are the ordered sets
(x1, . . . , x`) and (x`+1, . . . , x`+r), let T −L,R be the set of such noncrossing bipartite

trees. Note that #T −L,R =
(
`+r−2
`−1

)
, since they are in bijection with weak compositions

of ` − 1 into r parts. Namely, a tree T corresponds to the composition of indegrees
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Figure 3-6: Examples of bipartite noncrossing trees that are: (a) negative (composi-
tion (1, 0, 1, 1, 0)), (b) signed with R+ = {1, 5} (composition (1+, 0−, 1−, 1−, 0+)), (c)
signed with R+ = {1, 3, 5} (composition (1+, 0−, 1+, 1−, 0+)).

of the right vertices: (b1, . . . , br) where bi = indegT (x`+i) − 1. See Figure 3-6 (a) for
an example of such a tree.

A signed bipartite noncrossing tree is a bipartite noncrossing tree T with
negative (·, ·,−) and positive (·, ·,+) edges such that the right vertices are either
incident to only negative edges or only positive edges. Let T ±L,R(R+) be the set of
such trees with #L left vertices, the ordered set R+ of right vertices incident to
only positive edges, and #R − #R+ right vertices incident to only negative edges.
Note that for fixed R+, #T ±L,R(R+) = #T −L,R, and we can encode such trees with

a signed composition (b±1 , b
±
2 , . . . , b

±
r ) indicating whether the incoming edges to each

right vertex are all positive or all negative. See Figure 3-6 (b)-(c) for an example of
such trees.

If both L and R are empty, the set T ±∅,∅ consists of one element: the empty tree.

3.5.2 Removing vertex i from a signed graph G

One of the points of the Subdivision Lemma is to start by a graph G on the vertex
set [n + 1] and to subdivide the flow polytope of G into flow polytopes of graphs on
a vertex set smaller than [n + 1]. In this section we show the mechanics of this. We
take a signed graph G and replace incoming and outgoing edges of a fixed vertex i by
edges that avoid i and come from a noncrossing tree T . The outcome is a graph we
denote by G

(i)
T on the vertex set [n+1]\{i}. To define this precisely we first introduce

some notation:

Given a signed graph G and one of its vertices i, let Ii = Ii(G) be the multiset
of incoming edges to i (negative edges of the form (·, i,−)). Let Oi = Oi(G) be the
multiset of outgoing edges from i (edges of the form (·, i,+) and (i, ·,±)). And let
O±i be the signed refinement of Oi. Note that indegG(i) = #Ii(G).

Fix a tree T ∈ T ±Ii,Oi(O
+
i ) with #Ii left vertices, #Oi right vertices and #O+

i

right vertices incident only to positive edges. For each tree-edge (e1, e2) of T where
e1 = (r, i,−) ∈ Ii and e2 ∈ Oi (e2 = (i, s,±) or (t, i,±)), let edge(e1, e2) be the
following signed edge:

edge(e1, e2) =

{
(r, s,±) if e2 = (i, s,±),

(r, t,+) if e2 = (t, i,+).
(3.5.2)
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Figure 3-7: Replacing the incident edges of vertex 2 in (a) a graph H, of only
negative edges, by a noncrossing tree T encoded by the composition (1−, 0−, 2−)
of 3 = indegH(2)− 1. (b) a signed graph G by a signed noncrossing tree T encoded
by the composition (1+, 0−, 1+, 0−) of 2 = indegG(2)− 1.

Note that if e1 = (r, i,−) and e2 = (r, i,+) then we allow e(e1, e2) to be the loop
(r, r,+).

Then G
(i)
T is the graph obtained from G\i (G with vertex i removed) by adding

to it the edges {edge(e1, e2) | (e1, e2) ∈ E(T )}. See Figure 3-7 for examples of G
(i)
T

for a graph of only negative edges and a signed graph.

Remark 3.5.3. If T is given by a weak composition of #Ii − 1 into #Oi parts, say
(be)e∈Oi. Then:

(i) we record this composition by labelling the edges e in Oi of G with the corre-
sponding part be. We can view this labelling as assigning a flow b(e) = be to
edges e of Oi in G.

(ii) The be + 1 edges (·, e) in T will correspond to be + 1 edges edge(·, e) in G
(i)
T . We

think of these be + 1 edges as one edge coming from the original edge e in G,
and be new ones.

�

The following is an easy consequence of the construction of G
(i)
T .

Proposition 3.5.4. Given a graph G on the vertex set [n + 1], the incoming and

outgoing edges of vertex j of the graph G
(i)
T on the vertex set [n + 1]\{i} built above

are:

Ij(G(i)
T ) =

{
Ij(G) ∪ {new edges (k, j,−) | k < i < j} if j > i,

Ij(G) if j < i;
(3.5.5)

Oj(G(i)
T ) =

{
Oj(G) ∪ {new edges (k, j,+) | k < i < j} if j > i,

Oj(G) if j < i.
(3.5.6)

Next, we give a subdivision of the flow polytope FG of a signed graph G in terms
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Figure 3-8: Setting of Lemma 3.5.7 for edges incident to vertex i. We fix total orders
θI and θO on Ii(G) and Oi(G) respectively. The resulting bipartite trees are in
T ±(L,R)R” where L = θI(I), R = θO(O) and R+ = θO(O+).

of flow polytopes F
G

(i)
T

of graphs G
(i)
T .

3.5.3 Subdivision Lemma

In this subsection we are ready to state again the Subdivision Lemma, now with all
the terminology defined, and prove it. We want to subdivide the flow polytope of a
graph G on the vertex set [n+1]. To do this we apply the reduction rules to incoming
and outgoing edges of a vertex i in G with zero flow. Then by repeated application
of reductions to this vertex, we can essentially delete this vertex from the resulting
graphs, and as a result get to graphs on the vertex set [n + 1]\{i}. The Subdivision
Lemma tells us exactly what these graphs, with a smaller vertex set, are.

We have to specify in which order we do the reduction at a given vertex i, since
at any given stage there might be several choices of pairs of edges to reduce. First we
fix a linear order θI on the multiset Ii(G) of incoming edges to vertex i, and a linear
order θO on the multiset Oi(G) of outgoing edges from vertex i. Recall that Oi(G)
also includes edges (a, i,+) where a < i. We choose the pair of edges to reduce in the
following way: we pick the first available edge from Ii(G) and from Oi(G) according
to the orders θI and θO. At each step of the reduction, one outcome will have one
fewer incoming edge and the other outcome will have one fewer outgoing edge. In
each outcome, when we choose the next pair of edges to reduce we pick the next edge
from Ii(G) and from Oi(G) that is still available.

The Subdivision Lemma shows that when we follow this order to apply reductions
to a vertex with zero flow; the full dimensional outcomes are encoded by signed
bipartite noncrossing trees.

Lemma 3.5.7 (Subdivision Lemma). Let G be a signed graph on the vertex set [n+1]
and FG(a) be its flow polytope for a ∈ Zn+1 with ai = 0. Fix linear orders θI and θO
on Ii(G) and Oi(G) respectively. If we apply the reduction rules to edges incident to
vertex i following the linear orders, then the flow polytope subdivides as:

FG(a) =
⋃

T∈T ±L,R(R+)

F
G

(i)
T

(a1, . . . , ai−1, ai+1, . . . , an, 2y −
n∑

i=1

ai), (3.5.8)
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where G
(i)
T is as defined in Section 3.5.2; and T ±L,R(R+) is the set of signed trees with

L = θI(Ii), R = θO(Oi) and R+ = θO(O+
i ).

Proof. We apply the reduction rules (see Figure 3-5 for the rules) to pairs of edges
incident to i following the orders θI and θO. Each step of the reduction takes a graph
G and gives two graphs G′ and G′′ like G but where an edge incident to i has been
replaced with a new positive or negative edge not incident to vertex i. This new edge
will not take part of any other reduction on vertex i. We continue the reduction until
we obtain graphs with only one edge incident to vertex i. The flow on that single
edge is forced to be zero since ai = 0 so we can “remove” the edge from the graph
and as obtain a graph with no incident edges to vertex i. We call such graphs the
final outcomes of the reduction.

We only deal with the edges incident to vertex i, so for clarity we carry out the
reductions on a graph B representing these edges ordered by θI and θO; see Figure 3-
8(b). The graph B has left vertices L, a middle vertex i, and right vertices R; and
edges {(et, i,−) | et ∈ L}∪{(i, ft,±) | ft ∈ R} where ± depends on the sign of ft. At
the end of the reduction the lingering edges will form a noncrossing tree T and the
corresponding full outcome will be G

(i)
T .

Let a′ = (a1, . . . , ai−1, ai+1, . . .) ∈ Zn. Since the netflow on vertex i is zero, a
partial outcome G′ where #Ii(G′) + #Oi(G′) > 1 and either Ii(G′) or Oi(G′) is
empty is a priori lower dimensional. This is because all the edges on the nonempty
multiset of Ii(G′) or Oi(G′) are forced to have zero flow. We call such outcomes
bad. We show by induction on cG := #Ii(G) + #Oi(G), that the good (non bad)

full outcomes of the reduction are exactly the graphs G
(i)
T for all noncrossing bipartite

trees T in T ±L,R(R+) where L = θI(Ii), R = θO(Oi) and R+ = θO(O+
i ). Recall that

such trees are in bijection with signed compositions (be)e∈R of #Ii(G)−1 into #Oi(G)
parts.

The base case, when cG = 1 consists of a single edge e incident to vertex i that
is incoming (a, i,−) or outgoing (i, b,±). Since the netflow on vertex i is zero, then

the flow on e is forced to be zero. We obtain G\{i} which we can identify with G
(i)
T

where T = ∅ is the empty tree.
For cG > 1 if either Ii(G) is empty or Oi(G) is empty then G is already a bad

outcome. If both Ii(G) and Oi(G) are nonempty then from the linear orders θI and
θO we pick the next available pair of edges to reduce. The pair will be an incoming
negative edge e1 = (a, i,−) and an outgoing edge f1 = (i, b,±). We do the reduction
(R1) or (R2) in Figure 3-5 and obtain graphs G′ and G′′ with a new edge (a, b,±)
and without (i, b,±) or (a, i,−) respectively (see Figure 3-9). For both G′ and G′′ we
have cG′ = cG′′ = cG − 1 (Oi(G′) = Oi(G)\(i, b,±) and Ii(G′′) = Ii(G)\(a, i,−)). By

induction, the final outcomes of the reduction on G′ are G
′(i)
T ′ where T ′ are noncrossing

bipartite trees in T ±L\a,R\b. But T ′ ∪ (a, b,±) is still a noncrossing bipartite tree (since

we follow the orders θIi(G) and θOi(G)), G
′(i)
T ′ = G

(i)
T ′∪(a,b,±) and the set {T ′ ∪ (a, b,±) |

T ′ ∈ T ±L\a,R\b} are exactly the trees in T ±L,R(R+) with b1 = indeg(f1) − 1 = 0 (see

Figure 3-9). Let T (b1=0) be the set of these trees. Similarly, by induction, the final

outcomes of the reduction on G′′ are the graphs G
(i)
T for all trees T in T ±L,R(R+) where
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Figure 3-9: Inductive step in proof of the Subdivision Lemma.

b1 = indeg(f1) − 1 > 0. Let T (b1>0) be the set of these trees. Since T ±L,R(R+) =

T (b1=0)∪T (b1>0) where the union is disjoint, then from G we obtain the full outcomes
G

(i)
T where T ∈ T ±L,R(R+).

So from the reduction we obtain flow polytopes F
G

(i)
T

(a) where T is in T ±L,R(R+).

Thus, by repeated application of Proposition 3.4.1, it will follow that FG(a) subdivides
as a union of F

G
(i)
T

(a) for all trees T in T ±L,R(R+) as desired.

See Figure 3-10 for an example of a subdivision into final outcomes that are
indexed by noncrossing bipartite trees.

