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Here we survey briefly (trying to provide reasonably complete references)
the scattered work over four decades most relevant to the indicated subject.
We also cite a couple of papers which illustrate the reach of the ideas dis-
cussed here: [10, 13]. While some questions have been answered, others re-
main open. Pramod Achar, David Ben-Zvi, Shrawan Kumar, Mark Reeder,
and Eric Sommers have been helpful in providing details and references.

1 The basic problem

1.1

First we recall some familiar classical facts. Given a simple Lie algebra g over
an algebraically closed field K of characteristic 0, its finite dimensional sim-
ple modules L(λ) are parametrized by the set of dominant integral weights
in the dual h∗ of a Cartan subalgebra h. Here the notion of dominance
depends on fixing first a set of simple roots for the root system of g relative
to h in h∗. In turn, Weyl’s complete reducibility theorem ensures that any
finite dimensional g-module is a direct sum of copies of some of these.

We follow Bourbaki’s numbering of vertices in each Dynkin diagram [3,
Chap. VI, §4]; but the reader should be alert to different conventions in some
of the papers we cite. The vertices correspond to simple roots α1, . . . , α`
(where ` = dim h is the rank of g). Write $i for the fundamental weight
corresponding to αi, so each dominant weight λ has coordinates ci ∈ Z+

given by λ =
∑

i ci$i.

1.2

If L(λ)µ denotes the weight space for µ relative to h (where µ ∈ h∗), its
dimension is called the multiplicity of µ in L(λ). Denoting by W the Weyl
group of g relative to h, all weights of L(λ) in the W -orbit of each dominant
weight µ ≤ λ occur with the same multiplicity (= dimL(λ)µ), necessarily
positive. As usual µ ≤ λ means that λ− µ is a nonnegative linear combina-
tion of simple roots. For example, all wλ have multiplicity 1.

Various methods of representation theory permit the explicit computa-
tion of these multiplicities. These sum to dimL(λ), which by itself can
readily be computed from Weyl’s dimension formula. Typically the meth-
ods for finding all weight multiplicities are lengthy and recursive, while it is
usually not feasible to compute dimL(λ)0 in isolation. (In a recent paper
[11] the behavior of this dimension is studied systematically.) The theory



does predict easily that L(λ)0 is nonzero precisely when 0 ≤ λ, i.e., if and
only if λ lies in the root lattice. Thus a simple algebraic group G whose Lie
algebra is isomorphic to g and whose rational simple modules (also denoted
L(λ)) all have such highest weights is precisely a group of adjoint type.

1.3

We should emphasize that in the literature cited here, there is some variation
in the initial set-up: sometimes one has Lie (or algebraic) groups rather than
their Lie algebras, at other times a compact real Lie group. This makes no
real difference for us. The underlying problems we discuss are purely alge-
braic in origin and involve just the root data and Weyl group. It is essential,
however, to work throughout over a splitting field of characteristic 0, where
the Cartan–Weyl theory of finite dimensional representations applies.

1.4

Since W permutes the weights in a single orbit, it follows in particular
that L(λ)0 is a W -module. When λ = 0, we obviously get the trivial 1-
dimensional W -module. Another familiar example is the adjoint module,
whose highest weight is the highest root (necessarily long). Here the zero
weight space of dimension ` is a Cartan subalgebra and W acts by the re-
flection representation. Beyond these examples the situation is less obvious.
Indeed, it is usually unclear how to determine directly whether or not the W -
module L(λ)0 is simple, even if its dimension is compatible with simplicity.
In general the following natural question still has no definitive answer:

(A) Which simple W -modules can be realized as L(λ)0 for some λ, and
how is the character of the W -module then determined by λ?

It is easy to see that λ can be replaced by the highest weight of the
dual module without changing this W -module: Here L(λ)∗ ∼= L(λ∗), with
λ∗ = −w◦λ, while w◦ is the longest element of W . Recall that w◦ = −1
(so all simple modules are self-dual) unless g is of type An with n > 1, Dn

with n odd, or E6. The dual action of g on L(λ∗) induces the dual action of
W on L(λ)0. This is most obvious in the group setting: here W is realized
as the quotient of the normalizer of a maximal torus while the torus fixes
L(λ)0 pointwise. But all irreducible characters of W over C are Z-valued,
hence self-dual (and in fact the representations can be constructed over Q).



