
HONORS THESIS IN DETERMINANT FORMULAS FOR COUNTING
LINEAR EXTENSIONS OF TREE POSETS

STEFAN GROSSER

1. Introduction

Partially ordered sets are a fundamental mathematical structure as they formalize the

concept of ordering a set of objects. One important question to ask is, given a partially

ordered set P , how many ways can you fill in the missing information to create a total

ordering on the same set? Put another way, how many ways are there to order the elements

of P respecting the order of the poset? Any one way to perform this is known as a linear

extension of P .

Linear extensions act as a measure of complexity of a poset. The more linear extensions

there are, the more information there is to fill in the partial order.

Numerous mathematical fields find linear extensions to be a useful tool; this includes

representation theory on the symmetric group, enumerative combinatorics, and algorithms.

Thus there is a strong motivation to be able to calculate or enumerate linear extensions of

posets. However, given an arbitrary partially ordered set, it is known to be very difficult to

compute the number of linear extensions. The problem is in fact #P -complete (very hard)

[BW91b]. However, for very specific families of posets, there are fast ways to compute this

number.

Several families of posets have what is known as a product formula for the number of

linear extensions. Two such examples are Young diagrams and rooted trees. Both of these

families have what is known as the hook-length formula for the number of linear extensions.

Suppose that i is an element of a poset P . Then h(i) is a certain positive integer associated

to i. We have the following formula for the number of linear extensions for Young diagrams

and rooted trees.
1

2 STEFAN GROSSER

(1) e(P) = n!
∏
i∈P

1

h(i)

where n! =
∏n

i=1 i is the factorial function [Knu98, FRT+54].

An example is given in Section 2.1.1

Other families of posets like skew Young diagrams have no product formula for e(P);

however, this number still can be computed efficiently via a determinant formula. It is a point

of interest on determining which families of posets have efficient formulas for counting linear

extensions; more generally, we would like to know when there is a closed and computable

formula for the number of linear extensions.

This thesis is based on joint work with Alejandro Morales, Jacob Matherne, and Alex

Garver [GGMM].

1.1. Methodology and Goals. In this paper, we look for partially ordered sets which

have efficiently calculated formulas for their number of linear extensions. By Atkinson in

[Atk90], we know that linear extensions of tree posets (posets with acyclic Hasse diagrams)

can be counted efficiently since he gave a quadratic time recursive algorithm. However,

there are no known product or determinant formulas for tree posets other than zigzags, as

the Jacobi–Trudi identities imply that zigzag posets have a determinant formula due to their

skew shapes. This gives us the question, are there any other trees which have determinant

formulas?

We will identify a larger class of tree posets that we call calanques obtained from zigzags

by "hanging" a rooted tree to an element of the zigzag and "planting" a rooted to at most

one element of the zigzag. This class contains zigzags and rooted tree posets.

In Section 3, we find an alternating formula for any finite poset based on folding edges.

Specifically, a fold is taking a cover relation x < y and swapping it to y < x. A basic relation

is that

(2) e(P) = e(P\(x, y))− e(P ′)

HONORS THESIS 3

Figure 1. Structure of a Calanque poset

where P is a poset, x < y is a covering relation, and P ′ is a poset retrieved from removing

(x, y) and adding (y, x). Using this identity, we find a stronger alternating formula.

Our main result, proved in Section 4, is that a calanque tree poset P has a determinant

formula which matches this alternating formula. This matrix, which we will designate as

HσP , will contain information on hook lengths from a completely folded P .

Theorem 1.1. Let P be a calanque tree-poset with n elements then

e(P) = n! det(HσP)

where HσP is a matrix whose entries are given by product formulas of the form (9).

A natural extensions once we have a formula for counting certain combinatorial objects is

to find a q-analogue of the formula. In our setting, if E = (P, ω) is the set of linear extensions

on poset P with a labelling ω, then we are interested in counting

eq(p) :=
∑
σ∈E

qinv(σ)

where inv(σ) is the number of inversions of permutation σ. In Section 5, we give a q-analogue

of our main result based on the q-analogue of the hook formula for rooted trees by Björner

and Wachs [BW91a] for a certain labelling of our posets called partitioned regular labelings.

Theorem 1.2. For a calanque tree poset P on n elements with a partitioned regular labeling

ω ∑
s∈E(P,w)

qinv(s) = [n]! det(Hq
σP

)

4 STEFAN GROSSER

What is interesting about these determinant formulas is that they only rely on counting

linear extensions of rooted trees, which is well known through Knuth’s hook length formula.

This requires more elementary tools than, for example, the bijection to non-crossing paths

to prove Jacobi–Trudi determinant identities.

The methods used to find determinants for calanques can be generalized to a larger class of

posets that contains all posets which can be folded into a d-Complete poset while satisfying

a similar condition to calanques. We explore these in Section 6.

Finally, in Section 7, we give a q-analogue of Atkinson’s algorithm. This is a recursive

method to calculate linear extensions of tree posets. See the Appendix for an implementation.

2. Background

2.1. Hook-Length Formula. There is a well known hook length formula for calculating

the number of linear extensions of certain poset families. We discuss these families and an

algorithm to uniformly select any linear extension from a Young diagram poset.

2.1.1. Young diagrams and Rooted Trees. A partition is a weakly decreasing sequence of

integers λ = (λ1, λ2, . . . , λi). Let |λ| =
∑
λl and let l(λ) = l. Denote the diagram of a

partition λ as [λ] = {(i, j) : 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λi}. We can represent this diagram

visually as a Young diagram. Consider the partition λ = (4, 3, 2, 2):

(3)

A standard Young Tableaux is a Young diagram of shape λ where the boxes are filled in with

numbers from 1 to |λ| where the rows and columns are strictly increasing. A semistandard

Young tableaux is where the rows are weakly increasing.

