MATH 131 Spring 2005
EXAM 1 - Solution

1. Compute the following limits.
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2. (a) (6) State the definition of ”The function f(x) is continuous at the point
T =a".

ANS:
lim f(z) = f(a)

r—a

(b) (8) Let f(x) be the function given by

2?2+ ifr<l
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Find the values of ¢ for which the function f is continuous at x = 1.
ANS: Equate the two expressions at x =1,

(1) +c® =2cx1,
The solution of the equation is

0=c—2c+1=(c—-1?> = c=1.

(c) (6) For the value of ¢ found in (b), is the the function f(x) differentiable?
(Explain your answer)

ANS: The answer is YES. The piecewise derivative is
2z ifxr <1
My —
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and since the two expression agree at x = 1, the function is differentiable

at x = 1. Differentiability at all other points is immediate.

3. For the following functions compute the derivative using the definition of
the derivative.

(a) (10) f(z) = 2* —x.

ANS: There are two ways to do this problem depending on which defi-
nition of the derivative you started with.
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ANS: This one can also be done with the x — a approach but the vast

majority of students chose the h — 0 approach so we’ll do that one.
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4. Let f(z) =

(a) (7) Find the vertical and horizontal asymptotes of f(z).

ANS: (z? — 1) =0 implies x = +1: Since 2% > 0 we get
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so that x = £1 are vertical asymptotes.



Moreover,
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so that y = 1 is the only horizontal asymptote.

(b) (8) Find the points at which the tangent line to the graph of f(z) is
horizontal.

ANS: Points with horizontal tangent line have f'(z) = 0.

, _ —2x _
f(x) - ($2—1)2 0

implies that z = 0. The only point with horizontal tangent line is P(0, 0).

(c) (5) Give a graph of f(x).
ANS:

10+

_10,

5. Let f(z) :x(2\/_—6).

(a) (7) Find f'(z).
ANS: First simplify f(z) = 22%? — 62 and then apply the power rule.
f'(z) = 3212 —6.



(b) (7) Find the equation of the tangent line to the graph of f at the point
4,

(4, -8).

ANS: The equation for the tangent line to the graph of f at x =4 is
y—rf4) = f(4)(z—-4).

We have f(4) = —8 and f’(4) = 0 so that the solution is

y+8 =0 ory=-8.

(c) (6) Find the point at which the tangent line to the graph of f is parallel
to the line 4y — 8x + 5 = 0.

ANS: The line 4y — 8z + 5 = 0 can be rewritten as y = 2z — 5/4 so that
its slope is 2. Two line are parallel when their slopes are equal so the
tangent line to the graph of f is parallel to 4y — 8x + 5 =0 if

2 =23zY2-6 orz=064/9.