In the next section, we apply Lemma 3.5.7 to compute the volume of the flow
polytope FG(a) where G is a signed graph and a = (2, 0, . . . , 0), the highest root of
the root system Cn+1. As a motivation and to highlight differences, we first use a
special case of the Subdivision Lemma, as done by Postnikov and Stanley [53, 58],
to compute the volume of the polytope FH(1, 0, . . . , 0,−1) where H is a graph with
only negative edges.

3.6 Volume of flow polytopes

In this section we use the Subdivision Lemma (Lemma 3.5.7) on flow polytopes
FH(1, 0, . . . , 0,−1), where H is a graph consisting of only negative edges, and on
FG(2, 0, . . . , 0), where G is a signed graph, to prove the formulae for their volume
given in Theorem 3.6.2 ([53, 58]) and Theorem 3.6.16, respectively. To establish the
connection between the volume of flow polytopes and Kostant partition functions for
signed graphs, we introduce the notion of dynamic Kostant partition functions, which
specializes to Kostant partition functions in the case graphs with only negative edges.
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Figure 3-10: Example of a subdivision (the selected edges to reduce are bold). The
outcomes indicated by × are bad outcomes since they are priori lower dimensional.
The final outcomes indicated by X are indexed by signed trees in T ±{e1,e2},{f1,f2,f3}(f1)

or equivalently the compositions (0−, 0−, 1+), (0−, 1−, 0+), and (1−, 0−, 0+).

3.6.1 A correspondence between integer flows and simplices
in a triangulation of FH(1, 0, . . . , 0,−1), where H only
has negative edges

LetH be a graph on the vertex set [n+1] and only negative edges, and FH(1, 0, . . . , 0,−1)
be its flow polytope where (1, 0, . . . , 0,−1) ∈ Zn+1. We apply Lemma 3.5.7 succes-
sively to vertices 2, 3, . . . , n. At the end we obtain the subdivision:

FH(1, 0, . . . , 0,−1) =
⋃

T−n

· · ·
⋃

T−3

⋃

T−2

F
((···(H(2)

T−2
)
(3)

T−3
··· )(n)

T−n

(1,−1), (3.6.1)

where T−i are noncrossing trees with only negative edges. See Figure 3-12 (a) for
an example of a subdivision of an instance of FH(1, 0, . . . , 0,−1). Then Hn :=

((· · · (H(2)

T−2
)
(3)

T−3
· · · )(n)

T−n
is a graph consisting of two vertices, 1 and n+ 1 and #E(H)−

n+ 1 edges between them. Then FHn(1,−1) is an (#E(H)−n)-dimensional simplex
with normalized unit volume. Therefore, vol(FHn(1, 0, . . . , 0,−1)) is the number of
choices of bipartite noncrossing trees T−2 , . . . , T

−
n where T−i+1 encodes a composition

of #Ii+1(Hi) − 1 with #Oi+1(Hi) parts. The next result by Postnikov and Stanley
[53, 58] shows that this number of tuples of trees is also the number of certain integer
flows on H. We reproduce their proof to motivate and highlight the differences with
the case of signed graphs discussed in the next subsection.
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Theorem 3.6.2 ([53, 58]). Given a loopless connected (signless) graph H on the
vertex set [n + 1], let di = indegH(i) − 1 for i ∈ {2, . . . , n}. Then, the normalized
volume vol(FH(1, 0, . . . , 0,−1) of the flow polytope associated to graph H is

vol(FH(1, 0, . . . , 0,−1)) = kH(0, d2, . . . , dn,−
n∑

i=2

di),

where kH is the Kostant partition function of H.

Proof. For this proof, let Hi := (· · · (H(2)

T−2
)
(3)

T−3
· · · )(i)

T−i
for i = 2, . . . , n. From Equation

(3.6.1) and the discussion immediately after, we have that vol(FH(1, 0, . . . , 0,−1))
is the number of choices of noncrossing bipartite trees (T−2 , . . . , T

−
n ) where T−i+1

encodes a weak composition of #Ii+1(Hi) − 1 with #Oi+1(Hi) parts. We give a
correspondence between

(
H; (T−2 , . . . , T

−
n )
)

and integer a-flows on H where a =
(0, d2, . . . , dn,−

∑n
i=2 di). The proof is then complete since by Lemma 3.2.4 these

integer flows are counted by kH(0, d2, . . . , dn,−
∑n

i=2 di).

To give the correspondence between
(
H; (T−2 , . . . , T

−
n )
)

and integer a-flows on
H where a = (0, d2, . . . , dn,−

∑n
i=2 di), note that the tree T−i+1 is given by a weak

composition (b
(i+1)
e )e∈Oi+1(Hi) of #Ii+1(Hi) − 1 into #Oi+1(Hi) parts. By Remark

3.5.3 (i), we can encode this weak composition by assigning a flow b(e) = b
(i+1)
e to

edges e inOi+1(Hi) to Hi. But since H and Hi consist only of negative edges, iterating
Proposition 3.5.4 we see that

Oi+1(Hi) = Oi+1(H). (3.6.3)

Therefore, we can also encode the weak compositions on the edges of H. So, for
i = 2, . . . , n we record weak compositions (b

(i)
e )e∈Oi(H) (and thus the trees T−i ) as

flows b(e) = b
(i)
e on e ∈ Oi(H) of H. For i = 1, we assign flows b(e) = 0 for

e ∈ O1(H). Next we calculate the netflow on vertex i+ 1 of H:

∑

e∈Oi+1(H)

b(e) = #Ii+1(Hi)− 1, (3.6.4)

∑

e∈Ii+1(H)

b(e) = #{new edges (·, i+ 1,−)}, (3.6.5)

Where Equation (3.6.4) follows since (b
(i)
e )e∈Oi+1(H) is a weak composition of #Ii+1(Hi)−

1. Equation (3.6.5) follows from Remark 3.5.3 (ii). Then by Proposition 3.5.4

ai+1 =
∑

e∈Oi+1(H)

b(e)−
∑

e∈Ii+1(H)

b(e)

= (#Ii+1(Hi)− 1)−#{new edges (·, i+ 1,−)}
= (#Ii+1(H) + #{new edges (·, i+ 1,−)} − 1)−#{new edges (·, i+ 1,−)}.

So ai+1 = #Ii+1(H) − 1 = indegH(i + 1) − 1 = di+1. Thus we have a map from
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(a)

1 0 0 −1

H

(b)

Flows on 3 2 −5 :

3

0 2

2

1 3

1

2 4

0

3 5

Figure 3-11: Example of Theorem 3.6.2 to find volFH(1, 0, 0,−1) = kH(0, 3, 2,−5) =
4: (a) Graph H with negative edges, (b) the four flows on H with netflow
(0, d2, d3, d4) = (0, 3, 2,−5) where di = indegH(i)− 1.

(
H; (T−2 , . . . , T

−
n )
)

to an integer a-flow in H where a = (0, d2, . . . , dn,−
∑n

i=2 di).

Next we show this map is bijective. Given such an integer flow on H, we read
off the flows on the edges of Oi(H) for i = 2, . . . , n in clockwise order and obtain a
weak composition of

∑
e∈Oi(H) b(e) =: Ni with #Oi(H) parts. Next, we encode each

of these compositions as noncrossing trees T−i . We know that Oi+1(H) = Oi+1(Hi)
and it is not hard to show by induction on i that Ni+1 = #Ii+1(Hi) − 1 where

Hi = (· · · (H(2)

T−2
)
(3)

T−3
· · · )(i)

T−i
.

This shows the map described above is the correspondence we desired.

Example 3.6.6 (Application of Theorem 3.6.2). The flow polytope FH(1, 0, 0,−1) for
the negative graph H in Figure 3-11 (a) has normalized volume 4. This is the number
of flows on H with netflow (0, d2, d3, d4) = (0, 3, 2,−5) where di = indegH(i)− 1, i.e.
kH(0, 3, 2,−5) = 4. The four flows are in Figure 3-11 (b).

We now look at computing the normalized volume of FG(a) where G is a signed
graph and a = (2, 0, . . . , 0).

3.6.2 A correspondence between dynamic integer flows and
simplices in a triangulation of FG(2, 0, . . . , 0), where G is
a signed graph

Let G be a signed graph on the vertex set [n + 1] and a = (2, 0, . . . , 0). In order to
subdivide the polytope FG(a), we follow the same first steps as in the previous case.
Mainly:

We apply Lemma 3.5.7 successively to vertices 2, 3, . . . , n + 1. At the end we
obtain:

FG(2, 0, . . . , 0) =
⋃

Tn+1

· · ·
⋃

T3

⋃

T2

F
(···(G(2)

T2
)
(3)
T3
··· )(n+1)

Tn+1

(2). (3.6.7)

See Figure 3-12 (b) for an example of a subdivision of an instance of FG(2, 0, . . . , 0).

In this case, Gn+1 := (· · · (G(2)
T2

)
(3)
T3
· · · )(n+1)

Tn+1
is a graph consisting of one vertex with

90



1 0 0 −1

1 0

2

1 0

2 4

1 0

2 41 −1

H

H
(2)
T2

T2

(1−, 0−, 2−)

(4−)

(H
(2)
T2
)
(3)
T3

T3

3 2 −5

1 0 −1

(a)

2 0 0 0

0 1

0

1

2

2

2

G

G
(2)
T2

(G
(2)
T2
)
(3)
T3

((G
(2)
T2
)
(3)
T3
)
(4)
T4

T2

T3

T4

(1+, 0−, 1+, 0−)

(0+, 1−)

(2+, 0+)

0 0

0

0 1

0

1

1

0

0 1

0

1

1

0

2

0

0 1

0

1

1

0

2

0

(b)

Figure 3-12: Example of the subdivision to find the volume of (a) FH(1, 0, 0,−1) for
H with only negative edges and of (b) FG(2, 0, 0, 0) for signed G. The subdivision is
encoded by noncrossing trees Ti+1 that are equivalent to compositions (b1, . . . , br) of
#Ii+1(Hi) − 1 (#Ii+1(Gi) − 1) with #Oi+1(Hi) (#Oi+1(Gi)) parts. These trees or
compositions are recorded by the integer (dynamic) flow on H\{1} (G\{1}) in the box
with netflow (d2, d3,−d2−d3) = (3, 2,−5) where di = indegi(H) ((d2, d3, d4) = (2, 1, 1)
where di = indegi(G)).

#E(G)− n positive loops. Thus, FGn+1(2) is an (#E(G)− n− 1)-dimensional sim-
plex with normalized unit volume. Therefore, vol(FG(2, 0, . . . , 0)) is the number of
choices of signed noncrossing bipartite trees T2, T3, . . . , Tn+1 where Ti+1 encodes a
weak composition of #Ii+1(Gi)− 1 with #Oi+1(Gi) parts. However, instead of a cor-
respondence between (G; (T2, T3, . . . , Tn+1)) and the usual integer flows on G, there
is a correspondence with a special kind of integer flow on G that we call dynamic
integer flow.

Next, we motivate the need of these new integer flows. Let Gi := (· · · (G(2)
T2

) · · · )(i)
Ti

.

The tree Ti+1 is given by a signed weak composition (b
(i+1)
e )e∈Oi+1(Gi) of #Ii+1(Gi)−1

into #Oi+1(Gi) parts. And again, by Remark 3.5.3 (i), we can encode the composition

by assigning a flow b(e) = b
(i+1)
e for e ∈ Oi+1(Gi) toGi. However, contrary to Equation

(3.6.3), iterating Proposition 3.5.4 we get

Oi+1(Gi) ⊇ Oi+1(G), (3.6.8)

and in general these multisets are not equal (e.g. in Figure 3-7 (b), O4(G) = ∅ but

O4(G
(2)
T ) = {(1, 4,+), (1, 4,+)}). Thus, we cannot encode the compositions as flows

on a fixed graph G but rather on a graph G and additional positive edges added
according to the flows assigned to previous positive edges. This is what we mean by
dynamic flow. The next definition makes this precise.

Definition 3.6.9 (Dynamic integer flow). Given a signed graph G and an edge e =
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(a)

2 1 1

G

−→
2 1 1

(b)

2 1 1

0 1

1 2

3

2 1 1

1 1

0 1

2
1

2 1 1

2 0

0 1

1
0
1

b`(e) = 0 b`(e) = 1 b`(e) = 2

Figure 3-13: Example of dynamic flow: (a) signed graph G with positive edge e split
into two half-edges, (b) three of the 17 dynamic integer flows where b`(e) = 0, 1, and
2 so that zero, one and two right positive half-edges are added.