A poset can be defined from a Young diagram by placing an element in each box and

having covering relations be determined by a ≥ b if b is to the right of or below a.

HONORS THESIS 5

A rooted tree is a directed acyclic graph with a unique maximal element. We can consider

this a poset by taking this graph as the Hasse diagram.

The hook length of cell (i, j) in a Young diagram is the number of cells to the right of or

below the cell (inclusive). For example, the hook length of cell (1, 1) in (3) is 7.

The hook length formula calculates the number of linear extensions of a poset of shape λ,

but it was originally created to describe the number of standard Young tableaux of shape λ.

A standard Young tableau of shape λ is a Young diagram of shape λ where the boxes are

filled in from 1 to |λ| such that the rows and columns are strictly increasing. The number

of standard Young Tableaux of shape λ is written fλ. Hence, we have

fλ = n!
∏

(i,j)∈λ

1

h(i, j)

Take the Young diagram above as shape λ. Then the poset of shape λ P is

•
•

•
•

•
•

•
•
••

•

By the hook length formula, we have that the number of linear extensions of P is

e(P) =
11!

7 · 6 · 3 · 5 · 4 · 3 · 2 · 2
= 1320

For more on Young tableaux and the hook length formula, we refer to Sagan, [Sag91].

A tree poset is a partially ordered set that has an acyclic Hasse diagram. Although the

general class tree posets does not have any know product or determinant formulas, there is

still an efficient method of computing linear extensions through Atkinson’s algorithm, which

does this in quadratic time [Atk90].

When P is a rooted tree, we can redefine a hook h(p) to be the number of elements which

have p as an ancestor, including p.

6 STEFAN GROSSER

(4) e(P) = n!
∏
p∈P

1

h(p)

2.1.2. Hook Walks. The hook walk algorithm allows a uniform sampling from the Young

tableaux of shape λ. Proving this in fact proves the hook length formula. We present the

algorithm.

Hook Walk Algorithm – Greene et al, [GNW82]

while an unlabeled cell exists do

Randomly select an unlabeled cell (i,j)

C ← (i, j)

while h(C) > 1 do

Randomly select an unlabeled cell C ′ in the hook of C

C ← C ′

end while

Fill C with largest unused label and remove

end while

2.2. Jacobi-Trudi Identity. Similar to Young diagram of shape λ defined in Section 2.1.1,

we have Young diagram of skew shape λ/µ. This means that we have a Young diagram of

shape λ with a ’bite’ taken out of it of shape µ from the upper left. More formally given

partitions λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µn) where µi < λi for all i, we construct a

Young diagram of shape λ/µ by removing the first µi boxes from row i of the Young diagram

of shape λ.

Due to Feit in [Fei53], we have an identity for counting the number of standard Young

tableux of skew shape, commonly know as the Jacobi-Trudi identity.

fλ/µ = n! det

(
1

(λi − µj − i+ j)!

)l(λ)
i,j=1

HONORS THESIS 7

This determinant formula also counts the number of linear extensions of posets defined on

a Young diagram of skew shape.

Given that we have a determinant formula for the number of linear extensions of poset

with shape λ/µ, one can ask the question, What other class of posets have determinant

formulas?

2.3. Inclusion Exclusion. Inclusion Exclusion is a general principle of counting. The prob-

lem is counting the size of a union of multiple sets. Of course, if all the sets have unique

elements, the answer is simply summing the individual set cardinalities. However, when they

are not disjoint, we must take out a portion. For two sets, A and B, inclusion exclusion

looks like this:

|A ∪B| = |A|+ |B| − |A ∩B|

For three sets, A, B, and C, we have the formula

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

This generalizes into the following formula:

(5) |A1 ∪ A2 ∪ · · · ∪ An| =
n∑
k=1

(−1)k+1
(∑

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik |
)

Numerous alternating formulas admit a transformation into a determinant. [Sta12] out-

lines a lemma to take an alternating formula (potentially provided by inclusion exclusion)

and turn it into a determinant.

With this lemma, Stanley elaborated on finding an inclusion exclusion formula for descent

sets of permutations, and then converting it into a determinant. We will give this lemma in

the next section.

2.4. d-Complete Posets. Let P be a poset. P has a diamond if there are four elements

w, x, y, z such that z covers x and y while x and y cover w. For k ≥ 3, a double tailed diamond

poset dk(1) can be made from a diamond by adding a k−3 chain to the top and the bottom of

8 STEFAN GROSSER

a diamond. The neck elements are the k− 2 elements about the two incomparable elements

of the diamond. A dk-interval is an interval [w, z] which is isomorphic to dk(1). Additionally

for k ≥ 4, a d−k -interval is a dk-interval with the maximal element removed.

Definition 2.1 ([KY17]). A poset it d-Complete if it satisfies these three properties for any

k ≥ 3.

(1) If I is a d−k -interval, then there exists an element p such that p covers the maximal

elements of I and where I ∪ p is a dk−interval.

(2) If I = [w, z] is a dk-interval, then z does not cover any elements of P outside I.

(3) There are no d−k -intervals which differ only in the minimal elements.

With this in mind, we can now define hook lengths for elements in d-Complete posets.

Definition 2.2 ([KY17]). Let p be an element of a d-Complete poset. Then we define its

hook length hp recursively.

(1) Suppose p is not in the neck of any dk-interval, then hp is the number of elements in

P which are less than or equal to p.

