MATH 131 Spring 2005 EXAM 1 - Solution

1. Compute the following limits.

(a) (5)
$$\lim_{x\to 0} \frac{\sqrt{x^2+1}-1}{x^2}$$

ANS:

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{x^2} = \lim_{x \to 0} \frac{\sqrt{x^2 + 1} - 1}{x^2} \frac{\sqrt{x^2 + 1} + 1}{\sqrt{x^2 + 1} + 1}$$

$$= \lim_{x \to 0} \frac{x^2 + 1 - 1}{x^2 (\sqrt{x^2 + 1} + 1)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 1} + 1} = \frac{1}{\sqrt{1} + 1} = 2$$

(b) (5)
$$\lim_{x\to 2} \frac{x^3 - 2x^2 + x + 2}{x+2}$$

ANS:

$$\lim_{x \to 2} \frac{x^3 - 2x^2 + x + 2}{x + 2} = \frac{2^3 - 2(2^2) + 2 + 2}{2 + 2} = \frac{8 - 8 + 2 + 2}{2 + 2} = \frac{4}{4} = 1.$$

(c) (5)
$$\lim_{x \to \infty} \frac{4x^3 - 2x^2 + 5}{2x^3 + 3x^2 - x - 3}$$

 \overline{ANS} :

$$\lim_{x \to \infty} \frac{4x^3 - 2x^2 + 5}{2x^3 + 3x^2 - x - 3} = \lim_{x \to \infty} \frac{4 - \frac{2}{x} + \frac{5}{x^2}}{2 + \frac{3}{x} - \frac{1}{x^2} - \frac{3}{x^3}} = 2.$$

(d) (5)
$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3}$$

<u>ANS</u>:

$$\lim_{x \to 3} \frac{x^2 - 6x + 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)^2}{x - 3} = \lim_{x \to 3} x - 3 = 0.$$

2. (a) (6) State the definition of "The function f(x) is continuous at the point x = a".

<u>**ANS</u>**:</u>

$$\lim_{x \to a} f(x) = f(a)$$

(b) (8) Let f(x) be the function given by

$$f(x) = \begin{cases} x^2 + c^2 & \text{if } x < 1\\ 2cx & \text{if } x \ge 1 \end{cases}$$

Find the values of c for which the function f is continuous at x = 1.

ANS: Equate the two expressions at x=1,

$$(1)^2 + c^2 = 2c * 1,$$

The solution of the equation is

$$0 = c^2 - 2c + 1 = (c - 1)^2 \implies c = 1.$$

(c) (6) For the value of c found in (b), is the the function f(x) differentiable? (Explain your answer)

<u>ANS</u>: The answer is **YES**. The piecewise derivative is

$$f'(x) = \begin{cases} 2x & \text{if } x < 1\\ 2 & \text{if } x \ge 1 \end{cases},$$

and since the two expression agree at x = 1, the function is differentiable at x = 1. Differentiability at all other points is immediate.

- 3. For the following functions compute the derivative using the definition of the derivative.
 - (a) $(10) f(x) = x^2 x$.

ANS: There are two ways to do this problem depending on which definition of the derivative you started with.

i.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - (x+h) - (x^2 + x)}{h}$$
 Simplifying the top
$$= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x - h - x^2 + x}{h}$$
 additive canellation leaves us with
$$= \lim_{h \to 0} \frac{+2xh + h^2 - h}{h}$$
 dividing the h through leaves us with
$$= \lim_{h \to 0} \frac{2x + h - 1}{2x + h - 1}$$

$$= 2x + 0 - 1 = 2x - 1$$
ii.
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} \frac{x^2 - x - (a^2 - a)}{x - a}$$
 simplifying and rearranging terms gives us
$$= \lim_{x \to a} \frac{x^2 - a^2 - x + a}{x - a}$$
 but $x^2 - a^2 = (x - a)(x + a)$ and $-x + a = -(x - a)$

$$= \lim_{x \to a} \frac{(x - a)(x + a) - (x - a)}{cancelx - a}$$
 dividing out the $x - a$

$$= \lim_{x \to a} x + a - 1 = a + a - 1 = 2a - 1$$
 so
$$f'(a) = 2a - 1$$

(b)
$$(10) g(x) = \frac{1}{1+3x}$$
.

ANS: This one can also be done with the $x \to a$ approach but the vast majority of students chose the $h \to 0$ approach so we'll do that one.

