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1
Introduction and overview

This is the second volume of our two-volume book on factorization
algebras as they apply to quantum field theory. In volume one, we fo-
cused on the theory of factorization algebras while keeping the quan-
tum field theory to a minimum. Indeed, we only ever discussed free
theories. In volume two, we will focus on the factorization algebras as-
sociated to interacting classical and quantum field theories.

In this introduction, we will state in outline the main results that we
prove in this volume. The centerpiece is a deformation quantization
approach to quantum field theory, analogous to that for quantum me-
chanics, and the introduction to the first volume provides an extensive
motivation for this perspective, which is put on solid footing here. Sub-
sequently we explore symmetries of field theories fit into this approach,
leading to classical and quantum versions of Noether’s theorem in the
language of factorization algebras.

Remark: Throughout the text, we refer to results from the first volume in
the style “see chapter I.2” to indicate the second chapter of volume 1. ♦

1.1 The factorization algebra of classical observables

We will start with the factorization algebra associated to a classical field
theory. Suppose we have a classical field theory on a manifold M, given
by some action functional, possibly with some gauge symmetry. To this
data we will associate a factorization algebra of classical observables. The
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2 Introduction and overview

construction goes as follows. First, for every open subset U ⊂ M, con-
sider the space EL(U) of solutions to the Euler-Lagrange equations on
U, modulo gauge. We work in perturbation theory, which means we
consider solutions that live in formal neighbourhood of a fixed solu-
tion. We also work in the derived sense, which means we “impose”
the Euler-Lagrange equations by a Koszul complex. In sophisticated
terms, we take EL(U) to be the formal derived stack of solutions to the
equations of motion. As U varies, the collection EL(U) forms a sheaf of
formal derived stacks on M.

The factorization algebra Obscl of classical observables of the field
theory assigns to an open U, the dg commutative algebra O(EL(U)) of
functions on this formal derived stack EL(U). This construction is sim-
ply the derived version of functions on solutions to the Euler-Lagrange
equations, and hence provides a somewhat sophisticated refinement
for classical observables in the typical sense.

It takes a little work to set up a theory of formal derived geometry
that can handle formal moduli spaces of solutions to non-linear partial
differential equations like the Euler-Lagrange equations. In the setting
of derived geometry, formal derived stacks are equivalent to homotopy
Lie algebras (i.e., Lie algebras up to homotopy, often modeled by dg
Lie algebras or L∞ algebras). The theory we develop in chapter 3 takes
this characterization as a definition. We define a formal elliptic moduli
problem on a manifold M to be a sheaf of homotopy Lie algebras satis-
fying certain properties. Of course, for the field theories considered in
this book, the formal moduli of solutions to the Euler-Lagrange equa-
tions always define a formal elliptic moduli problem. We develop the
theory of formal elliptic moduli problems sufficiently to define the dg
algebra of functions, as well as other geometric concepts.

1.2 The factorization algebra of quantum observables

In chapter 8, we give our main construction. It gives a factorization al-
gebra Obsq of quantum observables for any quantum field theory in the
sense of Costello (2011b). A quantum field theory is, by that definition,
something that lives over C[[h̄]] and reduces modulo h̄ to a classical
field theory. The factorization algebra Obsq is then a factorization al-
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gebra over C[[h̄]], and modulo h̄ it reduces to a factorization algebra
quasi-isomorphic to the algebra Obscl of classical observables.

The construction of the factorization algebra of quantum observables
is a bit technical. The techniques arise from the approach to quantum
field theory developed in Costello (2011b). In that book a quantum field
theory is defined to be a collection of functionals I[L] on the fields that
are approximately local. They play a role analogous to the action func-
tional of a classical field theory. These functionals depend on a “length
scale” L, and when L is close to zero the functional I[L] is close to being
local. The axioms of a quantum field theory are:

(i) As L varies, I[L] and I[L′] are related by the operation of “renormal-
ization group flow.” Intuitively, if L′ > L, then I[L′] is obtained from
I[L] by integrating out certain high-energy fluctuations of the fields.

(ii) Each I[L] satisfies a scale L quantum master equation (the quantum
version of a compatibility with gauge symmetry).

(iii) When we reduce modulo h̄ and send L → 0, then I[L] becomes the
interaction term in the classical Lagrangian.

The fact that I[L] is never local, just close to being local as L→ 0, means
that we have to work a bit to define the factorization algebra. The essen-
tial idea is simple, however. If U ⊂ M, we define the cochain complex
Obsq(U) to be the space of first-order deformations {I[L] + εO[L]} of
the collection of functionals I[L] that define the theory. We ask that this
first-order deformation satisfies the renormalization group flow prop-
erty modulo ε2. This condition gives a linear expression for O[L] in
terms of any other O[L′]. This idea reflects the familiar intuition from
the path integral that observables are first-order deformations of the
action functional.