(2) If p is in the neck of some dk-interval, then we can take the unique element w ∈ P such

that [w, p] is a dl-interval, for some l ≤ k. If we let x and y be the two incomparable

elements in this dl-interval, then hp = hx + hy − hw.

Further detail into properties of d-Complete posets can be found in [KY17].

3. Counting Linear Extensions by Inclusion Exclusion

For certain partially ordered sets, an inclusion-exclusion formula for counting linear ex-

tensions exists. This was explored by Garver and Matherne in [GM]. We generalize this to

all tree posets.

3.1. Descent Sets. Let σ = a1a2 · · · an be a permutation of [n].

Definition 3.1. A descent set of permutation σ is D(σ) = {i : ai > ai+1}.

HONORS THESIS 9

For a given set S ⊂ [n], we want to know how many permutations on n elements have S as

a descent set. We denote this as βn(S). As seen in [Sta12], we have the following inclusion

exclusion formula for βn(S)

(6) βn(S) =
∑

1≤i1≤i2≤···≤ij≤k

(−1)k−j
(

n

si1 , si2 − si1 , . . . , n− sij

)

3.1.1. Turning Descents into a Determinant.

Lemma 3.2 ([Sta12, Example 2.2.4]). Let g be any function which is defined on [0, k+ 1]×

[0, k + 1] that satisfies g(i, i) = 1 and g(i, j) = 0 if j < i. Then the sum

Dk =
∑

1≤i1≤i2≤···≤ij≤k

(−1)k−jg(0, i1)g(i1, i2) · · · g(ij, k + 1)

is equivalent to the expansion of a (k+1)× (k+1) determinant of Ei,j where ei,j = g(i, j+1)

and (i, j) ∈ [0, k]× [0, k].

This lemma can be used to show that equation (6) is n! multiplied by the expansion of a

the determinant.

Corollary 3.3. βn(S) has the determinant formula

βn(S) = n! det

[
1

(sj+1 − si)!

]n
i,j=0

Since descent sets form zigzag posets, Corollary 3.3 can also be derived from the Jacobi–

Trudi identities as any zigzag is of skew shape.

Stanley also gave the following q-analogue using the same lemma.

Lemma 3.4 (Example 2.2.5, [Sta12]). Let P be a zigzag.

∑
s∈E(P, ω)

qinv(s) = [n]! det

[
1

[sj+1 − si]!

]k
0

where k is the size of the descent set of P .

10 STEFAN GROSSER

This material is covered with greater depth in [Sta12].

3.2. An Alternating Formula for Trees. In [GM], Garver and Matherne found an al-

ternating formula for what they denote as decomposable posets. We examine their formula

with arbitrary trees rather than the subclass they defined.

In general, let P be a tree poset and let y cover x in P . Let P ′ = P\(x, y) ∪ (y, x). Then

(7) e(P) = e(P\(x, y))− e(P ′)

By repeated application, we can create an alternating formula of products of rooted trees,

each of which are easily computable by the hook length formula. Let F be the set of edges

which, if folded, would result in P ′ a rooted tree. If C ⊂ F , then Cop represents the reversed

relations of F . We have that

Proposition 3.5.

e(P) =
∑
C⊆F

(−1)|C|e(P\F ∪ (F\C)op)

as an inclusion exclusion formula for the number of linear extensions of P .

Let Z[P] be the set of formal finite linear combinations of posets with coefficients in Z.

See an example [GM].

More precisely, this is the group algebra of P over Z, where P is the group of finite posets

with the union operation. The elements of Z[P] are of the form z1P1 + z2P2 + · · · + zkPk

where zi ∈ Z and Pi ∈ P .

We extend linear extensions of posets to linear extensions of elements of Z[P] by linearity.

For example, e(
∑

i ziPi) =
∑

i e(ziPi) =
∑

i zie(Pi).

The alternating sum seen in Proposition (3.5) can be seen as an element of Z[P]

(8) AP,F =
∑
C⊆F

(−1)|C|P\F ∪ (F\C)op

HONORS THESIS 11

Now consider a formal matrix (Mi,j)i,j∈[n] with elements of Z[P] as entries. We define its

determinant as an element of Z[P]

detM =
∑
σ∈Sn

M1,σ(1)M2,σ(2) · · ·Mn,σ(n)

We make the two following shorthand. In Z[P], Let 1 = {} be the empty poset.

Example 3.6.

Let P be the following poset on the left, and let A,B and C be the posets from left to

right.

•

• •

• ••

=
• •

•
•
•

•
−2 •

•
•
• •

•
+

•
•
• • •

•

where F will be selected as the red edges. This is shorthand for the following equation:

e(P) = e(A)− 2e(B) + e(C)

4. Determinants from Inclusion-Exclusion

We introduce an algorithm which takes in a tree poset P and outputs a matrix whose

determinant expresses the number of linear extensions of P .

Let P be a tree poset. We say that P has k folds if there are k cover relations xi l yi for

1 ≤ i ≤ k, where if all of them are swapped to yi l xi then P becomes a rooted tree MP .

We shall call this tree the master tree of P .

We denote as K be the set of connected components of MP when removing all the folded

edges and let the set of folded edges be E. If n = |K|, then we say that σ ∈ Sn is an ordering

of the set of K. Suppose P has k folds, then we now define a k + 1 × k + 1 component

matrix Mσ.

12 STEFAN GROSSER

For 2 ≤ i ≤ k+1, we have that mi,i−1 = 1 and mi,j = 0 where j < i−1. For the rest of the

entries of Mσ, we have that mi,j is the union of connected components
⋃
i≤a≤jKσ(a) along

with any (x, y) ∈ E such that both x and y are in any of the selected connected components.