(i, j,+) of G, we will regard e = (i, j,+) as two positive half-edges (i,∅,+) and
(∅, j,+) that still have “memory” of being together (see Figure 3-13 (a)). Thus, we
assign integer flows b`(e) and br(e) to the left and right halves of the positive edge,
starting at the left half-edge. Once we assign b`(e) units of flow, we add b`(e) new
right positive half-edges e′ incident to j that can also be assigned integer flows br(e

′).
When we assign an integer flow to a right positive half-edges no edges are added.

An analogue of Equation (3.2.2) still holds:

∑

e∈E(G),inc(e,v)=−
b(e) + av =

∑

e∈E(G),inc(e,v)=+

(b`(e) + br(e)) +
∑

e′,new right (+) half edges

br(e
′),

(3.6.10)
where av is the outflow at vertex v and inc(e, v) = − if e = (g, v,−), g < v, and
inc(e, v) = + if e = (g, v,+), g < v, or e = (v, j, ε), v < j, and ε ∈ {+,−}. We call
these integer a-flows dynamic.

Definition 3.6.11 (Dynamic Kostant partition function). Given a signed graph G
on the vertex set [n + 1] and a a vector in Zn+1, the dynamic Kostant partition
function kdynG (a) is the number of integer dynamic a-flows in G.

Example 3.6.12. For the signed graph G in Figure 3-13 (a) with only one positive
edge e = (1, 3,+), we give three of its 20 integer dynamic flows with netflow (2, 1, 1)
where we add b`(e) = 0, 1 and 2 right half edges respectively.

Next, we give the generating series of the dynamic Kostant partition function
kdyn
G (a).

Proposition 3.6.13. The generating series of the dynamic Kostant partition function
is

∑

a∈Zn+1

kdynG (a)xa =
∏

(i,j,−)∈E(G)

(1− xix−1
j )−1

∏

(i,j,+)∈E(G)

(1− xi − xj)−1, (3.6.14)

where xa = xa11 x
a2
2 · · · xan+1

n+1 .

Proof. By Definition 3.6.9 of the integer dynamic flow, if the left half-edge of a positive
edge e = (i, j,+) has flow k ∈ N then we add k new right half-edges incident to j
besides the existing half-edge. In this case the contribution to the generating series
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of the dynamic integer flows is xki (1 − xj)
−k−1. Thus the total contribution to the

generating series from e = (i, j,+) in G is

∑

k≥0

xki (1− xj)−k−1 = (1− xj)−1(1− xi(1− xj)−1)−1

= (1− xi − xj)−1.

In addition, the contributions of negative edges e = (i, j,−) is (1− xix−1
j )−1. Taking

the product of these contributions for each of the edges ofG gives the stated generating
series

∑
a∈Zn+1 k

dyn
G (a)xa.

Remark 3.6.15. By assigning the possible integer flows to left half-edges and adding
the appropriate number of right half-edges it is possible to write the dynamic Kostant
partition function kdynG (a) as a finite sum of Kostant partition functions. For example
for the graph G in Figure 3-13 kdynG (2, 1, 1) = kG1(2, 1, 1) +kG2(1, 1, 1) +kG3(0, 1, 1) =
6 + 8 + 6 where for i = 1, 2, 3, Gi is obtained from G by setting the flow on the
left half-edge (1,∅,+) to be i − 1 and adding i − 1 right half edges (∅, 4,+). This
observation implies that kdynG (a) is a sum of piecewise quasipolynomial functions. It
would be of interest to study the chamber structure of kdynG .

We are now ready to state and prove the main product of the broad technique we
developed.

Theorem 3.6.16. Given a loopless connected signed graph G on the vertex set [n+1],
let di = indegG(i) for i ∈ {2, . . . , n}. The normalized volume vol(FG) of the flow
polytope associated to graph G is

vol(FG(2, 0, . . . , 0)) = kdyn.G (0, d2, . . . , dn, dn+1).

Proof. Recall from the argument right before Definition 3.6.9, that vol(FG(2, 0, . . . , 0))
is the number of tuples (T2, . . . , Tn+1) of bipartite trees each tree Ti+1 encoding a com-

position of #Ii+1(Gi)−1 with #Oi+1(Gi) parts (whereGi is the graph (· · · (G(2)
T2

)
(3)
T3
· · · )(i)

Ti
).

By construction, we encode each of these compositions using dynamic integer flows
on G. The netflow on vertex i+ 1 will be:

ai+1 = #I−i+1(Gi)− 1−#{new neg. edges incident to i+ 1}
=
(
#I−i+1(G) + #{new edges (·, i+ 1,−)} − 1

)
−#{new edges (·, i+ 1,−)}

= #I−i+1(G)− 1 = indeg−G(i+ 1).

Thus we have a map from (G; (T2, . . . , Tn+1)) to an integer dynamic a-flow in G where
a = (0, d2, d3, . . . , dn+1) where di = indegG(i).

Next we show this map is bijective. Given such an integer dynamic flow in
G, we read off the flows on the edges of Oi(G) and the new right positive half-
edges e′ incident to i for i = 2, . . . , n + 1 in clockwise order. We obtain a weak
composition of

∑
e∈Oi(G) b(e) +

∑
new right (+) half edges e′ br(e

′) := Ni into #Oi(G) +

#{new right (+) half edges} parts. Next, we encode these weak compositions as
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(a)

2 0 0 0

G

(b)

Dynamic flows on 1 0 1 :

1
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Figure 3-14: Example of Theorem 3.6.16 to find volFG(2, 0, 0, 0) = kdyn
G (0, 1, 0, 1) = 5:

(a) Signed graph G, (b) the five dynamic flows on G with netflow (0, d2, d3, d4) =
(0, 1, 0, 1) where di = indegG(i) − 1 (the last two flows have an additional right
positive half-edge).

signed noncrossing trees. We know that #Oi(G) + #{new right (+) half edges} =
#Oi+1(Gi) and it is not hard to show by induction that Ni+1 = #Ii+1(Gi)− 1 where

Gi = (· · · (G(2)
T2

)
(3)
T3
· · · )(i)

Ti
.

This shows the map is the correspondence we desired.

Example 3.6.17 (Application of Theorem 3.6.16). The flow polytope FG(2, 0, 0, 0)
for the signed graph G in Figure 3-14 (a) has normalized volume 5. This is the
number of dynamic integer flows on G with netflow (0, d2, d3, d4) = (0, 1, 0, 1) where
di = indegG(i)− 1. The five dynamic integer flows are in Figure 3-14 (b).

3.7 The volumes of the (signed) Chan-Robbins-

Yuen polytopes

When H = Kn+1, the complete graph on n+ 1 vertices, FKn+1(1, 0, . . . , 0,−1) is also
known as the Chan-Robbins-Yuen polytope CRY An [14, 15]. This polytope is a face
of the Birkhoff polytope of all n×n doubly stochastic matrices. Zeilberger computed
in [64] the volume of this polytope using the Morris identity [49, Thm. 4.13]. This
polytope has drawn much attention with its combinatorial volume

∏n−2
i=1 Cat(i), and

the lack of a combinatorial proof of this formula. In this section we study CRY An
and its type Cn+1 and Dn+1 generalizations.

3.7.1 Chan-Robbins-Yuen polytope of type An

We reproduce an equivalent proof of Zeilberger’s result using Theorem 3.6.2. First we
mention the version of the identity used in [64] and a special value of it which gives
a product of consecutive Catalan numbers. Then we use Theorem 3.6.2 to show that
the volume of the polytope reduces to this value of the identity.
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Lemma 3.7.1 (Morris Identity [64]1). For a positive integers m, a, and b, and positive
half integers c, let

H(a, b, c;x1, x2, . . . , xm) :=
m∏

i=1

x−ai (1− xi)−b
∏

1≤i<j≤m
(xj − xi)−2c,

and let Mm(a, b, c) = CTxm · · ·CTx1H(a, b, c;x1, x2, . . . , xm), where CTxi mean the
constant term in the expansion of the variable xi. Then

Mm(a, b, c) =
1

m!

m−1∏

j=1

Γ(a+ b+ (m− 1 + j)c)Γ(c)

Γ(a+ jc+ 1)Γ(b+ jc)Γ(c+ jc)
, (3.7.2)

where Γ(·) is a gamma function (Γ(j) = (j − 1)! when j ∈ N).

Next we give a special value of this identity.

Corollary ([64]). For the constant term Mm(a, b, c) defined above, we have

Mm(2, 0, 1/2) = Mm(1, 1, 1/2) =
m∏

k=1

Cat(k), (3.7.3)

where Cat(k) = 1
k+1

(
2k
k

)
is the kth Catalan number.

Proof. By Equation (3.7.2) if c = 1/2 and either if a = 2, b = 0 or a = b = 1 then

Mm(2, 0, 1/2) = Mm(1, 1, 1/2) =
1

m!

m−1∏

j=1

Γ((m+ 3 + j)/2)Γ(1/2)

Γ(j/2 + 1)Γ(j/2 + 1/2)Γ(j/2 + 1/2)
.

Then Mm/Mm−1 is

Mm/Mm−1 =
1

m

Γ(m+ 1/2)Γ(m+ 1)

Γ(m/2 + 1)

Γ(1/2)

Γ(m/2 + 1/2)Γ(m/2)Γ(m/2 + 3/2)
,

using the duplication formula of gamma functions, Γ(z)Γ(z+1/2) = Γ(2z)Γ(1/2)/22z−1,
on the product Γ(m/2)Γ(m/2 + 1/2) gives

Mm/Mm−1 =
1

m

Γ(m+ 1/2)Γ(m+ 1)

Γ(m/2 + 1)

2m−1

Γ(m)Γ(n/2 + 3/2)
,

using the duplication formula on Γ(m + 1/2)Γ(m + 1) and on Γ(m/2 + 3/2) and
Γ(m/2 + 1) gives

Mm/Mm−1 =
1

m

Γ(2m+ 1)

Γ(m+ 2)Γ(m)
=

1

m+ 1

(
2m

m

)
= Cat(m).

1In the original Morris identity the powers a, b, c are negative. In [64] Zeilberger shadowed the
expression to extend it to the case when a, b, c are positive.
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And so Mm(1, 1, 1/2) = Cat(0)Cat(1) · · ·Cat(m).

Corollary ([64]). For n ≥ 1, let Kn+1 be the complete graph on n+ 1 vertices. Then
the volume of the flow polytope FKn+1(1, 0, . . . , 0,−1) is

vol(FKn+1(1, 0, . . . , 0,−1)) =
n−2∏

k=0

Cat(k),

where Cat(k) = 1
k+1

(
2k
k

)
is the kth Catalan number.

Proof. If H = Kn+1, by Theorem 3.6.2 we have that

vol(FKn+1(1, 0, . . . , 0,−1)) = kKn+1(0, 0, 1, 2, . . . , n− 2,−(n− 2)(n− 1)/2)

= kKn−1(1, 2, . . . , n− 2,−(n− 2)(n− 1)/2).

Where we reduced from Kn+1 to Kn−1 since the outflow on the first two vertices
of Kn+1 is zero. Then from the generating series of the Kostant partition function
(3.1.4):

kKn−1(1, 2, . . . , n−2,−(n−2)(n−1)/2) = [x1
1x

2
2 · · ·xn−2

n−2]
∏

1≤i<j≤n−1

(1− xix−1
j )−1

∣∣∣∣∣
xn−1=1

(3.7.4)
where we have set xn−1 = 1 since its power is determined by the power of the other
variables. Since 1/(1− xix−1

j ) = xj/(xj − xi) then

volFKn+1(1, 0, . . . , 0,−1) = [x1
1x

2
2 · · ·xn−2

n−2]x0
1x

1
2x

2
3 · · ·xn−3

n−2

n−2∏

i=1

(1− xi)−1
∏

1≤i<j≤n−2

(xj − xi)−1

= [x1x2 · · ·xn−2]
n−2∏

i=1

(1− xi)−1
∏

1≤i<j≤n−2

(xj − xi)−1.