The observables we are interested in do not need to be localized at a
point, or indeed given by the integral over the manifold of something
localized at a point. Therefore, we should not ask that O[L] becomes
local as L → 0. Instead, we ask that O[L] becomes supported on U
as L→ 0.

Moreover, we do not ask that I[L] + εO[L] satisfies the scale L quan-
tum master equation (modulo ε2). Instead, its failure to satisfy the quan-
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tum master equation defines the differential on the cochain complex of
quantum observables.

With a certain amount of work, we show that this definition defines a
factorization algebra Obsq that quantizes the factorization algebra Obscl

of classical observables.

1.3 The physical importance of factorization algebras

Our key claim is that factorization algebras encode, in a mathematically
clean way, the features of a quantum field theory that are important in
physics.

This formalism must thus include the most important examples of
quantum field theories from physics. Fortunately, the techniques de-
veloped in Costello (2011b) give a cohomological technique for con-
structing quantum field theories, which applies easily to many exam-
ples. For instance, Yang-Mills theory and the φ4 theory on R4 were both
constructed in Costello (2011b). (Note that we work throughout on Rie-
mannian manifolds, not Lorentzian ones.)

As a consequence, each theory has a factorization algebra on R4 that
encodes its observables.

1.3.1 Correlation functions from factorization algebras

In the physics literature on quantum field theory, the fundamental ob-
jects are correlation functions of observables. The factorization algebra of
a quantum field theory contains enough data to encode the correlation
functions. In this sense, its factorization algebra encodes the essential
data of a quantum field theory.

Let us explain how this encoding works. Assume that we have a field
theory on a compact manifold M. Suppose that we work near an iso-
lated solution to the equations of motion, that is, one which admits no
small deformations. (Strictly speaking, we require that the cohomology
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of the tangent complex to the space of solutions to the equations of mo-
tion is zero, which is a little stronger as it means that there are also no
gauge symmetries preserving this solution to the equations of motion.)
Some examples of theories where we have an isolated solution to the
equations of motion are a massive scalar field theory, on any compact
manifold, or a massless scalar field theory on the four-torus T4 where
the field has monodromy −1 around some of the cycles. In each case,
we can include an interaction, such as the φ4 interaction.

Since the classical observables are functions on the space of solution
to the equations of motion, our assumption implies H∗(Obscl(M)) =
C. A spectral sequence argument then lets us conclude that H∗(Obsq(M)) =
C[[h̄]].

If U1, . . . , Un ⊂ M are disjoint open subsets of M, the factorization
algebra structure gives a map

〈−〉 : H∗(Obsq(U1))⊗ · · · ⊗ H∗(Obsq(Un))→ H∗(Obsq(M)) = C[[h̄]].

If Oi ∈ H∗(Obsq(Ui)) are observables on the open subsets Ui, then
〈O1 · · · On〉 is the correlation function of these observables.

Consider again the φ4 theory on T4, where the φ field has monodromy
−1 around one of the four circles. In the formalism of Costello (2011b),
it is possible to construct the φ4 theory on R4 so that the Z/2 action
sending φ to −φ is preserved. By descent, the theory — and hence the
factorization algebra — exists on T4 as well. Thus, this theory provides
an example where the quantum theory can be constructed and the cor-
relation functions defined.

1.3.2 Factorization algebras and renormalization group flow

Factorization algebras provide a satisfying geometric understanding of
the RG flow, which we discuss in detail in Chapter 9 but sketch now.

In Costello (2011b), a scaling action of R>0 on the collection of theo-
ries on Rn was given. It provides a rigorous version of the RG flow as
defined by Wilson.

There is also a natural action by scaling of the group R>0 (under mul-
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tiplication) on the collection of translation-invariant factorization alge-
bras on Rn. Let Rλ : Rn → Rn denote the diffeomorphism that rescales
the coordinates, and let F be a translation-invariant factorization al-
gebra on Rn. Then the pull-back R∗λF is a new factorization algebra
on Rn.

We show that the map from theories on Rn to factorization algebras
on Rn intertwines these two R>0 actions. Thus, this simple scaling ac-
tion on factorization algebras is the RG flow.

In order to define have a quantum field theory with finitely many
free parameters, it is generally essential to only consider renormalizable
quantum field theories. In Costello (2011b), it was shown that for any
translation-invariant field theory on Rn, the dependence of the field
theory on the scalar parameter λ ∈ R>0 is via powers of λ and of log λ.
A strictly renormalizable theory is one in which the dependence is only
via log λ, and the quantizations of Yang-Mills theory and φ4 theory con-
structed in Costello (2011b) both have this feature.