Here is an example. Consider Example 3.6. By choosing the same folds F and by ordering

the connected components of the master tree from left to right, we have

Mσ =

•
•
•
• •

•

•
•
• • •

•

1
•
•
•

• •
•
• •

•

0 1 •

Definition 4.1. Let f : P → Q be a function from a rooted tree poset P to a rational number

defined by

f(P) =
∏
p∈P

1

hp

where hp is the hook value of the element.

If Mσ contains only connected entries, then we say

(9) Hσ = f(Mσ)

is the hook matrix, where hi,j = mi,j for j ≤ i− 1 and where hi,j = f(mi,j) otherwise.

As a prerequisite for the rest of the section, we show how to count linear extensions of

unions of rooted trees.

Lemma 4.2. Let P =
∏

i Pi be a product of rooted trees Pi, where they are taken as elements

of the group P. Then

e(P) = n!
∏
i

f(Pi)

HONORS THESIS 13

where n is the total number of elements in the rooted trees.

Proof. This follows from Knuth’s heuristic argument for proving the hook length formula on

rooted trees, seen in [Knu98, Theorem 5.1.4H]. Consider just one Pi. We have n! total possible

linear extensions. For each element of Pi, we need it to be above each of its descendents in

a linear extension. The probability of this is the reciprocal of the hook length. Thus for Pi,

we must multiply n! by f(Pi). Repeat for the other rooted trees. �

4.1. A Determinant Formula. In order for a poset to have an existing Hσ, we need every

entry in Mσ to be a connected rooted tree. Thus we want to find the most general class of

tree posets which will adhere to the domain of f .

Definition 4.3. A calanque tree poset P is a poset obtained from a zigzag by attaching rooted

trees by the root to elements in the zigzag and by attaching a leaf of a single rooted tree above

the zigzag.

Example 4.4. Below is an example of a calanque and a tree poset that is not a calanque.

•
•

• •

•

•
• • • •

Definition 4.5. Let P be a tree poset and let MP be the master tree and K be the set of

connected components of MP . We define the component graph GK = (VK , E) where VK = K

and E is the set of folds from the master tree.

Using the component graph, we now can describe certain posets which have connected

matrix entries.

Lemma 4.6. Let P be a tree poset with a master tree MP and component graph GK that is

a path. Then P has connected matrix entries.

Proof. For Mσ, we order the connected components according to the path GK . σ(1) will be

the first node in the path with degree 1, and the proceeding entry σ(2) will be the unique

14 STEFAN GROSSER

neighbor. We proceed in this fashion until the end of the path. Using this ordering σ, by

definition, Mσ will have connected entries. �

In the proof of the lemma, we saw a construction for a specific σ which always gives

connected entries to the component matrix Mσ. We shall call this ordering for poset P the

canonical ordering, σP . The canonical ordering is always unique unless the two connected

components of degree one in the component graph have minp∈Ki
φ(p) = minq∈Kj

φ(q). To

break this second tie, this can be resolved by placing an “x-coordinate” grading ψ and then

selecting Ki as the start of the ordering if minp∈Ki
ψ(p) < minq∈Kj

ψ(q).

Lemma 4.7. The class of calanque tree posets has connected matrix entries

Proof. Let C be a calanque. We give the following folding F for the poset. To the left of the

planted rooted tree, fold all downard-left edges. To the right of the planted rooted tree, fold

all upward-right edges.

With this folding, we have a path component graph, and hence connected matrix entries.

�

We now can state and prove the main result.

Theorem 4.8. Let P be a calanque tree-poset with n elements then

e(P) = n! det(Hσp)

Proof. First, recall that by the previous lemma, a calanque P will have connected entries in

MσP , hence staying in the domain of f . By Lemma 4.2, it is sufficient to prove that detMσP

is equivalent to equation (8).

We proceed by induction on the number of folds. Suppose P has 1 fold. Then P has to be

a rooted tree R with one element p additionally covering any non-root element. Note that

p may be the root of another rooted tree, but without loss of generality, we assume it is a

single element. Let MP be the master tree, and let P ′ be the poset which removes the fold.

HONORS THESIS 15

We have that

P = P ′ −MP = pR−MP = det

p MP

1 R

Now suppose that every poset P with k folds has equality between detMσP and its alter-

nating formula from equation (8). A poset Q with k + 1 folds will be the result of adding

a fold to a k-fold poset P . Without loss of generality, suppose that this fold and the new

connected component K̃ come last in σQ.

Let MP be the component matrix of P and let Q′ be Q but with the edge connected to

K̃ folded. We see that the alternating formula from equation (7) gives us

(10) Q = K̃P −Q′

Define ∪+ to be the union operation of two posets, also adding in the fold which connects

them as connected components in the master tree. Then MσQ of Q will be:

MσQ =

MP
1,1 MP

1,2 . . . MP
1,k+1 MP

1,k+1 ∪+ K̃

MP
2,1 MP

2,2 . . . MP
2,k+1 MP

1,k+1 ∪+ K̃
...

...
...

0 0 . . . MP
k,k+1 MP

k,k+1 ∪+ K̃

0 0 . . . 1 K̃

Evaluating the determinant by expanding from the bottom row, we get

(11) detMσQ = K̃ detMP − detA

where A is MP but adjoining K̃ to the final column. By the induction hypothesis, we know

that detMP and detA both correspond to the alternating formulas of their respective posets

P and Q′. Expanded, we see that equation (11) is equivalent to equation (10). �

Corollary 4.9. Theorem 4.8 implies Corollary 3.3

Proof. The determinant for descent sets is the same as the determinant produced by the

algorithm when the rightmost element is selected as the root of the master tree. When the

16 STEFAN GROSSER

rightmost vertex is selected as the root of the master tree, the corresponding descent set is

equivalent to the folded edges selected. By Section 3.1, we see that the (i, j)-th entry of the

determinant should be 1
(sj+1−si)! . Since the master tree is a chain, the entries of HσP will be

the exact same. �

A second proof can be provided for Theorem 4.8 using Lemma 3.2.