1.5

We should point out that not every simple W -module is realized in a zero
weight space. For example, in type B2 (where α1 is the long simple root),
only the highest weights 0 and $1 lead to 1-dimensional zero weight spaces
(in the trivial module and standard 5-dimensional module for so5(K), re-
spectively). This follows easily from the dimension formula for L(λ)0 in [3,
Chap. VIII, §9, Exer. 10]. But here W is dihedral of order 8 and there-
fore has four irreducible characters of degree 1 (along with the reflection
character of degree 2).

At least in classical Lie types, there are some combinatorial methods
which permit the determination of W multiplicities, as in [2]. A consid-
erable amount of information about the representations of W (including
connections with Springer theory) can be found in the later chapters of
Carter’s book [5]. In the examples mentioned here we take that informa-
tion for granted. A somewhat vague but more conceptual question remains
unanswered in general:

(B) Is there a predictable pattern governing the decompositions of zero
weight spaces into simple modules for W?

Note that a detailed answer to question (A) would inevitably require
case-by-case study, whereas question (B) might involve more general ideas
together with study of individual cases.

2 Example: Type An

As usual, special (or general) linear Lie algebras and related groups are most
amenable to combinatorial study.

2.1

When g = sl2(K), dominant weights are parametrized by nonnegative inte-
gers m. Here L(λ)0 6= 0 precisely when λ = 2m$ (for short, L(2m)) is even.
It is clear that the trivial representation of W is afforded by L(0) and the
sign (= reflection) representation by the adjoint module L(2). Moreover, di-
rect computation shows that the nontrivial element of W fixes a basis vector
of weight 0 in the simple module L(λ), m ∈ Z+ when λ = 4m$ but acts
on this vector by -1 when λ = (4m + 2)$. In this way the two irreducible
characters of W alternate in their action on the 1-dimensional zero weight
spaces as the even highest weight grows. (This is observed by Broer [4, §1].)



2.2

More generally, the simple Lie algebras g = sln(K) with n = ` + 1 were
the first family to be systematically investigated. In 1973 a short note by
E. Gutkin [7] in Russian (untranslated into English) gave what is appar-
ently the earliest published treatment of Weyl group representations on zero
weight spaces (see also the independent work of B. Kostant [9, 4.1] and D.A.
Gay [6].) In this case, modules L(λ) with dimL(λ)0 6= 0 are parametrized
by highest weights λ = c1$1 + · · · + c`$` with λ = nµ for some dominant
weight µ, since the root lattice has index n in the weight lattice.

Here (A) is completely answered, in the spirit of Weyl’s classical work. If
V = L($1) is the natural n-dimensional module for g, all simple g-modules
L(λ) can be realized systematically inside m-fold tensor powers of V ; here λ
corresponds to a partition having at most m parts. In particular, consider
V ⊗n. Its highest weight n$1 lies in the root lattice, so the highest weights
of irreducible summands also do. To each of the n! distinct partitions a1 ≥
a2 ≥ · · · ≥ an ≥ 0 of n corresponds a dominant weight λ with coordinates
given by ci = ai − ai+1 for 1 ≤ i ≤ n − 1. Then each corresponding L(λ)
occurs as a summand of V ⊗n, and its zero weight space affords the simple W -
module parametrized classically by the dual partition. Here the partitions of
n simultaneously parametrize the conjugacy classes of Sn (given by disjoint
cycle types) and the isomorphism types of simple Sn-modules. (In general,
the partitions which yield zero weight spaces of positive dimension are the
partitions of some integer divisible by n.)

As noted earlier, similar behavior is observed when V is replaced by its
dual V ∗ = L($n−1). Here the coordinates of weights are reversed.

Here is a small example: When n = 3, the irreducible characters of
W = S3 are the trivial and sign characters of degree 1 along with the
reflection character of degree 2. Each occurs in the regular representation of
W as often as its degree. On the other hand, there are also three modules
L(λ) for g in V ⊗3 whose zero weight spaces afford these representations of
W : besides λ = 0 one has λ = $1 + $2 (giving the 8-dimensional adjoint
representation) and λ = 3$1 (giving a 10-dimensional representation with
zero weight space of dimension 1). The second of these occurs twice in V ⊗3

(since 2 is the degree of the corresponding character of W ), agreeing with
the dimension count 27 = 1 + 2 · 8 + 10.