(3.7.5)

Since [x]f(x) = CTx
1
x
f(x) we get

volFKn+1(1, 0, . . . , 0,−1) = CTxn−2CTxn−3 · · ·CTx1
n−2∏

i=1

x−1
i (1−xi)−1

∏

1≤i<j≤n−2

(xj−xi)−1.

(3.7.6)
Note that the right-hand-side above is Mn−2(1, 1, 1/2). Then by 3.7.3 the result
follows.

Remark 3.7.7. (i) Note that in this case of H = Kn+1, the multiset {{αi}} of
roots corresponding to the edges of Kn+1 are all the positive type An roots, and
the netflow vector (1, 0, . . . , 0,−1) is the highest root in type An. The volumes of
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FKn+1(a) for generic positive roots in An do not appear to have nice product formu-
las. (ii) There is no combinatorial proof for the formula of the normalized volume
of FKn+1(1, 0, . . . , 0,−1). Another proof of this formula using residues was given by
Baldoni and Vergne [2, 3]. �

3.7.2 Volumes of Chan-Robbins-Yuen polytopes of type Cn
and type Dn.

Recall from Examples 3.2.7 (iv) that KD
n is the complete signed graph on n vertices

(all edges of the form (i, j,±) for 1 ≤ i < j ≤ n corresponding to all the positive roots
in type Dn), and CRYDn = FKD

n
(2, 0, . . . , 0) is an analogue of the Chan-Robbins-

Yuen polytope. Next, using Theorem 3.6.16 and Proposition 3.6.13 we express the
volume of this polytope as the constant of a certain rational function. This is an
analogue of (3.7.6).

Proposition 3.7.8. Let CRYDn be the flow polytope FKD
n

(2, 0, . . . , 0) where KD
n is

the complete signed graph with n vertices (all edges of the form (i, j,±), 1 ≤ i < j ≤
n). Then

vol(CRYDn) = CTxn−2 · · ·CTx1
n−2∏

i=1

x−1
i (1− xi)−2

∏

1≤i<j≤n−2

(xj − xi)−1(1− xj − xi)−1

(3.7.9)

Proof. By Theorem 3.6.16 if G = KD
n we have that

vol(FKD
n

(2, 0, . . . , 0)) = kdyn.
KD
n

(0, 0, 1, 2, . . . , n− 2),

and by Proposition 3.6.13 in terms of the generating series of Kdyn.
KD
n

this volume is
given by

vol(FKD
n

(2, 0, . . . , 0)) = [x1
3x

2
4 · · ·xn−2

n ]
∏

1≤i<j≤n
(1− xix−1

j )−1(1− xi − xj)−1.

Since the outflow on the first two vertices is zero, we can plug in x1 = x2 = 0 above.
Then relabellings the variables xm 7→ xm−2 for clarity gives:

vol(FKD
n

(2, 0, . . . , 0)) = [x1
1x

2
2 · · ·xn−2

n−2]
∏

1≤i<j≤n−2

(1−xix−1
j )−1(1−xi−xj)−1

∏

1≤i≤n−2

(1−xi)−2.

In addition, just as we did with CRY An+1 in (3.7.4)-(3.7.6) the above equation is
equivalent to the desired expression:

vol(FKD
n

(2, 0, . . . , 0)) = CTxn−2CTxn−3 · · ·CTx1
n−2∏

i=1

x−1
i (1−xi)−2

∏

1≤i<j≤n−2

(xj−xi)−1(1−xj−xi)−1.

97



We get the following for vn = vol(CRYDn) either through dynamic flows, or using
(3.7.9), or direct volume computation (using the Maple package convex [20]):

n 2 3 4 5 6 7
vn 1 2 32 5120 9175040 197300060160
vn
vn−1

2 23 · 2 25 · 10 27 · 14 29 · 42

which suggests the following conjecture:

Conjecture 3.7.10. Let CRYDn be the flow polytope FKD
n

(2, 0, . . . , 0) where KD
n is

the complete signed graph with n vertices (all edges of the form (i, j,±), 1 ≤ i < j ≤
n). Then the normalized volume of CRYDn is

vol(CRYDn) = 2(n−2)2
n−2∏

k=0

Cat(k).

Remark 3.7.11. The right-hand-side of (3.7.9) looks like the right-hand-side of the
following generalization of the Morris identity (Lemma 3.7.1):

CTxm · · ·CTx1
m∏

i=1

x−ai (1− xi)−b
∏

1≤i<j≤m
(xj − xi)−2c(1− xi − xj)−2d.

for positive integers m, a, and b and positive half integers c and d. We were unable
to find a formula in terms of m, a, b, c for such a generalization. �

Finally, we briefly consider the flow polytopes: (i) FKC
n

(2, 0, . . . , 0) where KC
n is

the complete signed graph with loops (i, i,+) corresponding to the type C positive
roots 2ei, (ii) FKB

n
(2, 0, . . . , 0) where KB

n is the complete signed graph with loops
(i, i,+) corresponding to the type B positive root ei, (iii) FKC

n
(1, 1, 0, . . . , 0), and (iv)

FKB
n

(1, 1, 0, . . . , 0). These polytopes also appear to have interesting volumes:

Conjecture 3.7.12. Let KD
n , K

B
n , K

C
n be the signed complete graphs whose edges

correspond to the positive roots in type Dn, Bn and Cnas defined above then

volFKC
n

(2, 0, . . . , 0) = 2n−2 · vol(CRYDn) (3.7.13)

and except for n = 2 (where volFKD
n

(2, 0) = volFKD
n

(1, 1)),

volF
K
{B,C,D}
n

(2, 0, . . . , 0) = 2 · volF
K
{B,C,D}
n

(1, 1, 0, . . . , 0). (3.7.14)
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Chapter 4

Counting matrices over finite fields
with restricted support

This chapter is based on [33], joint work with A.J. Klein, J.B. Lewis and [39].

4.1 Introduction

We study certain q-analogues of permutations with restricted positions, or equiva-
lently of placements of non-attacking rooks. The q-analogue of permutations we work
with is invertible n×n matrices over the finite field Fq with q elements, as in [60, Ch.
1]. Then the analogue of permutations with restricted positions is invertible matrices
over Fq with some entries required to be zero.

Specifically, given a subset S of {1, 2, . . . , n} × {1, 2, . . . , n}, let matq(n, S, r) be
the number of n × n matrices over Fq with rank r, none of whose nonzero entries
lie in S. This is clearly an analogue (in the plain English meaning) of the problem
of counting permutations whose permutation matrix has no 1 in the position of any
entry of S, but actually much more can be said. In [39, Prop. 5.1] it was shown
that matq(n, S, r)/(q− 1)r is in fact an enumerative q-analogue of permutations with
restricted positions; that is, its value, modulo (q − 1), counts the placements of r
non-attacking rooks on the complement of S.

The function matq(n, S, r) can exhibit a variety of different behaviors, as seen in
the following three examples.

Examples 4.1.1. 1. When S = ∅, matq(n,∅, n) is the number of n×n invertible
matrices over Fq, which is

(qn − 1)(qn − q) · · · (qn − qn−1) = q(
n
2)(q − 1)n

n∏

i=1

(1 + q + · · ·+ qi−1).

The last term in the product is a polynomial with positive coefficients, and in
fact is the generating series for permutations in Sn by number of inversions.
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


a11 a12 0 0 0 0 a17

a21 0 a23 0 0 a26 0
a31 0 0 a34 a35 0 0
0 a42 a43 0 a45 0 0
0 a52 0 a54 0 a56 0
0 0 a63 a64 0 0 a67

0 0 0 0 a75 a76 a77




1

4

7

3 6 5

2

Figure 4-1: A representative matrix counted in matq(7, F, 7) where F is the comple-
ment of the point-line incidence matrix of the Fano plane, shown at right. Stembridge
[61] showed this to be the smallest example of the form matq(n, S, n) that is not a
polynomial in q.

2. When n = 3 and S is the diagonal {(1, 1), (2, 2), (3, 3)} we have

matq(3, {(1, 1), (2, 2), (3, 3)}, 3) = (q − 1)3(q3 + 2q2 − q).

The number of invertible n×n matrices for general n over Fq with zero diagonal
was computed in [39, Prop. 2.2]; as in this example, it is of the form (q−1)nf(q)
for a polynomial f with both positive and negative coefficients.

3. When n = 7, Stembridge [61] found a set F with 28 elements (shown in Figure 4-
1) such that matq(7, F, 7) is given by a quasi-polynomial in q, that is, by two
distinct polynomials depending on whether q is even or odd. The set F is the
complement of the incidence matrix of the Fano plane.

From the examples above we see that matq(n, S, r) is not necessarily a polynomial
in q, and if it is a polynomial in q it might or might not be of the form (q−1)rf(q) where
f(q) is a polynomial with nonnegative integer coefficients. Then a natural question
to ask is for which families of sets S is matq(n, S, r)/(q − 1)r not a polynomial in q,
or a polynomial in q, or a polynomial in q with nonnegative integer coefficients.

Question 4.1.2. What families of sets S are there such that matq(n, S, r)/(q − 1)r

is (i) not a polynomial in q, (ii) a polynomial in q, or (iii) a polynomial in q with
nonnegative integer coefficients?

In the remainder of this introduction, we give a summary of our progress towards
answering this question.

Outline and summary of results

In Section 4.2, we give the definitions and notation that will be used throughout the
chapter including the definition and some properties of q-rook numbers.

In Section 4.3, we look at question of general conditions on r and S under which
the function matq(n, S, r) is always a polynomial in q. We show that if r = 1 then
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matq(n, S, 1) is a polynomial in q for any set S, though not necessarily with non-
negative coefficients. (It is an open question whether there is a set S such that
matq(n, S, 2) is non-polynomial in q.)

In the rest of the chapter, we discuss special families of sets S such that matq(n, S, r)/(q−
1)r is a polynomial in q with nonnegative integer coefficients. Haglund [27] showed
that if the set S is a straight shape then matq(n, S, r)/(q − 1)r is a polynomial with
nonnegative integer coefficients.

Our first main result, proved in Section 4.4, is to extend this to complements of
skew shapes.

Corollary 4.4.6. For any skew shape Sλ/µ,

matq(n, Sλ/µ, r) = (q − 1)rf(q),

where f(q) is a polynomial with nonnegative integer coefficients.

In fact, we show that this is true for an even larger class of shapes than skew
shapes, namely those that have what we call the North-East Property. Also, be-
cause matq(n, S, r) is invariant under permuting rows and columns we have that
matq(n, S, r)/(q−1)r is a polynomial with nonnegative integer coefficients for any set
S that is a straight or skew shape after permuting rows and columns.

In Sections 4.5 and 4.6 we study another natural family of diagrams: the collection
of Rothe diagrams of permutations, which appear in the study of Schubert calculus.
The Rothe diagram Rw of a permutation w is a subset of {1, 2, . . . , n}× {1, 2, . . . , n}
whose cardinality is equal to the number of inversions of w; it is given by

Rw = {(i, j) | 1 ≤ i, j ≤ n, w(i) > j, w−1(j) > i}.

See Figure 4-5 for some examples of Rothe diagrams. Lascoux and Schützenberger
showed in [37] that the Rothe diagram Rw of a permutation w is a straight shape up
to permutation of rows and columns if and only if w, written as a word w1w2 · · ·wn,
avoids the permutation pattern 2143 (i.e., there is no sequence i < j < k < l such
that wj < wi < wl < wk). Our second main result is to give an analogous criterion
for the case of complements of skew shapes.

Theorem 4.5.4. The Rothe diagram Rw of a permutation w is, up to permuting its
rows and columns, the complement of a skew shape if and only if w can be decomposed
as w = a1a2 . . . akb1b2 . . . bn−k where ai < bj for all i and j, and both a1a2 . . . ak and
b1b2 . . . bn−k are 2143-avoiding.

We also show that this condition is equivalent to the statement that w avoids the
nine patterns 24153, 25143, 31524, 31542, 32514, 32541, 42153, 52143, and 214365,
and we express the generating series for these permutations in terms of the generating
series for vexillary permutations.