Proof. Let ∪+ be defined as in the earlier proof of Theorem 4.8. If we define

g(i, j) =

0 j < i

1 j = i

f(
⋃+
i≤p<jKσP (p)) j > i

where f is from Definition 4.1, then we follow the conditions of Lemma 3.2 and thus have

the equivalence between the determinant and alternating formula. �

Example 4.10.

We shall use the poset P in Example 3.6. As a reminder P is the poset

•

• •

• ••

By identifying the red edges as folds, we have the component matrix

Mσ =

•
•
•
• •

•

•
•
• • •

•

1
•
•
•

• •
•
• •

•

0 1 •

HONORS THESIS 17

We then have

e(P) = 6! detHσ = 6! det

1 1

5·4
1
6·5

1 1
4·3

1
5·4

0 1 1

 = 12

This can be verified by the observation that there are 3! × 2 = 12 linear extensions by

ordering the bottom two elements and the top three elements.

It is a famous result that the linear extension of fence posets (zigzags with alternating

inclines and declines) are the Euler zigzag numbers.

5. A q-Analogue for Calanques

We are able to generalize previous results on q-analogues for rooted trees to a q-anologue

for calanques. Let [n] define the polynomial
∑n

i=0 q
i. Then we can define

[n]! = [n] · [n− 1] · · · [2] · [1]

As well, define a labeled poset (P, ω) to be a bijection ω : P → 〈n〉, where 〈n〉 is the set

of integers from 1 to n. We call this a natural labeling if for any x, y ∈ P where x < y, we

have that ω(x) < ω(y). As well, a labeling ω is regular if we have the following: for all x < z

and y ∈ P , if ω(x) < ω(y) < ω(z) or ω(x) > ω(y) > ω(z) then x < y or y < z. We will

shortly use regular labelings for the q-analogue of Theorem 4.8

Let E(P,w) be the set of linear extension of P under the labeling ω. For any σ ∈ E(P,w),

we can denote inv(σ) as the number of inversions of σ. As well, we have inv(P, ω) =

|{(x, y) |ω(y) < ω(x) and x < y}| as the number of inversions of a labelling on P . A deeper

analysis on natural labelings can be found in [Sta12], whereas more on regular labelings can

be found in [BW89].

We have the following q-analogue of the Knuth hook-length formula of Björner and Wachs

[BW89].

18 STEFAN GROSSER

Lemma 5.1 ([BW89, Thm. 1.1]). Let ω be a regular labeling on poset P . Then

∑
σ∈E(P,w)

qinv(σ) = qinv(P, ω)
[n]!∏

p∈P [h(p)]

Suppose we have a natural labeling where inv(P, ω) = 0, then this removes the power

of q. This q-analogue was presented in [BW89] with the introduction of regular labelings,

although it was originally found in [Sta12] with natural labelings.

There is a q-analogue for the component matrix Mσ of a poset P , as well as Hσ. We will

denote these as Mω
σ and Hq

σ respectively and are defined as follows. Let P be given a regular

labeling ωP . For each entry pi,j of Mσ, give it the induced labeling ωi,j which keeps the same

labeling from ωP . Specifically, for x ∈ pi, j, we have ωi, j(x) = ωP (x). We then define

(12) Mω
σ := (pi,j, ωi,j)

where pi,j is the (i, j)-th entry of Mσ.

This new component matrix just adds a labeling to each entry of Mσ. Using this, we can

now define Hq
σ. We have a direct q-analogue of f from Definition 4.1.

Definition 5.2. Let fq : P×Ω→ R[q] be a function from a rooted tree poset P with labeling

ω to the set of rational functions on indeterminate q defined by

fq(P) := qinv(P,ω)
∏
p∈P

1

[hp]

Then Hq
σ will have the following definition

(13) Hq
σ := fq(M

ω
σ)

We now give a slight generalization of Lemma 5.1

Lemma 5.3. Let P be a poset which is a union of several disconnected rooted trees. Let

those connected components be given an ordering . If σ(i) < σ(j) implies every element of

Ki is given a label less than every element in Kj, then

HONORS THESIS 19

(14)
∑

σ∈E(P,w)

qinv(σ) = qinv(P, ω) [n]!∏
p∈P [hK(p)]

where hK denotes the hook length of element p in its corresponding rooted tree.

Proof. Without loss of generality, we assume P is the disjoint union of two rooted trees. We

see that the hook lengths and the q-inversions of the labeling follow by Lemma 4.2 and by

Lemma 5.1. We are left needing to justify [n]!. However, this follows by the property that

any element in a later rooted tree must have a label greater than every element in a previous

rooted tree. For example, if (1, 3, 2) is a linear extension of K1, and an element of label 4 is

being added, the total contribution to inversions will be [4] since the number of inversions

entirely depends on which spot it ends up. More concisely, if l is a linear extension of K1,

an element of K2 will give a contribution of [|K1|+ 1]. By merging every element of K2 into

a linear extension of K1, we arrive at [n]!. �

We introduce a specific type of regular labeling that we call a partitioned regular labeling.

Let P be a calanque and let F be folds selected to create a master tree. Consider the

connected component graph GK . We construct a labeling ω as follows. Start with a vertex

of GK which has degree 1, which we define as v1. Use the labels 1 through |v1| (the number

of elements in the connected component) to give a regular labeling for these elements of P .