We can translate the concept of renormalizability into the language
of factorization algebras. For any translation-invariant factorization al-
gebra F on Rn, there is a family of factorization algebras Fλ = R∗λF
on Rn. Because this family depends smoothly on λ, a priori it defines a
factorization algebra over the base ring C∞(R>0) of smooth functions
of the variable λ. We say this family is strictly renormalizable if it arises
by extension of scalars from a factorization algebra over the base ring
C[log λ] of polynomials in log λ. The factorization algebras associated
to Yang-Mills theory and to the φ4 theory both have this feature.

In this way, we formulate via factorization algebras the concept of
renormalizability of a quantum field theory.

1.3.3 Factorization algebras and the operator product
expansion

One disadvantage of the language of factorization algebras is that the
factorization algebra structure is often very difficult to describe explic-
itly. The reason is that for an open set U, the space Obsq(U) of quantum
observables on U is a very large topological vector space and it is not
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obvious how one can give it a topological basis. To extract more ex-
plicit computations, we introduce the concept of a point observable in
Chapter 10 . The space of point observables is defined to be the limit
limr→0 Obsq(D(0, r)) of the space of quantum observables on a disc of
radius r around the origin, as r → 0. Point observables capture what
physicists call local operators; however, we eschew the term operator as
our formalism does not include a Hilbert space on which we can oper-
ate.

Given two point observablesO1 andO2, we can placeO1 at 0 andO2
at x and then use the factorization product on sufficiently small discs
centered at 0 and x to define a product element

O1(0) · O2(x) ∈ Obsq(Rn).

The operator product is defined by expanding the productO1(0) ·O2(x)
as a function of x and extracting the “singular part.” It is not guaranteed
that such an expansion exists in general, but we prove in Chapter 10
that it does exist to order h̄. This order h̄ operator product expansion
can be computed explicitly, and we do so in detail for several theories
in Chapter 10. The methods exhibited there provide a source of concrete
examples in which mathematicians can rigorously compute quantities
of quantum field theory.

That chapter also contains the longest and most detailed example in
this book. It has recently become clear Costello (2013b); Costello et al.
(2019) that one can understand quantum groups, such as the Yangian
and related algebras, using Feynman diagram computations in quan-
tum field theory. The general idea is that one should take a quantum
field theory that has one topological direction, so that the the factoriza-
tion product in this direction gives us a (homotopy) associative algebra.
By taking the Koszul dual of this associative algebra, one finds a new
algebra which in certain examples is a quantum group. For the Yangian,
the relevant Feynman diagram computations are given in Costello et al.
(2019). We present in detail an example related to a different infinite-
dimensional quantum group, following Costello (2017). We perform
one-loop Feynman diagram computations that reproduce the commu-
tation relations in this associative algebra. (We chose this example as
the relevant Feynman diagram computations are considerably easier
than those that lead to the Yangian algebra in Costello et al. (2019).)
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1.4 Poisson structures and deformation quantization

In the deformation quantization approach to quantum mechanics, the
associative algebra of quantum operators reduces, modulo h̄, to the
commutative algebra of classical operators. But this algebra of classi-
cal operators has a little more structure: it is a Poisson algebra. Defor-
mation quantization posits that the failure of the algebra of quantum
operators to be commutative is given, to first order in h̄, by the Poisson
bracket.

Something similar happens in our story. Classical observables are
given by the algebra of functions on the derived space of solutions to
the Euler-Lagrange equations. The Euler-Lagrange equations are not
just any PDEs, however: they describe the critical locus of an action
functional. The derived critical locus of a function on a finite-dimensional
manifold carries a shifted Poisson (or P0) structure, meaning that its dg
algebra of functions has a Poisson bracket of degree 1. In the physics
literature, this Poisson bracket is sometimes called the BV bracket or
anti-bracket.

This feature suggests that the space of solutions to the Euler-Lagrange
equations should also have a P0 structure, and so the factorization alge-
bra Obscl of classical observables has the structure of a P0 algebra. We
show that this guess is indeed true, as long as we use a certain homo-
topical version of P0 factorization algebras.

Just as in the case of quantum mechanics, we would like the Pois-
son bracket on classical observables to reflect the first-order deforma-
tion into quantum observables. We find that this behavior is the case,
although the statement is not as nice as that in the familiar quantum
mechanical case.

Let us explain how it works. The factorization algebra of classical
observables has compatible structures of dg commutative algebra and
shifted Poisson bracket. The factorization algebra of quantum observ-
ables has, by contrast, no extra structure: it is simply a factorization
algebra valued in cochain complexes. Modulo h̄2, the factorization al-
gebra of quantum observables lives in an exact sequence

0→ h̄ Obscl → Obsq mod h̄2 → Obscl → 0.
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The boundary map for this exact sequence is an operator, for every
open U ⊂ M,

D : Obscl(U)→ Obscl(U).