An exercise in Bourbaki [3, Chap. VIII, §9, Exer. 9] leads more generally
to an easy formula for dimL(λ)0 in type A2: here λ = c1$1 + c2$2 lies
in the root lattice just when c1 ≡ c2 (mod 3), and then dimL(λ)0 = 1 +
min (c1, c2).



On the other hand, there seems to be no simple answer here to question
(B) except in rank 1 (and possibly in rank 2).

For the other classical groups one might apply a more complicated vari-
ant of this procedure in order to deal with (A), since the Weyl groups are
close relatives of Sn: for results in this direction see [2].

3 Small representations and Springer Correspon-
dence

3.1

When g has rank > 1 and λ is a dominant weight in the root lattice, does
dimL(λ)0 exceed a specified bound d for all but finitely many dominant
weights λ? If so, this would reduce the first part of (A) for each Lie type to
a finite (though possibly very long) list of possibilities when d is the largest
degree of an irreducible character of W . It would also be one way to think
about what it might mean for L(λ) to be “small”. But already in type A2

Bourbaki’s exercise cited above gives a negative answer to the question just
asked. Leaving aside type An, this question still seems to be open. But a
better theoretical approach would be preferred.

Broer [4] introduced a more precise notion of smallness, which is moti-
vated by problems concerning invariants, normality of nilpotent orbits, etc.
He defined small g-modules to be those L(λ) with λ in the root lattice for
which twice a root is never a weight. The trivial and adjoint modules are
obvious examples. In type An the modules L(λ) occurring as summands of
V ⊗n (where λ corresponds to a partition of n), together with their duals,
turn out to be precisely the small modules. So in this case our question
(A) connects precisely with Broer’s definition; but in other Lie types the
relationship is looser.

3.2

Broer’s notion of smallness has been investigated extensively, especially by
Reeder [14, 15, 16], cf. Sommers [17] for the exceptional types. Without
going further into the technical details of Reeder’s work, we recall briefly
how smallness interacts with Springer’s theory. Apart from the actions of W
on zero weight spaces, there is another (considerably less direct) connection
between finite dimensional modules for g (or its adjoint group G) and simple
W -modules: the Springer Correspondence.



Briefly, this correspondence involves the finitely many nilpotent orbits in
g (or unipotent classes in G), together with the various types of fibers Be in
the flag variety B lying over nilpotent elements e in Springer’s resolution of
singularities of the nilpotent variety. It turns out that W acts in each non-
vanishing (necessarily even) cohomology degree of B. Moreover, in the top
degree each simple W -module is realized exactly once, though some of these
may be tensored with nontrivial characters of the finite group of irreducible
components in the adjoint group centralizer, say A(e) := CG(e)/CG(e)◦.

Often, but by no means always, A(e) = 1 and the top cohomology be-
comes a simple W -module. (Case-by-case study shows that this module
always fails to be simple when A(e) 6= 1 even though some nontrivial char-
acter of A(e) may make no contribution. There seems to be no general
explanation of this fact.)

3.3

What does Springer theory have to do with small representations in Broer’s
sense? This is most clearcut in the simply-laced cases. Reeder is able to
verify that small g-modules (up to duality) are in bijection with certain
nilpotent orbits, and then L(λ)0 as a W -module agrees with the top co-
homology of the Springer fiber corresponding to any e in the orbit. As
remarked above, this W -module is often (though not always) simple. This
can be an effective though highly indirect way to show that certain simple
W -modules are realized as zero weight spaces.

In case g has two root lengths, a “folding” of the Dynkin diagram via
a graph automorphism σ relates this case to a corresponding simply-laced
type, e.g., G2 to D4 or F4 to E6. Here the simple roots lying in an orbit
of σ determine a single short simple root, while those fixed by σ determine
the long simple roots in the non-simply-laced subalgebra of fixed points gσ.
Then those g-modules L(λ) for which λ is σ-invariant correspond to small
representations of the latter.