Following the path defined by GK , give each connected component vi a regular labeling using

labels 1 +
∑i−1

j=1 |vj| to |vi|+
∑i−1

j=1 |vj|. This labeling is a partitioned regular labeling.

Example 5.4. Let P be the following poset

•

• •

•

••

••

•

•

The following labeling of P is a partitioned regular labeling.

20 STEFAN GROSSER

5

7 8

9

106

41

3

2

If the labels 9 and 10 were swapped, this would no longer be a partitioned regular labeling.

Using Lemma 5.3 and a partitioned regular labeling ω, Theorem 4.8 has the following

q-analogue

Theorem 5.5. For any calanque P on n elements with a partitioned regular labeling ω

(15)
∑

s∈E(P,w)

qinv(s) = [n]! det(Hq
σP

)

Proof. Let (P, ω) be a poset with two connected components K1, K2, as well as a labeling ω.

Note that qinv(P,ω) = qinv(K1,ω)qinv(K2,ω).

This theorem follows by taking Lemma 3.2 and Lemma 5.3, as well as the note above.

Let ω be a labeling of poset P and let ∪+ denote the operation seen in the proof of

Theorem 4.8. Define the function

g(i, j) =

0 j < i− 1

1 j = i− 1

fq(
⋃+
i≤p≤jKσP (p), ωi,j) j ≥ i

This follows the conditions of Lemma 3.2, giving us

∑
s∈E(P, ω)

qinv(s) =
∑
C⊆F

(−1)|C|
∑

t∈E(PC , ωC)

qinv(t)(16)

=
∑
C⊆F

(−1)|C|qinv(PC ,ωC) [n]!∏
p∈PC

[hp]
= [n]! det(Hq

σP
)(17)

HONORS THESIS 21

where PC = P\F ∪ (F\C)op as seen in Proposition (3.5) and ωC is the labeling ω induced

on PC .

The final equality in Equation (16) holds true since ω regular labelings are closed under

folding; therefore, Lemma 5.3 can be applied. �

Example 5.6. Let P be the same poset from Examples 3.6 and 4.10 with the following

labeling ω

4

2 5

1 63

where the red edges are to be folded. ω is a partitioned regular labeling for this folding. We

then get the following matrices

M q
σP

=

1
4

2 1 5

3

2

4

1 6 5

3

1
2

4

3

5 2
4
6 5

3

0 1 6

Hq
σP

=

1 q3

[5][4]
q5

[6][5]

1 q3

[4][3]
q5

[5][4]

0 1 1

22 STEFAN GROSSER

Thus

q6 + 3q7 + 4q8 + 3q9 + q10 =
∑

s∈E(P,ω)

qinv(s) = [6]! det(Hq
σp)

Expanding the determinant, we see this is true.

Similarly to Corollary 4.9, we have that Lemma 3.4 is implied by Theorem 5.5.

Corollary 5.7. Theorem 5.5 implies Lemma 3.4

Proof. Let P be a zigzag. This follows by selecting the rightmost node of P as the root of

the master tree, as well as letting ω be the labeling where ω(x) < ω(y) if x is before y on the

horizontal grading. From this, all induced labelings will have no inversions. The rest follows

from the same reasoning as Corollary 4.9. �

6. Generalizing to Other Hook-Length Formulas

The proofs in previous sections have only relied on the fact that the master tree has a

hook-length formula. This is of course true since any rooted tree has a hook-length formula.

If all that is required is a hook-length formula to prove these results, then every result thus

far can be generalized.

Instead of a master tree, will now just consider a master. In general, a master can be a

d-Complete poset. We use the same notation to denote the master of poset P as MP .

We have the same definition of the component matrix Mσ and component graph GK ,

where K is the set of connected components in MP after removing all the folds.

Theorem 6.1. For every d-complete calanque P with n elements

e(P) = n! det(HσP)

where the hooks lengths in HσP are now for d-Complete posets.

Example 6.2.

HONORS THESIS 23

Let P be the poset below, where the red edges are selected to be folded. This is a Young

diagram, which leaves our normal class of calanques as we are now hanging d-complete posets

from the zigzag.

•
•

•
•

• •
• •

The resulting number of linear extensions will be

e(P) = 8! det

1 1

5·4·3·3·2
1

6·4·4·3·2

1 1
4·3·3·2·2

1
5·4·3·2·2

0 1 1

 = 8! · 1

576
= 70

For verification, we see that this matches the hook length formula for counting Young

tableaux on the reflected poset P ′ of shape λ = (4, 3, 1).

fλ =
8!

6 · 4 · 4 · 3 · 2
= 70

7. A q-analogue of Atkinson’s recursive algorithm for linear extensions

of tree posets

Let P be a poset with n elements. Given a in P , we define the spectrum of a to be the

sequence of non-negative integers (α1, . . . , αn) where αi is the number of linear extensions of

P with a occurring at location i. The following result of Atkinson computes the spectrum

of elements in certain posets built from two posets P and Q with respect to the spectra of

elements in both P and Q.

Proposition 7.1 (Atkinson [Atk90]). Let P and Q be posets with p and q elements, (α1, . . . , αp)

and (β1, . . . , βq) be the spectrum of elements a and b in P and Q respectively. Consider the

partial order on R = P ∪ Q with the cover relations of P and Q and a < b. Then the rth

24 STEFAN GROSSER

element of the spectrum of γ in R equals

γr =

min(u,r)∑
i=max(1,r−v)

αi

(
r − 1

i− 1

)(
u+ v − r
u− i

) v∑
j=r−i+1

βj.

Corollary 7.2 (Atkinson [Atk90]). Let P be a tree poset with n elements then the number

of linear extensions e(P) can be computed in O(n2) operations.