This operator is a cochain map of cohomological degree 1. Because Obsq

is not a factorization algebra valued in commutative algebras, D is not
a derivation for the commutative algebra structure on Obscl(U).

We can measure the failure of D to be a derivation by the expression

D(ab)− (−1)|a|aDb− (Da)b.

We find that this quantity is the same, up to homotopy, as the shifted
Poisson bracket on classical observables.

We should view this identity as being the analog of the fact that the
failure of the algebra of observables of quantum mechanics to be com-
mutative is measured, modulo h̄2, by the Poisson bracket. Here, we find
that the failure of the factorization algebra of quantum observables to
have a commutative algebra structure compatible with the differential
is measured by the shifted Poisson bracket on classical observables.

This analogy has been strengthened to a theorem by Safronov (2018)
and Rozenbyum (unpublished). Locally constant factorization algebras
on R are equivalent to homotopy associative algebras. Safronov and
Rozenblyum show that locally constant P0 factorization algebras on R

are equivalent to ordinary, unshifted, Poisson algebras. Therefore a de-
formation quantization of a P0 factorization algebra on R into a plain
factorization algebra is precisely the same as a deformation of a Poisson
algebra into an associative algebra; in this sense, our work recovers the
usual notion of deformation quantization.

1.5 Noether’s theorem

The second main theorem we prove in this volume is a factorization-
algebraic version of Noether’s theorem. The formulation we find of
Noether’s theorem is significantly more general than the traditional
formulation. We will start by reminding the reader of the traditional
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formulation, before explaining our factorization-algebraic generaliza-
tion.

1.5.1 Symmetries in classical mechanics

The simplest version of Noether’s theorem applies to classical mechan-
ics.

Suppose we have a classical-mechanical system with a continuous
symmetry given by a Lie algebra g. Let A be the Poisson algebra of oper-
ators of the system, which is the algebra of functions on the phase space.
Then, Noether’s theorem, as traditionally phrased, says that there is a
central extension ĝ of g and a map of Lie algebras

ĝ→ A

where A is given the Lie bracket coming from the Poisson bracket. This
map sends the central element in ĝ to a multiple of the identity in A.
Further, the image of ĝ in A commutes with the Hamiltonian.

From a modern point of view, this is easily understood. The phase
space of the classical mechanical system is a symplectic manifold X,
with a function H on it which is the Hamiltonian. The algebra of op-
erators is the Poisson algebra of functions on X. If a Lie algebra g acts
as symmetries of the classical system, then it acts on X by symplectic
vector fields preserving the Hamiltonian function. There is a central ex-
tension of g that acts on X by Hamiltonian vector fields, assuming that
H1(X) = 0.

At the quantum level, the Poisson algebra of functions on X is up-
graded to a non-commutative algebra (which we continue to call A),
which is its deformation quantization. The quantum version of Noether’s
theorem says that if we have an action of a Lie algebra g acting on the
quantum mechanical system, there is a central extension ĝ of g (possibly
depending on h̄) and a Lie algebra map ĝ → A. This Lie algebra map
lifts canonically to a map of associative algebras

Uĝ→ A

sending the central element to 1 ∈ A.
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1.5.2 Noether’s theorem in the language of factorization
algebras

Let us rewrite the quantum-mechanical Noether’s theorem in terms of
factorization algebras on R. As we saw in section I.3.2, factorization al-
gebras on R satisfying a certain local-constancy condition are the same
as associative algebras. When translation invariant, these factorization
algebras on R are the same as associative algebras with a derivation. A
quantum mechanical system is a quantum field theory on R, and so has
as a factorization algebra Obsq of observables. Under the equivalence
between factorization algebras on R and associative algebra, the fac-
torization algebra Obsq becomes the associative algebra A of operators,
and the derivation becomes the Hamiltonian.

Similarly, we can view Uc(g) as being a translation-invariant factor-
ization algebra on R, where the translation action is trivial. In section
I.3.6, we give a general construction of a factorization algebra – the fac-
torization envelope – associated to a sheaf of dg Lie algebras on a man-
ifold. The associative algebra Uc(g) is, when interpreted as a factor-
ization algebra on R, the twisted factorization envelope of the sheaf
Ω∗R ⊗ g of dg Lie algebras on R. We write this twisted factorization en-
velope as Uc(Ω∗R ⊗ g).

Noether’s theorem then tells us that there is a map of translation-
invariant factorization algebras

Uc(Ω∗R ⊗ g)→ Obsq

on R. We have simply reformulated Noether’s theorem in factorization-
algebraic language. This rewriting will become useful shortly, however,
when we state a far-reaching generalization of Noether’s theorem.