 $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+3(x+h)} - \frac{1}{1+3x}}{h}$ for notation's sake we pull out the bottom h and bringing the fractions to a common denominator we get

$$= \lim_{h \to 0} \left(\frac{1}{h} \right) \left(\frac{1+3x}{1+3x} \cdot \frac{1}{1+3(x+h)} - \frac{1}{1+3x} \cdot \frac{1+3(x+h)}{1+3(x+h)} \right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h}\right) \left(\frac{1 + 3x - (1 + 3(x + h))}{(1 + 3(x + h))(1 + 3x)}\right)$$

$$= \lim_{h \to 0} \left(\frac{1}{h}\right) \left(\frac{\cancel{1} + \cancel{3}\cancel{x} - \cancel{1} - \cancel{3}\cancel{x} - 3h)}{(1 + 3(x + h))(1 + 3x)}\right)$$

$$= \lim_{h \to 0} \left(\frac{1}{\cancel{k}}\right) \left(\frac{-3\cancel{k}}{(1 + 3(x + h))(1 + 3x)}\right)$$

$$= \lim_{h \to 0} \frac{-3}{(1 + 3(x + h))(1 + 3x)}$$

$$= \frac{-3}{\lim_{h \to 0} ((1 + 3(x + h))(1 + 3x))}$$
 But

 $\lim_{h\to 0}\left((1+3(x+h))(1+3x)\right)=(1+3x)(\lim_{h\to 0}(1+3(x+h))$ because 1+3x is a constant with respect to h so

 $\lim_{h\to 0}\left((1+3(x+h))(1+3x)\right)=(1+3x)(\lim_{h\to 0}(1+3(x+h))=(1+3x)^2 \text{ and finally this means that}$

$${\bf g}'({\bf x}) = \frac{-3}{(1+3{\bf x})^2}$$

4. Let
$$f(x) = \frac{x^2}{x^2 - 1}$$
.

(a) (7) Find the vertical and horizontal asymptotes of f(x).

ANS: $(x^2 - 1) = 0$ implies $x = \pm 1$: Since $x^2 > 0$ we get

$$\lim_{x \to +1^+} \frac{x^2}{x^2 - 1} = +\infty, \quad \lim_{x \to +1^-} \frac{x^2}{x^2 - 1} = -\infty$$

and

$$\lim_{x \to -1^+} \frac{x^2}{x^2 - 1} = -\infty, \quad \lim_{x \to -1^-} \frac{x^2}{x^2 - 1} = +\infty$$

so that $x = \pm 1$ are vertical asymptotes.

Moreover,

$$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} = \lim_{x \to \infty} \frac{1}{1 - \frac{1}{x^2}} = 1,$$

and, similarly,

$$\lim_{x \to -\infty} \frac{x^2}{x^2 - 1} = 1,$$

so that y = 1 is the only horizontal asymptote.

(b) (8) Find the points at which the tangent line to the graph of f(x) is horizontal.

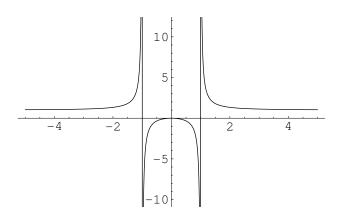
ANS: Points with horizontal tangent line have f'(x) = 0.

$$f'(x) = \frac{-2x}{(x^2 - 1)^2} = 0$$

implies that x = 0. The only point with horizontal tangent line is P(0, 0).

(c) (5) Give a graph of f(x).

<u> ANS</u>:



- 5. Let $f(x) = x (2\sqrt{x} 6)$.
 - (a) (7) Find f'(x).

ANS: First simplify $f(x) = 2x^{3/2} - 6x$ and then apply the power rule.

$$f'(x) = 3x^{1/2} - 6.$$

(b) (7) Find the equation of the tangent line to the graph of f at the point (4, -8).

ANS: The equation for the tangent line to the graph of f at x = 4 is

$$y - f(4) = f'(4)(x - 4)$$
.

We have f(4) = -8 and f'(4) = 0 so that the solution is

$$y + 8 = 0$$
 or $y = -8$.

(c) (6) Find the point at which the tangent line to the graph of f is parallel to the line 4y - 8x + 5 = 0.

ANS: The line 4y - 8x + 5 = 0 can be rewritten as y = 2x - 5/4 so that its slope is 2. Two line are parallel when their slopes are equal so the tangent line to the graph of f is parallel to 4y - 8x + 5 = 0 if

$$2 = 3x^{1/2} - 6$$
 or $x = 64/9$.