Given a in P , the q-spectrum of a is the sequence (α1(q), . . . , αn(q)) of polynomials, where

αi(q) :=
∑

w∈L(P),wi=a

qinv(w),

then

eq(P) :=
∑

w∈L(P)

qinv(w) =
n∑
i=1

αi(q).

Proposition 7.3. Let P and Q be posets with elements [p] and {p+1, . . . , p+q}, (α1(q), . . . , αp(q))

and (β1(q), . . . , βq(q)) be the spectrum of elements a and b in P and Q respectively. Consider

the partial order on R = P ∪Q with the cover relations of P and Q and a < b. Then the rth

element of the q-spectrum γ of a in R equals

γr(q) =

min(u,r)∑
i=max(1,r−v)

αi(q)q
(u−i+1)(r−i)

r − 1

i− 1

q

u+ v − r

u− i

q

v∑
j=r−i+1

βj(q).

Proof. A linear extension z of R with a in position r is obtained by combining a linear

extension x of P with a in position i for max(1, r− v) ≤ i ≤ min(u, r) and a liner extension

y of Q with b in some position j with r− i+ 1 ≤ j ≤ v as follows: (i) choose i− 1 positions

S1 out of the r − 1 positions before a in z to insert in order the entries of x before a, (ii)

choose u − i positions S2 out of the u + v − r positions after a in z to insert in order the

entries of x after a, (iii) insert a in position r of z, and (iv) insert y in order in the remaining

positions of z. Denote this construction by z := φ(x, y, S1, S2).

Next, we calculate the inversions of z in terms of the inversions of x and y. Each inversion

of x and y is an inversion of z. Since the labels of P are smaller than those of Q, there will be

inversions from the elements of P and Q before (after) a in z. The number of these inversions

HONORS THESIS 25

is inv(S1) + inv(S2) where the inversions of a set S ⊂ [n] correspond to the inversions of

the binary word of length n corresponding to the positions of set S. Finally, there will be

additional inversions one for each pair of one of the r − i elements of Q before r in z with

one of the u− i− 1 elements of P after r in z. Thus in total we have

inv(z) = inv(x) + inv(y) + inv(S1) + inv(S2) + (u− i+ 1)(r − i).

We now consider the contribution to the γr(q) of all the linear extensions z obtained from

fixed linear extensions x and y.

∑
S1∈([r−1]

i−1)

∑
S2∈([u+v−r]

u−i)

qinv(φ(x,y,S1,S2)) =

= qinv(x)+inv(y)+(u−i+1)(r−i)(∑
S1∈([r−1]

i−1)

qinv(S1)
)(∑
S2∈([u+v−r]

u−i)

qinv(S2)
)

= qinv(x)+inv(y)+(u−i+1)(r−i)

r − 1

i− 1

q

u+ v − r

u− i

q

,

where we used a well-known expansion of q-binomial coefficients [Sta12, Prop. 1.7.1].

�

We now provide an algorithm to give a labeling which runs with the q-Atkinson algorithm.

Let Q be a tree poset with elements n elements with potential labels [n]. Let f be a function,

f : P(Q)→ P([n]).

Lemma 7.4. The following algorithm gives a labeling which admits a q-analogue of Atkinson.

The final labeling is provided by the map f .

f : Q → [n]

Let q be a list

q ← Q

while len(q) > 0 do

Let elements be the first item in q

26 STEFAN GROSSER

Select random edge e from elements

Let L be the lower elements

Let U be the upper elements

labels ← f(elements)

f : L→ {l1 . . . l|L|}

f : U → {l|L|+1 . . . l|L|+|U |}

Add L and U to q

end while

Proof. Given a random edge e which splits the current poset into two components, L and

U , the possible labels of L are all lower than the possible labels of U . This is the exact

property desired. Therefore, the edge ordering defined by the algorithm can be used by

q-Atkinson. �

Note that this algorithm does not give every possible labeling. One way to see this is that

the three element poset

•
•
•

can be given any labeling, and q-Atkinson can still be run. Yet the labeling algorithm is

defined solely by the edge ordering, making a uniform distribution over (n − 1)! labelings.

In this case, the algorithm uniformly generates 2 labelings instead of 6.

8. Final Remarks

Calanques can be seen as a generalization of normal zigzags. What prevents a further

generalization to all trees is the requirement to tackle disconnected entries in the component

matrix.

As we have seen in this paper, this determinant formula is only useful for posets where

the component matrix entries all have easily computable linear extensions through hook

lengths. This means that the most general result is for posets whose master is d-Complete.

The question remains, are there determinant formulas out there for other tree posets?

HONORS THESIS 27

The Jacobi–Trudi identities are more powerful in the sense that in order to compute the

matrices, we don’t need to count any linear extensions of smaller posets; we just need to

recall information on the skew shape. Can this determinant formula be translated into such

language?

For a specific poset, there might be multiple ways to select k folds, or even ways to

select different numbers of folds. As long as each of these master trees are valid, then their

determinant formulas all have the same value. This shows an intriguing equivalence between

determinants which do not appear similar on a surface level. Future work might be found in

investigating these determinant equalities.

References

[Atk90] M D Atkinson, On computing the number of linear extensions of a tree, Order 7 (1990), 23–25.

[BW89] Anders Björner and Michelle LWachs, q-hook length formulas for forests, Journal of Combinatorial

Theory, Series A 52 (1989), no. 2, 165–187.

[BW91a] Anders Björner and Michelle L Wachs, Permutation statistics and linear extensions of posets,

Journal of Combinatorial Theory, Series A 58 (1991), no. 1, 85–114.