By Corollary 4.4.6, if w satisfies the condition above then matq(n,Rw, r)/(q− 1)r

is a polynomial with nonnegative integer coefficients. Surprisingly, computer calcu-
lations for n ≤ 7 [34] suggest that in the top rank case matq(n,Rw, n)/(q − 1)n is a
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polynomial with nonnegative integer coefficients for all permutations w (see Conjec-
ture 4.5.1). Moreover, computer calculations also suggest that when w avoids the per-
mutation patterns 1324, 24153, 31524, and 426153 we have that matq(n,Rw, n)/(q −
1)n is (up to a power of q) the Poincaré polynomial Pw(q) =

∑
u≥w q

`(u), where the
sum is over all permutations u of n above w in the strong Bruhat order (see Con-
jecture 4.6.6). Interestingly, these four patterns have appeared in related contexts
[22, 52, 56, 30].

Supplementary code for calculating matq(n, S, r) and other related objects and
data generated by this code to test the conjectures in Section 4.6 is available at the
following website:

http://sites.google.com/site/matrixfinitefields/

4.2 Definitions

We denote [n] = {1, 2, . . . , n}. The support of a matrix A is the set of indices (i, j)
of the nonzero entries Ai,j 6= 0. Fix integers n and r such that n ≥ 1 and n ≥ r ≥ 0,
and let S be a subset of [n]× [n]. We define matq(n, S, r) to be the number of n× n
matrices over Fq with rank r and support contained in S, the complement of S. That
is, matq(n, S, r) counts matrices A of rank r such that if (i, j) ∈ S then Aij = 0. We
consider the problem of computing matq(n, S, r).

We now define several special types of diagrams that will be important to us in
what follows. Examples of these diagrams are given in Figure 4-2. We say that
S ⊆ [n] × [n] is a straight shape if its elements form a Young diagram of a par-
tition. (Throughout this chapter we use English notation and matrix coordinates
for partitions.) Thus, to every integer partition λ with at most n parts and with
largest part at most n (i.e., to each sequence of integers (λ1, λ2, . . . , λn) such that
n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) there is an associated set S = Sλ = {(i, j) | 1 ≤ j ≤ λi}.
We denote by |λ| the size λ1 + λ2 + · · · of the shape λ. This is also the number of
entries in Sλ. Similarly, if λ and µ are partitions such that Sµ ⊆ Sλ then we say that
the set Sλ \ Sµ is a skew shape and we denote it by Sλ/µ. Lastly, we say that a set
S ⊆ [n]× [n] has the North-East (NE) Property if for all i, i′, j, j′ ∈ [n] such that
i′ < i and j < j′ we have that if (i, j), (i′, j), and (i, j′) are in S, then so is (i′, j′).
Note that for any partitions λ and µ, Sλ, Sλ, and Sλ/µ have the NE Property. But
Sλ/µ in general does not have this property.

We denote by Sn the group of permutations on [n]. We write permutations as
words w = w1w2 · · ·wn where wi is the image of w at i. Let inv(w) denote the number
of inversions #{(i, j) | i < j, wi > wj} of w. We also identify each permutation w
with its permutation matrix, the n× n 0-1 matrix with ones in positions (i, wi).

We think of the 1s in a permutation matrix as n non-attacking rooks on [n]× [n].
In this case, the number of inversions of the permutation is exactly the number of
elements in [n] × [n] that are not directly below/south (in the same column) or to
the right/east (in the same row) of any placed rook. We generalize this as follows.
Given a subset B of [n]× [n] (sometimes called a board) and a rook placement C of
r non-attacking rooks on B, the SE-inversion number invSE(C,B) is the number
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of elements in B not directly south (in the same column) or to the east (in the same
row) of any placed rook. Then the rth (SE) q-rook number of Garsia and Remmel
[21] is

R(SE)
r (B, q) =

∑

C

qinvSE(C,B),

where the sum is over all rook placements C of r non-attacking rooks on B. We
define the north east inversion number invNE(C,B) and rook polynomial R

(NE)
r (B, q)

analogously.

Proposition 4.2.1 ([21]). Given an integer partition λ = (λ1, λ2, . . . , λn) such that
n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, set Sλ = {(i, j) | 1 ≤ i ≤ n, 1 ≤ i ≤ λj}. The

Garsia-Remmel q-rook number R
(SE)
n (Sλ, q) is

R(SE)
n (Sλ, q) =

n∏

i=1

[λi − i+ 1]q, (4.2.2)

where [m]q = 1 + q + q2 + · · ·+ qm−1.

Remark 4.2.3. We will see as a corollary of Theorems 4.4.1 and 4.4.2 that for a
straight shape λ, R

(SE)
r (Sλ, q) = R

(NE)
r (Sλ, q). However, this is not true for all shapes.

For example, if λ/µ = 4432/31, we have R
(SE)
3 (S4432/31, q) = 1+6q2+5q3+3q4+2q5+q6

and R
(NE)
3 (S4432/31, q) = 2q+8q2 +7q3 +q4. But for skew shapes in the case of n rooks

we have do have an analogous relation. �

Proposition 4.2.4. For a skew shape Sλ/µ we have

R(SE)
n (Sλ/µ, q) = q(

n
2)−|µ| ·R(NE)

n (Sλ/µ, q
−1).

Proof. For each rook placement of n rooks on Sλ/µ, the number of SE-inversions is
equal to the number of inversions of the associated permutation w minus the size of
µ. On the other hand, the number of NE-inversions of this rook placement on Sλ/µ
is
(
n
2

)
minus the number of inversions of w. The result follows.

4.3 Polynomial formula for the rank-one case matq(n, S, 1)

In Figure 4-1 we showed an example by Stembridge [61] of a set S ⊆ [7]× [7] such that
matq(7, S, 7) is not a polynomial in q. In this chapter, we mainly focus on studying
certain families of sets S where matq(n, S, r) is a polynomial in q. But before looking
at particular sets S, we show that when r = 1, for any set S ⊆ [m]× [n], the function
matq(m× n, S, 1) is always a polynomial in q.

Proposition 4.3.1. For any m and n and any set S ⊆ [m]× [n], matq(m× n, S, 1)
is a polynomial in q.
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(i) S(4,3,2) (ii) S(5,5,4,3,1)/(2,2,1) (iii) S



0 0 0 0 a15

0 0 0 a24 a25

0 0 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55



,




a11 a12 0 0 0
a21 a22 0 0 0
a31 0 0 0 a35

0 0 0 a44 a45

0 a52 a53 a54 a55



,




a11 a12 a13 0 0
a21 0 0 0 0
0 0 0 0 0
a41 0 0 0 a45

a51 a52 0 a54 a55




(iv) S(4,3,2) (v) S(5,5,4,3,1)/(2,2,1) (vi) S



a11 a12 a13 a14 0
a21 a22 a23 0 0
a31 a32 0 0 0
0 0 0 0 0
0 0 0 0 0



,




0 0 a13 a14 a15

0 0 a23 a24 a25

0 a32 a33 a34 0
a41 a42 a43 0 0
a51 0 0 0 0



,




0 0 0 a14 a15

0 a22 a23 a24 a25

a31 a32 a33 a34 a35

0 a42 a43 a44 0
0 0 a53 0 0




Figure 4-2: Representative matrices from matq(5, S, r) when S is (i) a straight shape,
(ii) a skew shape, (iii) a set with the NE Property; and their respective complements
(iv),(v),(vi).

Proof. Fix m, n and S. We count matrices with a given collection of nonzero rows.
Given a nonempty subset T ⊆ [m] of rows, let aS(T ) be the number of columns with
no entries which are both in one of the rows of T and in S. Then there are exactly
(qaS(T )− 1)(q− 1)#T−1 matrices of rank 1 over Fq whose support avoids S and whose
nonzero rows are exactly those in T . It follows immediately that

matq(m× n, S, 1) =
∑

T⊆[m]
nonempty

(qaS(T ) − 1)(q − 1)#T−1

is a polynomial in q.

Example 4.3.2. Take the 4× 4 shape S = {(i, i) | 1 ≤ i ≤ 4}. Then

matq(4× 4, S, 1) =
4∑

k=1

(
4

k

)
(q4−k − 1)(q − 1)k−1

= (q − 1) · 2(7q2 − 2q + 1).

(In fact one can show that if S is the diagonal {(i, i) | 1 ≤ i ≤ n} then matq(n ×
n, S, 1) = 1

q−1
((2q − 1)n − 2qn + 1).)

Remark 4.3.3. In later sections of this chapter, we show that for certain diagrams S
(straight shapes, skew shapes, and conjecturally Rothe diagrams of permutations), the
function matq(n, S, r)/(q− 1)r is not only a polynomial in q but also has nonnegative
coefficients. However, this is not the case for matrices of rank 1: although each
summand is a power of q− 1 times a polynomial with positive coefficients, the powers
of q − 1 differ. So, as in Example 4.3.2, negative coefficients can turn up for certain
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i

j
1
2

1 2 . . .

...
i′

j′

0 0

00 . . . 0
0...

0

0
0

Figure 4-3: NE elimination on a representative matrix counted in matq(n,B, r) with
a pivot on (i, j) where B has the NE Property.

choices of S. It is a potentially interesting question to classify shapes S such that
matq(m× n, S, 1)/(q − 1) has positive coefficients. �

4.4 Formula for matq(n,B, r) when B has NE Prop-

erty

In [27], Haglund proved the following result.

Theorem 4.4.1 ([27, Thm. 1]). For every straight shape Sλ we have

matq(n, Sλ, r) = (q − 1)rq|λ|−rR(SE)
r (Sλ, q

−1).

We now extend this result (using the same proof technique) to all shapes with the
NE Property, that is, with the property that for any i′ < i, j < j′, if (i, j), (i′, j) and
(i, j′) belong to B, then (i′, j′) does as well.

Theorem 4.4.2. Fix any n and r and any set S ⊆ [n] × [n] with the NE Property.
The number of n× n matrices over Fq of rank r whose support is contained in B is

matq(n,B, r) = (q − 1)rq#S−rR(NE)
r (B, q−1). (4.4.3)

Proof. Choose a matrix A counted in matq(n,B, r), that is, whose support is in B,
and perform Gaussian elimination in the following (north-east) order: traverse each
column from bottom to top, starting with the leftmost (i.e., first) column. When you
come to a nonzero entry (i.e., a pivot), use it to eliminate the entries to its north in
the same column and to its east in the same row. See Figure 4-3 for an example of
this stage of the elimination process. Then move on to the next column and repeat
until there is at most one nonzero entry in every row and column.

By the NE Property, at each stage of the elimination process just described we
obtain another matrix counted in matq(n,B, r). After elimination, the positions of
the pivots are a placement of r non-attacking rooks on B.

Given a fixed placement of r non-attacking rooks on B, let a be the number of cells
in B that are directly north or directly east of a rook. There are (q−1)rqa matrices of
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0

0

0 0 0

0 •
•

• 0

0 • 0 0

0 •
•

• 0

0 • 0 0

0 •
•

• 0

0 • 0 0

(a) (b)

Figure 4-4: (a) Set B with the NE Property. (b) Example of computing matq(n,B, r)
when B has the NE Property. There are three placements of four rooks in B with 0, 1
and 1 NE-inversions respectively. By Theorem 4.4.2, matq(4, B, 4) = (q−1)4q11−4(1+
2q−1).

rank r whose support is in B that give this placement after the elimination procedure
described above. It is not hard to see that a = #B−r− invNE(C,B). Thus, summing
over all placements or r non-attacking rooks, we obtain

matq(n,B, r) = (q − 1)rq#B−r
∑

C

(q−1)invNE(C,B) = (q − 1)rq#B−rR(NE)
r (B, q−1),

as desired.

Note that a priori it is not clear that the expression on the right-hand side of
Equation (4.4.3) is a polynomial. However, this expression is a polynomial for the
following reason: for any rook placement, there cannot be any more inversions than
there are empty cells without rooks in them. There are #B cells unoccupied by zeros,
and, of these, r have rooks in them. So the maximum value of invNE(C,B) is #B− r.
Since this is the power of q at the beginning of the formula, there will not be any q−1

terms, and matq(n,B, r) is a polynomial.