1.5.3 Noether’s theorem in quantum field theory

Let us now phrase our general theorem. Suppose we have a quantum
field theory on a manifold X, with factorization algebra Obsq of ob-
servables. The usual formulation of Noether’s theorem starts with a
field theory with some Lie algebra of symmetries. We will work more
generally, and ask that there is some sheaf L of homotopy Lie algebras



12 Introduction and overview

on X which acts as symmetries of our QFT. (Strictly speaking, we work
with sheaves of homotopy Lie algebras of a special type, which we call
a local L∞ algebras. A local L∞ algebra is a sheaf of homotopy Lie alge-
bras whose underlying sheaf is the smooth sections of a graded vector
bundle and whose structure maps are given by multi-differential oper-
ators.) Our formulation of Noether’s theorem then takes the following
form.

Theorem. In this situation, there is a canonical h̄-dependent (shifted) central
extension of L, and a map

Uc(L)→ Obsq

of factorization algebras, from the twisted factorization envelope of L to the
factorization algebra of observables of the quantum field theory.

Let us explain how a special case of this statement recovers the tradi-
tional formulation of Noether’s theorem, under the assumption (merely
to simplify the notation) that the central extension is trivial.

Suppose we have a theory with a Lie algebra g of symmetries. One
can show that this implies the sheaf Ω∗X ⊗ g of dg Lie algebras also acts
on the theory. Indeed, this sheaf is simply a resolution of the constant
sheaf with stalk g.

The factorization envelope U(L) assigns the Chevalley-Eilenberg chain
complex C∗(Lc(U)) to an open subset U ⊂ X. This construction im-
plies that there is a map of precosheaves Lc[1] → U(L). Applied to
L = Ω∗X ⊗ g, we find that a g-action on our theory gives a cochain map

Ω∗c (U)⊗ g[1]→ Obsq(U)

for every open. In degree 0, this map Ω1
c ⊗ g → Obsq can be viewed

as an n − 1-form on X valued in observables. This n − 1 form is the
Noether current. (The other components of this map contain important
homotopical information.)

If X = M×R where M is compact and connected, we get a map

g = H0(M)⊗ H1
c (R)⊗ g→ H0(Obsq(U)).

This map is the Noether charge.

We have seen that specializing to observables of cohomological de-
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gree 0, and the sheaf L = Ω∗ ⊗ g, we recover the traditional formu-
lation of Noether’s theorem in quantum field theory. Our formulation,
however, is considerably more general.

1.5.4 Noether’s theorem applied to two-dimensional chiral
theories

As an example of this general form of Noether’s theorem, let us con-
sider the case of two-dimensional chiral theories with symmetry group G.

In this situation, the symmetry Lie algebra is not simply the constant
sheaf with values in g, but the sheaf Ω0,∗

Σ ⊗ g, the Dolbeault complex on
Σ valued in g. In other words, it encodes the sheaf of g-valued holomor-
phic functions. This sheaf of dg Lie algebra acts on the sheaf of fields
Ω1/2,∗(Σ, R) in the evident way.

Our formulation of Noether’s theorem then tells us that there is some
central extension of Ω0,∗

Σ ⊗ g and a map of factorization algebras

Uc(Ω0,∗
Σ ⊗ g)→ Obsq

from the twisted factorization envelope to the observables of the system
of free fermions.

In section I.5.5 we calculated the twisted factorization algebra of Ω0,∗
Σ ⊗

g, and we found that it encodes the Kac-Moody vertex algebra at level
determined by the central extension.

Thus, in this example, our formulation of Noether’s theorem recovers
something relatively familiar: in any chiral theory with an action of G,
we find a copy of the Kac-Moody algebra at an appropriate level.

1.6 Brief orienting remarks toward the literature

Since we began this project in 2008, we have been pleased to see how
themes that animated our own work have gotten substantial attention
from others as well:
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• Encoding classical field theories, particularly in the BV formalism,
using L∞ algebras Hohm and Zwiebach (2017); Jurčo et al. (2019b,a).

• The meaning and properties of derived critical loci Vezzosi (2020);
Joyce (2015); Pridham (2019).

• The role of shifted symplectic structures in derived geometry and
enlarged notions of deformation quantization Pantev et al. (2013a);
Calaque et al. (2017); Ben-Bassat et al. (2015); Brav et al. (2019); Prid-
ham (2017); Melani and Safronov (2018a,b); Safronov (2017); Toën
(2014).

• Factorization algebras as a natural tool in field theory, particularly for
topological field theories Scheimbauer (2014); Kapranov et al. (2016);
Benini et al. (2019, 2020); Beem et al. (2020).