[BW91b] Graham Brightwell and Peter Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225–242.

[Fei53] W. Feit, The degree formula for the skew-representations of the symmetric group, Proceedings of

the American Mathematical Society 4 (1953), no. 5, 740.

[FRT+54] J Sutherland Frame, G de B Robinson, Robert M Thrall, et al., The hook graphs of the symmetric

group, Canad. J. Math 6 (1954), no. 316, C324.

[GGMM] Alexander Garver, Stefan Grosser, Jacob Matherne, and Alejandro Morales, Determinant formu-

las for counting linear extensions of tree posets, In Preparation.

[GM] Alexander Garver and Jacob Matherne, Type An exceptional sequences.

[GNW82] Curtis Greene, Albert Nijenhuis, and Herbert S. Wilf, A probabilistic proof of a formula for the

number of young tableaux of a given shape, Young Tableaux in Combinatorics, Invariant Theory,

and Algebra (1982), 17–22.

[Knu98] D. E. Knuth, The art of computer programming volume 3: Sorting and searching, Addison-Wesley,

1998.

[KY17] Jang Soo Kim and Meesue Yoo, Hook length property of d-complete posets via q-integrals,

arXiv:1708.09109 (2017).

28 STEFAN GROSSER

[Sag91] Bruce Eli. Sagan, The symmetric group: representations, combinatorial algorithms, and symmet-

ric functions, Wadsworth Brooks/Cole Advanced Books Software, 1991.

[Sta12] Richard P. Stanley, Enumerative combinatorics, 2 ed., Cambridge University Press, 2012.

9. Appendix

9.1. Atkinson Implementation. We provide an implementation of Atkinson’s algorithm

below.

from sage.combinat.posets.posets import FinitePoset, Poset

import random

import numpy as np

def atkinson(fp):

binom_coeff = {} # "[a, b]" ----> a choose b

n = len(fp._elements)

#Generate Pascal Triangle up to row n

binom_coeff["[0, 0]"] = 1

binom_coeff["[0, 1]"] = 0

binom_coeff["[1, 0]"] = 1

for i in range(1, n+1):

for j in range(0, i+1):

key = str([i,j])

if j == 0:

binom_coeff[key] = 1

elif j > i:

binom_coeff[key] = 0

elif i == j:

binom_coeff[key] = 1

HONORS THESIS 29

elif j == 1:

binom_coeff[key] = i

else:

binom_coeff[key] = binom_coeff[str([i-1, j-1])] + binom_coeff[str([i-1, j])]

Recursively decompose tree and calculate alpha spectrums

def decompose(pos, alpha):

if pos.cardinality() == 1:

return [1]

num_elements = pos.cardinality()

alpha_lower = True

num_edges = len(pos.cover_relations())

covers = pos.upper_covers(alpha)

if len(covers) == 0:

alpha_lower = False

covers = pos.lower_covers(alpha)

beta = random.choice(covers)

beta = covers[0]

30 STEFAN GROSSER

edges = pos.cover_relations()

if alpha_lower:

edges.remove([alpha, beta])

else:

edges.remove([beta,alpha])

Separate posets

new_pos = Poset([pos._elements, edges])

sub_pos = new_pos.connected_components()

Recurse and recombine

Determine which connected component contains alpha

if alpha in sub_pos[0]._elements:

P = sub_pos[0]

Q = sub_pos[1]

else:

P = sub_pos[1]

Q = sub_pos[0]

u = P.cardinality()

v = Q.cardinality()

HONORS THESIS 31

P_spec = decompose(P, alpha)

Q_spec = decompose(Q, beta)

Calculate alpha spec

alpha_spec = []

sums_Q_spec = [Q_spec[0]]

for i in range(1, len(Q_spec)):

sums_Q_spec.append(sums_Q_spec[i-1] + Q_spec[i])

If alpha is not maximal, calculate formula 1

if alpha_lower:

for rank in range(0, num_elements):

r = rank + 1

rank_r_val = 0

for ind in range(max(1, r - v) - 1, min(u, r)):

i = ind + 1

k = binom_coeff[str([r-1, i-1])] * binom_coeff[str([u+v-r, u-i])]

if r - i + 1 <= v:

rank_r_val += P_spec[ind] * k * (sum(Q_spec[r-i:v]))

32 STEFAN GROSSER

alpha_spec.append(rank_r_val)

Otherwise, calculate formula 2, where beta < alpha

else:

for rank in range(0, num_elements):

r = rank + 1

rank_r_val = 0

for ind in range(max(1, r - v) - 1, min(u, r)):

i = ind + 1

k = binom_coeff[str([r-1, i-1])] * binom_coeff[str([u+v-r, u-i])]

if r - i >= 1:

rank_r_val += P_spec[ind] * k * (sums_Q_spec[r-i - 1])

alpha_spec.append(rank_r_val)

return alpha_spec

l = decompose(fp, random.choice(fp._elements))

l = decompose(fp, fp._elements[0])

return sum(l)

	1. Introduction
	1.1. Methodology and Goals

	2. Background
	2.1. Hook-Length Formula
	2.2. Jacobi-Trudi Identity
	2.3. Inclusion Exclusion
	2.4. d-Complete Posets

	3. Counting Linear Extensions by Inclusion Exclusion
	3.1. Descent Sets
	3.2. An Alternating Formula for Trees

	4. Determinants from Inclusion-Exclusion
	4.1. A Determinant Formula

	5. A q-Analogue for Calanques
	6. Generalizing to Other Hook-Length Formulas
	7. A q-analogue of Atkinson's recursive algorithm for linear extensions of tree posets
	8. Final Remarks
	References
	9. Appendix
	9.1. Atkinson Implementation