Example 4.4.4. For n = 4 and r = 4, the set B = ([4]×[4])\{(1, 1), (3, 4), (4, 1), (4, 3), (4, 4)}
has the NE Property (as in Figure 4-4(a)) and there are three placements of four rooks
on B (as in Figure 4-4(b)). The number of NE-inversions of these placements are
0, 1 and 1 respectively. Thus

matq(4, B, 4) = (q − 1)4q11−4(1 + 2q−1)

= (q − 1)4(q7 + 2q6).

We give two corollaries of Theorem 4.4.2. First, since a straight shape Sλ has the
NE Property, by comparing Haglund’s result and Theorem 4.4.2 we see that the (NE)
and (SE) q-rook numbers of Sλ agree.

Corollary 4.4.5. For any straight shape Sλ we have

R(NE)
r (Sλ, q) = R(SE)

r (Sλ, q).
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(Recall that in general the (NE) and (SE) q-rook numbers of a general board do
not agree; see for example Remark 4.2.3.)

Second, since any skew shape Sλ/µ has the NE Property, we have the following
corollary:

Corollary 4.4.6. For any skew shape Sλ/µ,

matq(n, Sλ/µ, r) = (q − 1)rf(q),

where f(q) is a polynomial with nonnegative integer coefficients.

Example 4.4.7. For λ/µ = 4432/31, we have

matq(4× 4, S4432/31, 3) = (q − 1)3q9−3(2q−1 + 8q−1 + 7q−3 + q−4)

= (q − 1)3q2(q + 1)(2q2 + 6q + 1).

In general, for skew shapes Sλ/µ there is no product formula for matq(n, Sλ/µ, r) anal-
ogous to (4.2.2), even when r = n.

4.5 Studying matq(n, S, r) when S is a Rothe dia-

gram

Given a permutation w ∈ Sn written as a word w = w1w2 · · ·wn where wi is the
image of w at i, the Rothe diagram Rw is the set

Rw = {(i, j) | 1 ≤ i, j ≤ n, w(i) > j, w−1(j) > i}.

Equivalently Rw is the set of elements in [n] × [n] that do not lie directly south or
directly east of entries (i, wi) of the permutation matrix of w. See Figure 4-5 for some
examples of Rothe diagrams. Note that #Rw is the number of inversions of w, that
is, the number of pairs (i, j) such that i < j but wi > wj. Also, Rw has the following
property: if (i, j) and (k, `) are in Rw and i > k, j < ` then the entry (i, `) is also in
Rw. We call this the Le property of Rothe diagrams [52, Sec. 6].

The main conjecture for Rothe diagrams, which has been verified for n ≤ 6 [34],
is the following:

Conjecture 4.5.1. If Rw is the Rothe diagram of a permutation w in Sn then
matq(n,Rw, n)/(q − 1)n is a polynomial in q with nonnegative integer coefficients.

In Subsection 4.5.1 we give properties of Rothe diagrams that help in calculating
matq(n,Rw, r). In Subsection 4.5.2 we study Conjecture 4.5.1 for two families of
permutations. The first family is the set of permutations w such that Rw is a straight
shape or the complement of a skew shape (after permuting rows and columns). The
conjecture holds for such permutations by Theorem 4.4.1 and Corollary 4.4.6. In
Theorem 4.5.4, we characterize these permutations. The second family is the set of
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w = 41523 w = 21534 w = 31524


0 0 0 a14 a15

a21 a22 a23 a24 a25

a31 0 0 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55







0 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 0 0 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55







0 0 a13 a14 a15

a21 a22 a23 a24 a25

a31 0 a33 0 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55




Figure 4-5: Representative matrices counted by matq(5, Rw, r) where Rw is a Rothe
diagram and w is (i) 41523 (vexillary), (ii) 21534 (skew-vexillary), (iii) w = 31524
(not skew-vexillary). The entries ai wi are in red.

permutations w ∈ Sn such that there is some u ∈ Sn and some positive integer s
such that

matq(n,Rw, r)/(q − 1)r = qs
∑

u�v
q− inv(v),

where the (partial) order � is the strong Bruhat order (see e.g. [41, Sec. 2.1.2]) on
Sn and inv(v) is the number of (SE) inversions of v as defined in Section 4.2.

4.5.1 Properties of matq(n, S, r) when S is a Rothe diagram

In this section we give some simple properties of matq(n, S, r) when S = Rw is the
Rothe diagram of a permutation w. These properties are useful to simplify the size
of computations involved in empirically confirming conjectures about matq(n,Rw, r)
like Conjectures 4.5.1 and 4.6.6.

If the permutation w is the word w1w2 · · ·wn, the reverse of w is the permutation
re(w) = wnwn−1 · · ·w1. The complement of w is the permutation c(w) = u1u2 · · ·un
where ui = n + 1 − i − wi. In addition, the reverse complement of w is the
permutation rc(w) = v1v2 · · · vn where vi = n+ 1−wn+1−i. Lastly, the left-to-right
maxima of w are the values wi such that wi > wj for all j such that 1 ≤ j < i.

Proposition 4.5.2. Given a permutation w in Sn and its Rothe diagram Rw, we
have

(i) matq(n,Rw, r) = matq(n,Rw−1 , r) and
(ii) matq(n,Rw, r) = matq(n,Rrc(w), r).

Proof. It is easy to see that for any permutation w, the diagram Rw−1 is the transpose
of Rw, and the first statement follows immediately. We now consider the second
statement.

Fix a permutation w with Rothe diagram Rw. Each element (i, j) of Rw corre-
sponds to the inversion of w formed by the entries with matrix coordinates (i, wi) and
(w−1

j , j). In rc(w), these elements of w are transformed to (n+ 1− i, n+ 1−wi) and

(n+1−w−1
j , n+1−j) and still form an inversion; in Rrc(w), this inversion corresponds

to the element with coordinates (n+ 1−w−1
j , n+ 1−wi). It follows immediately that

the diagram Rrc(w) is the result of taking the transpose of Rw, rearranging rows and
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columns by multiplying on both sides by the permutation matrix of w, and rotating
the result by 180◦.

Next we show that the indices of the columns (rows) of [n]× [n] contained in Rw

correspond to the left-to-right maxima of w (of w−1). This is useful for computation
because it is easy to express matq(n, S, r) in terms of values of matq for sets obtained
by removing rows or columns that contain no elements of S.

Proposition 4.5.3. The kth column (row) of [n]× [n] is contained in Rw if and only
if k is a left-to-right maximum of w (of w−1).

Proof. This follows from the definitions of Rw and of the left-to-right maxima.

4.5.2 Skew-vexillary permutations

A permutation w is vexillary if its Rothe diagram, up to a permutation of its rows and
columns, is the diagram of a partition. Call this partition λ(w). Then by Haglund’s
Theorem 4.4.1, for vexillary permutations w we have that

matq(n,Rw, r) = matq(n, Sλ(w), r) = (q − 1)rqn
2−inv(w)−rR(NE)

r (Sλ(w), q
−1).

It is well-known that w is vexillary if and only if w avoids 2143 [37], i.e., there is no
sequence 1 ≤ i < j < k < l ≤ n in w such that wj < wi < wl < wk.

Next we give a characterization of permutations whose Rothe diagram, up to a
permutation of rows and columns, is the complement of a skew shape. For such a
permutation w, we have by Corollary 4.4.6 that matq(n,Rw, r)/(q − 1)r is a poly-
nomial with nonnegative integer coefficients. So Conjecture 4.5.1 holds for these
permutations.

For the proof we need the following definition: we say that a skew shape Sλ/µ in
[n]× [n] is non-overlapping if there is no row nor column that contains entries from
both Sµ and Sλ.

Theorem 4.5.4. The Rothe diagram of w = w1w2 · · ·wn is, up to permuting its rows
and columns, the complement of a skew shape if and only if w can be decomposed
as a1a2 · · · akb1b2 · · · bn−k where ai < bj and each of a1a2 · · · ak and b1b2 · · · bn−k is
2143-avoiding.

Proof. First we prove the “if” direction. This argument is illustrated in Figure 4-6.
Suppose that w can be decomposed into a = a1a2 · · · ak and b = b1b2 · · · bn−k as in the
theorem statement. Then the Rothe diagram Rw is block-diagonal, i.e., it consists of
some entries in the upper-left k×k block and some in the lower-right (n−k)×(n−k)
block, with no entries in the upper-right k×(n−k) block or lower-left (n−k)×k block.
Furthermore, note that the upper-left and lower-right subdiagrams are identical to the
Rothe diagrams of the permutations order-isomorphic to a1a2 · · · ak and b1b2 · · · bn−k,
respectively.

Since both of these permutations are 2143-avoiding, and their Rothe diagrams in
the upper-left and lower-right corners do not share any rows or columns in common,
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Figure 4-6: If w can be decomposed as a1a2 · · · akb1b2 · · · bn−k where ai < bj and both
a = a1a2 · · · ak and b = b1b2 · · · bn−k are 2143 avoiding then Rw can be rearranged into
a skew shape.

they can be rearranged independently to form two separate straight shapes. We may
then rotate the straight shape corresponding to Rb by 180◦ via permuting rows and
columns (without changing the rearranged upper-left corner) to get a straight shape
in the upper-left corner and an upside-down straight shape in the lower-right. This
is the outside of a skew shape, as desired.

Second, we prove the “only if” direction of the theorem. Suppose that the dia-
gram Rw, when rearranged, forms the complement of a skew shape Sλ/µ. This skew
shape contains the column that was previously (i.e., before rearrangement) given
by {(j, w1) | j ≥ 1}. Likewise, it contains the row that was previously given by
{(w−1

1 , j) | j ≥ 1}. It follows that the skew shape Sλ/µ is non-overlapping. After
rearrangement, every entry of Rw either belongs to Sµ or Sλ. We use this partition
of the elements of Rw to identify the appropriate decomposition of w.

We color an entry of Rw blue if it belongs to Sµ after rearrangement, otherwise
we color it red. We show the following claim: for every entry wi of w, the elements
of Rw in the same row or column as (i, wi) are either all blue or all red.

Since Sλ/µ is non-overlapping, the entries of Rw in each row have the same color,
and likewise for columns. If there is an entry (i, wi) with elements (i, j) and (k, wi)
of Rw then by the Le property of Rothe diagrams (k, j) is also in Rw. Therefore all
three entries have the same color, and the claim follows.

By the argument of the preceding paragraph, we may color the elements of w as
follows: if (i, wi) is in the same row or column as a red entry of Rw then we color wi
red, whereas if (i, wi) is in the same row or column as a blue entry of Rw then we color
wi blue, and otherwise we leave wi uncolored. We observe a few properties of the
colored and uncolored elements of the permutation. First, inversions of w can only
happen between elements of the same color. Second, wi is uncolored if and only if wi
is not involved in any inversions. And third, the subword of the blue (respectively,
red) elements of w is 2143-avoiding. This is because by definition, the entries of
Rw in the same row or column as (i, wi) for blue (respectively, red) wi are exactly
the entries in Sµ (respectively, Sλ) after rearrangement. This is equivalent to saying
that the subword of the blue (respectively, red) elements of w is vexillary and thus
2143-avoiding.

From the three observations above it follows that the permutation w decomposes
as u1c1u2c2u3 where (i) the ui are (possibly empty) blocks of uncolored elements, c1
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is the block of elements of one color of w, and c2 is the block of elements of the
other color of w; (ii) the entries of each block are smaller than the entries of the
following blocks, and (iii) the blocks c1 and c2 are 2143-avoiding. Finally, if we set
a1a2 · · · ak = u1c1 and b1b2 · · · bn−k = u2c2u3 we get a desired decomposition of w
where ai < bj and a1a2 · · · ak and b1b2 · · · bn−k are 2143-avoiding.