We are grateful to take part in such a dynamic community, where we
benefit from others’ insights and critiques and we also have the chance
to share our own. This book does not document all that activity, which
is only partially represented by the published literature anyhow; we
offer only a scattering of the relevant references, typically those that
played a direct role in our own work or in our learning, and hence ex-
hibit an unfortunate but hard-to-avoid bias toward close collaborators
or interlocutors.

Our work builds, of course, upon the work and insights of genera-
tions of mathematicians and physicists who proceed us. As time goes
on, we discover how many of our insights appear in some guise in the
past. In particular, it should be clear how much Albert Schwarz and
Maxim Kontsevich shaped our views and our approach by their vision
and by their results, and how much we gained from engaging with
work of Alberto Cattaneo, Giovanni Felder, and Andrei Losev.

There is a rich literature on BRST and BV methods in physics that we
hope to help open up to mathematicians, but we do not make an at-
tempt here to survey it, a task that is beyond us. We recommend Hen-
neaux and Teitelboim (1992) as point for jumping into that literature,
tracking who cites it and whom it cites. A nice starting point to explore
current activity in Lorentzian signature is Rejzner (2016), where these
BRST/BV ideas cross-fertilize with the algebraic quantum field theory
approach.
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2
Introduction to classical field theory

Our goal here is to describe how the observables of a classical field
theory naturally form a factorization algebra. More accurately, we are
interested in what might be called classical perturbative field theory.
“Classical” means that the main object of interest is the sheaf of solu-
tions to the Euler-Lagrange equations for some local action functional.
“Perturbative” means that we will only consider those solutions which
are infinitesimally close to a given solution. Much of this part of the
book is devoted to providing a precise mathematical definition of these
ideas, with inspiration taken from deformation theory and derived ge-
ometry. In this chapter, then, we will simply sketch the essential ideas.

2.1 The Euler-Lagrange equations

The fundamental objects of a physical theory are the observables of a
theory, that is, the measurements one can make in that theory. In a clas-
sical field theory, the fields that appear “in nature” are constrained to
be solutions to the Euler-Lagrange equations (also called the equations
of motion). Thus, the measurements one can make are the functions on
the space of solutions to the Euler-Lagrange equations.

However, it is essential that we do not take the naive moduli space
of solutions. Instead, we consider the derived moduli space of solutions.
Since we are working perturbatively — that is, infinitesimally close to
a given solution — this derived moduli space will be a “formal moduli
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problem” Lurie (2010, n.d.). In the physics literature, the procedure of
taking the derived critical locus of the action functional is implemented
by the BV formalism. Thus, the first step (chapter 3.1.3) in our treatment
of classical field theory is to develop a language to treat formal moduli
problems cut out by systems of partial differential equations on a man-
ifold M. Since it is essential that the differential equations we consider
are elliptic, we call such an object a formal elliptic moduli problem.

Since one can consider the solutions to a differential equation on any
open subset U ⊂ M, a formal elliptic moduli problem F yields, in par-
ticular, a sheaf of formal moduli problems on M. This sheaf sends U to
the formal moduli space F (U) of solutions on U.

We will use the notation EL to denote the formal elliptic moduli
problem of solutions to the Euler-Lagrange equation on M; thus, EL(U)
will denote the space of solutions on an open subset U ⊂ M.

2.2 Observables

In a field theory, we tend to focus on measurements that are localized
in spacetime. Hence, we want a method that associates a set of observ-
ables to each region in M. If U ⊂ M is an open subset, the observables
on U are

Obscl(U) = O(EL(U)),

our notation for the algebra of functions on the formal moduli space
EL(U) of solutions to the Euler-Lagrange equations on U. (We will
be more precise about which class of functions we are using later.) As
we are working in the derived world, Obscl(U) is a differential-graded
commutative algebra. Using these functions, we can answer any ques-
tion we might ask about the behavior of our system in the region U.

The factorization algebra structure arises naturally on the observ-
ables in a classical field theory. Let U be an open set in M, and V1, . . . , Vk
a disjoint collection of open subsets of U. Then restriction of solutions
from U to each Vi induces a natural map

EL(U)→ EL(V1)× · · · × EL(Vk).
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Since functions pullback under maps of spaces, we get a natural map

Obscl(V1)⊗ · · · ⊗Obscl(Vk)→ Obscl(U)

so that Obscl forms a prefactorization algebra. To see that Obscl is indeed
a factorization algebra, it suffices to observe that the functor EL is a
sheaf.

Since the space Obscl(U) of observables on a subset U ⊂ M is a
commutative algebra, and not just a vector space, we see that the ob-
servables of a classical field theory form a commutative factorization
algebra (i.e., a commutative algebra object in the symmetric monoidal
category of factorization algebras).