The relationship withW -modules occurring in the cohomology of Springer
fibers then becomes more delicate. Here the algebraic group setting is most
natural. In particular, the folding σ is combined with passage to the Lang-
lands dual group G∨. Thus if G is initially an adjoint group (the usual
setting for investigation of small representations), then G∨ is simply con-
nected. Moreover, even when G and G∨ are isomorphic as algebraic groups,
as happens for instance in types G2 and F4, the short and long roots are
interchanged. This affects the Dynkin diagram numbering, to complicate
further the variance of vertex numbering in the literature. Examples below



may clarify this relationship.
We remark that these ideas (including the theme of Langlands duality)

have been explored geometrically at a high level in recent work of Achar–
Henderson–Riche [1]. Although they do not directly address our question
(A), their approach explains conceptually the surjectivity of the natural map
(induced by restriction of the normalizer of a maximal torus to zero weight
spaces) from the representation ring of G to that of W by comparing it to
a corresponding (much more subtle) map in Springer theory already known
to be surjective.

4 Special cases

Returning to our original question (A), we summarize briefly what the cited
papers do or don’t imply for Lie types beyond An. Much of this literature
centers on the determination of small representations of g (or its adjoint
group) and their applications, usually treating (A) as a side issue. We al-
ready cited papers such as [2, 11] which explore the combinatorics (including
dimensions) of zero weight spaces. Here the results are explicit but usually
complicated to state, while the underlying representations of W would re-
quire further work to correlate with the highest weights involved.

We consider now only the five exceptional types.

4.1

Reeder’s work shows that there are just eight small representations of E6: six
having highest weights 0, $2, $1 +$6, $4, $1 +$3, 3$1, along with duals of
the latter two having highest weights $5 +$6, 3$6. In terms of the Springer
Correspondence for E6, all weights in this list except $4 yield simple W -
modules of the form L(λ)0 (because the component groups A(e) are trivial
in these cases), whereas the nilpotent orbit corresponding to L($4) has a
component group of order 2 and L($4)0 is instead a direct sum of two
W -modules of dimensions 30 and 15 (the latter twisted by the nontrivial
character of the component group). (See [14, p. 439].)

In this way we can indirectly realize five simpleW -modules as zero weight
spaces. But W has 25 distinct irreducible characters. So we see that the
study of small representations relative to the Springer Correspondence falls
far short of answering our question (A). This is even more obvious for types
E7 and E8, where Reeder finds only a few small representations (6 and 5,
respectively) even though the Weyl groups here have 60 and 112 irreducible
characters, respectively.



4.2

Turning to g of type F4, we have |W | = 27 32, while W has 25 irreducible
characters; their degrees comprise the set {1, 2, 4, 6, 8, 9, 12, 16}. Again all
L(λ) have nontrivial zero weight spaces and are self-dual. But explicit tables
computed by Frank Lübeck [12] include only five cases in which characters
of W could occur as zero weight spaces: λ = 0, $1, $4, $3, 2$4 (in Bourbaki
numbering, the first two simple roots are long). Here the spaces L(λ)0 have
respective dimensions 1, 2, 4, 9, 12. His table currently includes only those
L(λ) of dimension bounded by 12,000, but it would be somewhat surprising
to encounter zero weight spaces of such small dimensions later on. Here only
the first four highest weights belong to small representations.

4.3

As indicated earlier, the Dynkin diagram of F4 can be obtained by folding
the diagram of E6. Here as usual the numbering of vertices in different
sources has to be treated with caution. But only the self-dual four weights
at the beginning of the earlier list of eight for E6 correspond to the small
representations of F4: after passing to the Langlands dual for F4 one recovers
the weights 0, $4, $1, $3 above, but not 2$4. The zero weight spaces for
0, $1, $4 are in fact simple W -modules of dimensions 1, 2, 4, but L($3)0 is
instead the direct sum of two such modules having dimensions 8 and 1: see
[16, Table 5.1].)

4.4

If g is of type G2, its Weyl group W is dihedral of order 12 and has two
irreducible characters of degree 2 along with four of degree 1. Moreover, the
root lattice of g equals the weight lattice, so every L(λ) has a zero weight
space of positive dimension (and is self-dual). But in only three of these
L(λ) does the multiplicity of the weight 0 seem to be as small as 1 or 2
(judging from tables like [12]): while L(0) affords as usual the 1-character
of W , the fundamental module L($1) of dimension 7 has a 1-dimensional
zero weight space affording the sign character of degree 1. Of course the
adjoint module L($2) of dimension 14 has zero weight space affording the
reflection character of W , here of degree 2. In fact these three L(λ) are
precisely the small representations, but that gives us no new information
(cf. [16, Table 5.1]).
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