We call the above permutations skew-vexillary1 and we denote by λ/µ(w) the
skew shape whose complement is the rearrangement of Rw.2

Corollary 4.5.5. By Theorem 4.4.2, if w is skew-vexillary then matq(n,Rw, r)/(q−
1)r is equal to qn

2−inv(w)−rR(NE)
r (Sλ/µ(w), q

−1), a polynomial with nonnegative integer
coefficients. In particular, Conjecture 4.5.1 holds for skew-vexillary permutations.

If w is a skew-vexillary permutation then every subpermutation of w is, as well.
This implies that skew-vexillarity may be rephrased as a pattern-avoidance condition.
We do this now.

Proposition 4.5.6. The permutation w ∈ Sn can be decomposed as w = a1 · · · akb1 · · · bn−k
such that ai < bj for all i and j and the permutations a1 · · · ak and b1 · · · bn−k avoid
2143 if and only if w avoids the nine patterns 24153, 25143, 31524, 31542, 32514,
32541, 42153, 52143 and 214365.

Proof. Call the decomposition in question an “SV-decomposition” (for Skew-Vexillary).
First, we show that if w contains any of the nine patterns listed in the statement of
the theorem, it does not have an SV-decomposition.

Let p be any of the eight patterns of length 5; it’s easy to check that p is inde-
composable, i.e., we cannot write p = uv with u, v nonempty and ui < vj for all i,
j. Thus, if we write w = ab with ai < bj we must have either p contained in a or p
contained in b. Since p contains 2143, it follows that either a or b contains 2143, so
this decomposition is not SV, as desired.

Now consider the case of the pattern 214365. Any decomposition of w decomposes
214365, and it’s easy to see that in any of the four decompositions of 214365, one piece
or the other contains a copy of 2143. This completes the proof that any permutation
containing the given patterns has no SV-decomposition.

Now consider the converse. Suppose that w is not SV-decomposable. There are
two cases.

If w is indecomposable and contains 2143, then w contains a minimal indecompos-
able permutation that contains 2143. The minimal 2143-containing indecomposable
permutations are precisely the eight permutations of length 5 that we consider.

Finally, we show by induction that every decomposable but not SV-decomposable
permutation contains one of the nine patterns. Choose a such w, and write w = ab
with ai < bj. Without loss of generality, in this decomposition we have that a contains

1Note that in the literature [11, Prop. 2.3] there is another meaning of the term “skew-vexillary
permutation” which does not seem to be related to our definition.

2The “function” λ/µ(w) is not actually well-defined most of the time since you can switch the
upper-left and lower-right corners by permuting rows and columns. Luckily nothing we use it for
depends on this choice.
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2143. If b has a descent, it follows immediately that w contains 214365. Otherwise,
w = a1 · · · ak(k + 1)(k + 2) · · ·n. Observe that a permutation of this form has an
SV-decomposition if and only if the shorter permutation a = a1 · · · ak has an SV-
decomposition; thus, a has no SV-decomposition. If a is indecomposable, we have by
the preceding paragraph that a contains one of the nine patterns; if a is decomposable,
we have the same result by induction.

Putting the two cases together, every permutation that is not SV-decomposable
contains at least one of the nine patterns, as desired.

Remark 4.5.7. Vexillary permutations have many more interesting properties than
just 2143-avoiding permutations (see for example [41, Sections 2.6.5 and 2.8.1]). Do
any of these properties carry over to skew-vexillary permutations? �

If w is skew-vexillary then matq(n,Rw, r)/(q − 1)r is of the form

qn
2−inv(w)−r

∑

some u∈Sn
q− inv(u).

Another polynomial with this form is the Poincaré polynomial of the strong Bruhat
order in Sn. In the next subsection we study the connections between these and
matq(n,Rw, n).

4.6 Poincaré polynomials, matq(n,Rw, n) and q-rook

numbers

A natural question when faced with a family of polynomials with positive integer
coefficients is whether they count some nice combinatorial object. In this section, we
investigate connections between our polynomials matq(n,Rw, n) (note in particular
that we focus on the case of full rank) and certain well-known polynomials we define
now.

As before, let inv(w) denote the number of inversions #{(i, j) | i < j, wi > wj} of
w. Recall the notion of the strong Bruhat order ≺ on the symmetric group [12,
Ch. 2]: if tij is the transposition that switches i and j, we have as our basic relations
that u ≺ u ·tij in the strong Bruhat order when inv(u)+1 = inv(u ·tij), and we extend
by transitivity. Let Pw(q) =

∑
u�w q

inv(u) be the (upper) Poincaré polynomial of
w, where we sum over all permutations u that succeed w in the strong Bruhat order.
Equivalently, Pw(q) is the rank generating function of the interval [w,w0] in the strong
Bruhat order where w0 is the largest element nn− 1 . . . 21 of this order.

Example 4.6.1. If w = 3412, then the permutations in S4 that succeed w in the
Bruhat order are {3412, 3421, 4312, 4321}. The generating polynomial for this set by
number of inversions is P2143(q) = q6 + 2q5 + q4.

In [56], Sjöstrand gave necessary and sufficient conditions for Pw(q) to be equal
to a q-rook number of a skew shape associated to w. Namely, the left hull HL(w)
of w is the smallest skew shape that covers w. Equivalently, HL(w) is the union over
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R35142 HL(35142)


0 0 a13 a14 a15

0 0 a23 0 a25

a31 a32 a33 a34 a35

a41 0 a43 a44 a45

a51 a52 a53 a54 a55







0 0 a13 a14 a15

0 0 a23 a24 a25

a31 a32 a33 a34 0
a41 a42 a43 a44 0
a51 a52 0 0 0




Figure 4-7: Matrices indicating the (i) Rothe diagram and (ii) left hull of w = 35142.
The matrix entries ai wi are in red.

non-inversions (i, j) of w of the rectangles {(k, `) | wi ≤ k ≤ wj, i ≤ ` ≤ j}. See
Figure 4-7 for an example of the left hull of a permutation.

The following special case of a result by Sjöstrand characterizes when Pw(q) is
equal to the rook polynomial of the left hull of the permutation w.

Theorem 4.6.2 ([56, Cor. 3.3]). The Bruhat interval [w,w0] in Sn equals the set

of rook placements in the left hull HL(w) of w (and in particular R
(SE)
n (HL(w), q) =

q|µ|Pw(q) where µ is the shape such that HL(w) = Sλ/µ for some λ) if and only if w
avoids the patterns 1324, 24153, 31524, and 426153.

If w is a skew-vexillary then by Corollary 4.5.5 we know that matq(n,Rw, n)/(q−
1)n is (up to a power of q) a q-rook number. Next we show that this q-rook number
is essentially a q-rook number of the left hull of a permutation v that avoids the four
patterns above. Therefore by Theorem 4.6.2 mat(n,Rw, n)/(q− 1)n is (up to a power
of q) a Poincaré polynomial Pv(q).

4.6.1 matq(n,Rw, n) for skew-vexillary permutations is a Poincaré
polynomial

In this section we use Sjöstrand’s result (Theorem 4.6.2) to show that for skew-
vexillary permutations w, the function matq(n,Rw, n)/(q − 1)n is not only a polyno-
mial with nonnegative coefficients but, up to a power of q, is a Poincaré polynomial.

Proposition 4.6.3. If w is skew-vexillary then

matq(n,Rw, n) = q(
n
2)−inv(w)(q − 1)n · Pv(q)

for some permutation v ∈ Sn.

Proof. If w is skew-vexillary, then by Corollary 4.5.5 we know that

matq(n,Rw, n)/(q − 1)n = qn
2−inv(w)−nR(NE)

n (Sλ/µ(w), q
−1),

where R(NE)(Sλ/µ(w), q) is the rook polynomial of Sλ/µ(w), the non-overlapping skew
shape whose complement is the rearrangement of Rw. We will show that this poly-
nomial is the Poincaré polynomial Pv(q) of a permutation v.
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w = 21534 v = 21453

0 •
•

0 0 •
•

•

0 •
•

•
•

• 0 0

Figure 4-8: Example of Proposition 4.6.3. For the permutations w and v shown we

have that matq(5, Rw, 5)/(q − 1)5 = q(
5
2)−inv(w) · Pv(q).

Define the permutation matrix of v as follows: let w = a1a2 · · · akb1b2 · · · bn−k be
the decomposition promised by Theorem 4.5.4. Let λ = (λ1, . . . , λn) and µ = (µ1, . . .).
For i = 1, . . . , k, let vi = min(([n] \ [µi]) \ {v1, . . . , vi−1}) and for j = 1, . . . , n− k let
vn+1−j = max([λn−j] \{vn−j+1, . . . , vn}). This defines a 0-1 matrix with exactly one 1
in every row; it follows from the proof of Theorem 4.5.4 that this matrix is in fact a
permutation matrix (with {v1, . . . , vk} = [k] and {vk+1, . . . , vn} = {n−k+1, . . . , n}).
See Figure 4-8 for an example of this construction. It is clear that Sλ/µ(w) = HL(v).

Also by Proposition 4.2.4 we have that q(
n
2)−|µ|R(NE)

n (Sλ/µ(w), q−1) = R
(SE)
n (HL(v), q).

By construction the prefix v1 · · · vk avoids 132 and the suffix vk+1 · · · vn avoids 213
and vj > vi for j ≥ k+1 and i ≤ k. It is easy to see that the set of permutations with
such a decomposition is closed under containment of patterns, and does not contain
any of the permutations 1324, 24153, 31524, and 426153. Therefore, every permuta-
tion in this set, and in particular v, avoids these four patterns. By Theorem 4.6.2 it
follows that q|µ|R(SE)

n (HL(v), q) = Pv(q). Thus

matq(n,Rw, n)/(q − 1)n = qn
2−inv(w)−nR(NE)

n (Sλ/µ(w), q
−1)

= q(
n
2)+|µ|−inv(w)R(SE)

n (HL(v), q)

= q(
n
2)−inv(w)(q − 1)n · Pv(q),

as desired.

Example 4.6.4. By Theorem 4.5.4, the permutation w = 21534 is skew-vexillary. Af-
ter rearranging rows and columns (see Figure 4-8), the skew shape Sλ/µ(w) is S55553/1.
The associated v is 21453 and we have

matq(5, R21534, 5) = q10−3(q − 1)5P21453(q)

= q7(q − 1)5(q10 + 4q9 + 9q8 + 14q7 + 15q6 + 11q5 + 5q4 + q3).

Remark 4.6.5. Note that the result above does not hold for all Rothe diagrams.
There exist permutations w for which there does not exist any permutation v such

that matq(n,Rw, r) = q(
n
2)−inv(w)(q − 1)rPv(q). For example, take w = 31524 (see
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w 1324 24153 or 31524
matq(n,Rw,n)

(q−1)nqk
q6 + 3 q5 + 5 q4 + 5q3 + 3 q2 + q q10 + 4q9 + 9q8 + 12q7 + 10q6 + 5q5 + q4

Pw(q) q6 + 3q5 + 5q4 + 6q3 + 4q2 + q q10 + 4q9 + 9q8 + 13q7 + 11q6 + 5q5 + q4

qaR
(SE)
n (HL(w)) q6 + 3q5 + 5q4 + 6q3 + 5q2 + 3q + 1 q10 + 4q9 + 9q8 + 13q7 + 12q6 + 7q5 + 2q4

w 426153
matq(n,Rw,n)

(q−1)nqk
q15 + 5q14 + 14q13 + 24q12 + 27q11 + 19q10 + 7q9 + q8

Pw(q) q15 + 5q14 + 14q13 + 25q12 + 28q11 + 19q10 + 7q9 + q8

qaR
(SE)
n (HL(w)) q15 + 5q14 + 14q13 + 25q12 + 29q11 + 21q10 + 8q9 + q8

Table 4.1: For the four special patterns w of Conjecture 4.6.6 we give
matq(n,Rw, n)/((q− 1)nqk) where k =

(
n
2

)
− inv(w), the Poincaré polynomials Pw(q),

and qaR
(SE)
n (HL(w), q) where a is the size of the subtracted partition of the skew shape

HL(w).

Figure 4-5 (iii) and Table 4.1). In this case

matq(5, R31524, 5) = q6(q − 1)5(q10 + 4q9 + 9q8 + 12q7 + 10q6 + 5q5 + q4).