2.3 The symplectic structure

Above, we outlined a way to construct, from the elliptic moduli prob-
lem associated to the Euler-Lagrange equations, a commutative factor-
ization algebra. This construction, however, would apply equally well
to any system of differential equations. The Euler-Lagrange equations,
of course, have the special property that they arise as the critical points
of a functional.

In finite dimensions, a formal moduli problem which arises as the de-
rived critical locus (section 4.1) of a function is equipped with an extra
structure: a symplectic form of cohomological degree −1. For us, this
symplectic form is an intrinsic way of indicating that a formal moduli
problem arises as the critical locus of a functional. Indeed, any formal
moduli problem with such a symplectic form can be expressed (non-
uniquely) in this way.

We give (section 4.2) a definition of symplectic form on an elliptic
moduli problem. We then simply define a classical field theory to be
a formal elliptic moduli problem equipped with a symplectic form of
cohomological degree −1.

Given a local action functional satisfying certain non-degeneracy prop-
erties, we construct (section 4.3.1) an elliptic moduli problem describing
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the corresponding Euler-Lagrange equations, and show that this ellip-
tic moduli problem has a symplectic form of degree −1.

In ordinary symplectic geometry, the simplest construction of a sym-
plectic manifold is as a cotangent bundle. In our setting, there is a sim-
ilar construction: given any elliptic moduli problem F , we construct
(section 4.6) a new elliptic moduli problem T∗[−1]F which has a sym-
plectic form of degree −1. It turns out that many examples of field the-
ories of interest in mathematics and physics arise in this way.

2.4 The P0 structure

In finite dimensions, if X is a formal moduli problem with a symplec-
tic form of degree −1, then the dg algebra O(X) of functions on X is
equipped with a Poisson bracket of degree 1. In other words, O(X) is a
P0 algebra (i.e., has a 1-shifted Poisson bracket).

In infinite dimensions, we show that something similar happens. If
F is a classical field theory, then we show that on every open U, the
commutative algebra O(F (U)) = Obscl(U) has a P0 structure. We then
show that the commutative factorization algebra Obscl forms a P0 fac-
torization algebra. This is not quite trivial; it is at this point that we need
the assumption that our Euler-Lagrange equations are elliptic.



3
Elliptic moduli problems

The essential data of a classical field theory is the moduli space of solu-
tions to the equations of motion of the field theory. For us, it is essential
that we take not the naive moduli space of solutions, but rather the de-
rived moduli space of solutions. In the physics literature, the procedure
of taking the derived moduli of solutions to the Euler-Lagrange equa-
tions is known as the classical Batalin-Vilkovisky formalism.

The derived moduli space of solutions to the equations of motion of
a field theory on X is a sheaf on X. In this chapter we will introduce a
general language for discussing sheaves of “derived spaces” on X that
are cut out by differential equations.

Our focus in this book is on perturbative field theory, so we sketch
the heuristic picture from physics before we introduce a mathematical
language that formalizes the picture. Suppose we have a field theory
and we have found a solution to the Euler-Lagrange equations φ0. We
want to find the nearby solutions, and a time-honored approach is to
consider a formal series expansion around φ0,

φt = φ0 + tφ1 + t2φ2 + · · · ,

and to solve iteratively the Euler-Lagrange equations for the higher
terms φn. Of course, such an expansion is often not convergent in any
reasonable sense, but this perturbative method has provided insights
into many physical problems. In mathematics, particularly the defor-
mation theory of algebraic geometry, this method has also flourished
and acquired a systematic geometric interpretation. Here, though, we
work in place of t with a parameter ε that is nilpotent, so that there is

23
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some integer n such that εn+1 = 0. Let

φ = φ0 + εφ1 + ε2φ2 + · · ·+ εnφn.

Again, the Euler-Lagrange equation applied to φ becomes a system of
simpler differential equations organized by each power of ε. As we
let the order of ε go to infinity and find the nearby solutions, we de-
scribe the formal neighborhood of φ0 in the space of all solutions to the
Euler-Lagrange equations. (Although this procedure may seem narrow
in scope, its range expands considerably by considering families of so-
lutions, rather a single fixed solution. Our formalism is built to work in
families.)

In this chapter we will introduce a mathematical formalism for this
procedure, which includes derived perturbations (i.e., ε has nonzero co-
homological degree). In mathematics, this formalism is part of derived
deformation theory or formal derived geometry. Thus, before we dis-
cuss the concepts specific to classical field theory, we will explain some
general techniques from deformation theory. A key role is played by a
deep relationship between Lie algebras and formal moduli spaces.

3.1 Formal moduli problems and Lie algebras

In ordinary algebraic geometry, the fundamental objects are commuta-
tive algebras. In derived algebraic geometry, commutative algebras are
replaced by differential graded commutative algebras concentrated in
non-positive degrees (or, if one prefers, simplicial commutative alge-
bras; over Q, there is no difference).