One can show (either by computer search or by a direct argument about the possible
structure of the inversions) that there is no permutation v in S5 such that Pv(q) =
q10 + 4q9 + 9q8 + 12q7 + 10q6 + 5q5 + q4. �

We have shown that for skew-vexillary permutations w, matq(n,Rw, n)/(q−1)n is
equal (up to a power of q) to the Poincaré polynomial of some permutation v. Next we
consider the problem of classifying permutations w such that matq(n,Rw, n)/(q− 1)n

is equal (up to a power of q) to the Poincaré polynomial of the same permutation.

4.6.2 Further relationships between matq(n,Rw, n) and Poincaré
polynomials

Computational evidence for n ≤ 7 [34] suggests the following conjecture.

Conjecture 4.6.6. Fix a permutation w in Sn and let Rw be its Rothe diagram. We

have that matq(n,Rw, n)/(q−1)n is coefficient-wise less than or equal to q(
n
2)−inv(w)Pw(q).

We have equality if and only if w avoids the patterns 1324, 24153, 31524, and 426153.

Remark 4.6.7. The patterns that appear in Conjecture 4.6.6 and in Theorem 4.6.2
are the same. Also, the reverses 4231, 35142, 42513, and 351624 of these patterns
have appeared in related contexts in a conjecture of Postnikov [52] proved by Hultman-
Linusson-Shareshian-Sjöstrand [30], and in work by Gasharov-Reiner [22]. This sug-
gests further interesting connections. �
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Figure 4-9: Example of Proposition 4.6.10. For the permutation w = 4132,
the Rothe diagram is Rw = {(1, 1), (1, 2), (1, 3), (3, 2)} and the left-hull HL(w) =
{(1, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 3), (4, 4)}. The map ϕ is given by (1, j) 7→ (1, j)
for j = 1, 2, 3 and (3, 2) 7→ (4, 3).

The values of the three polynomials matq(n,Rw, n)/(q−1)n, Pw(q), andR
(SE)
n (HL(w), q)

when w is equal to the four patterns of Conjecture 4.6.6 are shown in Table 4.1. In
these cases the three polynomials are all different. By Theorem 4.6.2 and Theo-
rem 4.4.2, Conjecture 4.6.6 is equivalent to the following:

Conjecture 4.6.8. Fix a permutation w in Sn, let Rw be its Rothe diagram and let
aw = n2−#HL(w)− inv(w). We have that matq(n,Rw, n)/(q−1)n is coefficient-wise

less than or equal to qaw matq(n,HL(w), n)/(q − 1)n. We have equality if and only if
w avoids the patterns 1324, 24153, 31524, and 426153.

Remark 4.6.9. If Conjecture 4.6.8 holds then by Theorem 4.4.2 and [39, Prop. 5.1]
it follows that whenever w avoids the four patterns, the shapes Rw and HL(w) have
the same number of placements of n non-attacking rooks. Computer experiments
for n ≤ 7 [34] suggest that the converse is also true, i.e., if w contains any of the
four patterns, the shapes have different numbers of rook placements. This apparent
equivalence of necessary and sufficient conditions between the “q case” and the “q = 1
case” does not necessarily hold in similar settings (see [50, Thm. 7] and [30, Thm.
3.4] for an example). �

We end by giving a very preliminary step in proving these conjectures. We show
that if w avoids 1324 then the complement of the left hull has at least as many entries
as the Rothe diagram.

Proposition 4.6.10. If w is a 1324-avoiding permutation then the complement of
HL(w) has at least as many entries as the Rothe diagram Rw of w.

Proof. Let w be a 1324-avoiding permutation. We give a one-to-one map ϕ between
the entries of the Rothe diagram Rw and the complement of the left hull HL(w).

Given an entry (i, j) in Rw we have two possibilities: either there is or there is not
an entry (k, wk) of w such that k < i and wk < j (i.e., an entry of w NW of (i, j)).
Let Aw be the set of entries of Rw of the first type and let Bw be the set of entries of
the second type. If (i, j) ∈ Aw then define ϕ(i, j) = (i, j). If instead (i, j) ∈ Bw then
define ϕ(i, j) = (w−1

j , wi). See Figure 4-9 for an illustration of ϕ. We show that ϕ is
well-defined and injective.
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Choose (i, j) in Rw. There are no entries of w above (i, j) in the same column or
to its left in the same row. If in addition (i, j) is in Aw then by definition of the left
hull the entry (i, j) is not in HL(w). In this case ϕ(i, j) = (i, j) ∈ HL(w) as desired.

On the other hand, if (i, j) is in Bw then there is some entry (k, wk) of w with
k < i and wk < j. Since w is 1324-avoiding, there can be no entry (`, w`) of w such
that ` ≥ w−1

j and w` ≥ wi. Thus, ϕ(i, j) = (w−1
j , wi) ∈ HL(w). This completes the

proof that the map ϕ is well-defined.
Finally, we show that ϕ is one-to-one. Since ϕ is defined piecewise it is enough to

show that ϕ is one-to-one on Aw and Bw and that ϕ(Aw) and ϕ(Bw) are disjoint. The
injectivity on Aw is trivial. The injectivity on Bw follows since w is a permutation and
so (w−1

j , wi) uniquely defines (i, j). Moreover, HL(w) has two components; ϕ(Aw) is
the NW component while ϕ(Bw) is contained in the SE component, so the images
are disjoint. This completes the proof that ϕ is one-to-one.
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Appendix A

Computations to prove
Corollary 2.4.2

Here we finish the computations from Section 2.4 to complete the proof of Corol-
lary 2.4.2: If γ(1), γ(2), γ(3) are compositions of n with p1, p2, p3 parts then the number
cγ(1),γ(2),γ(3) of colored factorizations is

cγ(1),γ(2),γ(3) = (n− p1)!(n− p2)!(n− p3)!×
∑

a≥0

(n− a− 2)! ·Θ
a!(p3 − 1− a)!(p2 − 1− a)!(p1 − 1)!(n− p1 − a)!(n+ 2− p2 − p3 + a)!

,

where

Θ = (n+ 2− p2 − p3 + a) ((n− a− 1)(p3 − a) + (p1 − 1)(n− p3)) +

+(n−a1−p1) ((n+ 1− p2 − p3 + a)(n+ 2− p2 − p3 + a) + (n+ 1− p2)(p2 − 1− a)) .

Recall that cγ(1),γ(2),γ(3) =
∑

a1,a2,a3≥0 cγ(1),γ(2),γ(3)(a1, a2, a3), where cγ(1),γ(2),γ(3))(a1, a2, a3)

be the number of tree-rooted constellations of vertex-compositions (γ(1), γ(2), γ(3))
where γ(t) = (n + 1 − pt, 1, 1, . . . , 1) for t = 1, 2, 3 where the type t vertex labelled 1
is incident to at 3-gons whose other two vertices are of hyperdegree 1. From (2.4.6)
we have that

cγ(1),γ(2),γ(3)(a1, a2, a3) = n ·
3∏

t=1

(pt − 1)! · (N1 +N2 + · · ·+N8).

The formulae for the numbers Ni were given in Proposition 2.4.7:

N1 =

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, a12, a23, a13, a123

)
, (A.0.1)
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and for i = 2, 3, . . . , 8,

Ni =

∏3
t=1(n− pt)!
(n− 2)!

(
n− 2

a1, a2, a3, a12, a23, a13, a123

)
, (A.0.2)

where a23, a13, a12, and a123 for each case are given in Figure 2-9.

First we group some of the Nis using manipulations with multinomial coefficients.

N1 =

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)
,

N2 +N4

n+ 2− p1 − p2 + a3

=

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 2− a1 − a3, p3 − 1− a1 − a2

)
,

N3 +N6

n+ 2− p1 − p3 + a2

=

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, p1 − 2− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)
,

N5 +N7

n+ 2− p2 − p3 + a1

=

∏3
t=1(n− pt)!
(n− 1)!

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 2− a1 − a2

)
,

N8 =

∏3
t=1(n− pt)!
(n− 2)!

(
n− 2

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)
.

Next we use Chu-Vandermonde identity repeatedly to turn the three parameter
sums

∑
a1,a2,a3≥0Ni into sums involving just the parameter a1. We illustrate this for

N1.

Proposition A.0.3.

∑

a1,a2,a3≥0

N1 =

∏3
t=1(n− pt)!
(n− 1)!

∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 1− a1

)(
n− p3

p2 − 1− a1

)(
n− a1 − 1

p1 − 1

)
.

Proof.

∑

a1,a2,a3≥0

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)

∑

a1,a2,a3≥0

(
n− 1

a1

)(
n− a1 − 1

a2

)(
n− 1− a1 − a2

p3 − 1− a2 − a3

)(
n− p3

a3

)
×

×
(

n− p3 − a3

p2 − 1− a1 − a3

)(
n− p2 − p3 + a1 + 1

p1 − 1− a2 − a3

)
,

=
∑

a1,a2≥0

(
n− 1

a1

)(
n− a1 − 1

a2

)(
n− 1− a1 − a2

p3 − 1− a2 − a3

)(
n− p3

p2 − 1− a1

)
×

×
∑

a3≥0

(
p2 − 1− a1

a3

)(
n− p2 − p3 + a1 + 1

p1 − 1− a2 − a3

)
,
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by using the Chu-Vandermonde identity on the sum over a3 we obtain

=
∑

a1,a2≥0

(
n− 1

a1

)(
n− a1 − 1

a2

)(
n− 1− a1 − a2

p3 − 1− a2 − a3

)(
n− p3

p2 − 1− a1

)(
n− p3

p1 − 1− a2

)
,

=
∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 1− a1

)(
n− p3

p2 − 1− a1

)∑

a2≥0

(
p3 − 1− a1

a2

)(
n− p3

p1 − 1− a2

)
,

again using the Chu-Vandermonde identity on the sum over a2 we obtain,

∑

a1,a2,a3≥0

(
n− 1

a1, a2, a3, p1 − 1− a2 − a3, p2 − 1− a1 − a3, p3 − 1− a1 − a2

)
=

∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 1− a1

)(
n− p3

p2 − 1− a1

)(
n− a1 − 1

p1 − 1

)
,

as desired.

By similar simplifications as the ones above for the proof of Proposition A.0.3, we
can also show the following:

Proposition A.0.4.

∑

a1,a2,a3≥0

N2 +N4 =

∏3
t=1(n− pt)!
(n− 1)!

∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 1− a1

)(
n− p3

p2 − 2− a1

)(
n− a1 − 2

p1 − 1

)
(n+ 1− p2),

∑

a1,a2,a3≥0

N3 +N6 =

∏3
t=1(n− pt)!
(n− 1)!

∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 1− a1

)(
n− p3

p2 − 1− a1

)(
n− a1 − 2

p1 − 2

)
(n− p3),

∑

a1,a2,a3≥0

N5 +N7 =

∏3
t=1(n− pt)!
(n− 1)!

∑

a1≥0

(
n− 1

a1

)(
n− a1 − 1

p3 − 2− a1

)(
n− p3

p2 − 1− a1

)(
n− a1 − 1

p1 − 1

)
(n+ 1− p3),

∑

a1,a2,a3≥0

N8 =

∏3
t=1(n− pt)!
(n− 2)!

∑

a1≥0

(
n− 2

a1

)(
n− a1 − 2

p3 − 1− a1

)(
n− p3 − 1

p2 − 1− a1

)(
n− a1 − 2

p1 − 1

)
.
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Now we put everything together to compute cγ(1),γ(2),γ(3) :

cγ(1),γ(2),γ(3) =
∑

a1,a2,a3≥0

cγ(1),γ(2),γ(3)(a1, a2, a3), (A.0.5)

= n ·
3∏

t=1

(pt − 1)!
∑

a1,a2,a3≥0

·(N1 +N2 + · · ·+N8). (A.0.6)

Using the simplifications from Propositions A.0.3 and A.0.4 we turn the three param-
eter sum in (A.0.6) into the sum of one parameter a1 = a in (2.4.3). This completes
the proof of Corollary 2.4.2.
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