We are interested in formal derived geometry, which is described
by nilpotent dg commutative algebras. It is the natural mathematical
framework for discussing deformations and perturbations. In this sec-
tion we give a rapid overview, but appendix A.2 examines these ideas
at a more leisurely pace and supplies more extensive references.

3.1.0.1 Definition. An Artinian dg algebra over a field K of characteristic
zero is a differential graded commutative K-algebra R, concentrated in degrees
≤ 0, such that
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(i) each graded component Ri is finite dimensional, and Ri = 0 for i� 0;
(ii) R has a unique maximal differential ideal m such that R/m = K, and such

that mN = 0 for N � 0.

Given the first condition, the second condition is equivalent to the
statement that H0(R) is Artinian in the classical sense.

The category of Artinian dg algebras is simplicially enriched in a nat-
ural way. A map R→ S is simply a map of dg algebras taking the max-
imal ideal mR to that of mS. Equivalently, such a map is a map of non-
unital dg algebras mR → mS. An n-simplex in the space Maps(R, S) of
maps from R to S is defined to be a map of non-unital dg algebras

mR → mS ⊗Ω∗(4n)

where Ω∗(4n) is some commutative algebra model for the cochains on
the n-simplex. (Normally, we will work over R, and Ω∗(4n) will be the
usual de Rham complex.)

We will (temporarily) let Artk denote the simplicially enriched cate-
gory of Artinian dg algebras over k.

3.1.0.2 Definition. A formal moduli problem over a field k is a functor (of
simplicially enriched categories)

F : Artk → sSets

from Artk to the category sSets of simplicial sets, with the following additional
properties.

(i) F(k) is contractible.
(ii) F takes surjective maps of dg Artinian algebras to fibrations of simplicial

sets.
(iii) Suppose that A, B, C are dg Artinian algebras, and that B → A, C → A

are surjective maps. Then we can form the fiber product B×A C. We require
that the natural map

F(B×A C)→ F(B)×F(A) F(C)

is a weak homotopy equivalence.

We remark that such a moduli problem F is pointed: F assigns to k a
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point, up to homotopy, since F(k) is contractible. Since we work mostly
with pointed moduli problems in this book, we will not emphasize this
issue. Whenever we work with more general moduli problems, we will
indicate it explicitly.

Note that, in light of the second property, the fiber product F(B)×F(A)

F(C) coincides with the homotopy fiber product.

The category of formal moduli problems is itself simplicially enriched,
in an evident way. If F, G are formal moduli problems, and φ : F → G
is a map, we say that φ is a weak equivalence if for all dg Artinian alge-
bras R, the map

φ(R) : F(R)→ G(R)

is a weak homotopy equivalence of simplicial sets.

3.1.1 Formal moduli problems and L∞ algebras

One very important way in which formal moduli problems arise is as
the solutions to the Maurer-Cartan equation in an L∞ algebra. As we
will see later, all formal moduli problems are equivalent to formal mod-
uli problems of this form.

If g is an L∞ algebra, and (R, m) is a dg Artinian algebra, we will let

MC(g⊗m)

denote the simplicial set of solutions to the Maurer-Cartan equation in
g⊗m. Thus, an n-simplex in this simplicial set is an element

α ∈ g⊗m⊗Ω∗(4n)

of cohomological degree 1, which satisfies the Maurer-Cartan equation

dα + ∑
n≥2

1
n! ln(α, . . . , α) = 0.

It is a well-known result in derived deformation theory that sending
R to MC(g⊗ m) defines a formal moduli problem (see Getzler (2009),
Hinich (2001)). We will often use the notation Bg to denote this formal
moduli problem.
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If g is finite dimensional, then a Maurer-Cartan element of g⊗ m is
the same thing as a map of commutative dg algebras

C∗(g)→ R

which takes the maximal ideal of C∗(g) to that of R.

Thus, we can think of the Chevalley-Eilenberg cochain complex C∗(g)
as the algebra of functions on Bg.

Under the dictionary between formal moduli problems and L∞ alge-
bras, a dg vector bundle on Bg is the same thing as a dg module over
g. The cotangent complex to Bg corresponds to the g-module g∨[−1],
with the shifted coadjoint action. The tangent complex corresponds to
the g-module g[1], with the shifted adjoint action.

If M is a g-module, then sections of the corresponding vector bundle
on Bg is the Chevalley-Eilenberg cochains with coefficients in M. Thus,
we can define Ω1(Bg) to be

Ω1(Bg) = C∗(g, g∨[−1]).

Similarly, the complex of vector fields on Bg is

Vect(Bg) = C∗(g, g[1]).

Note that, if g is finite dimensional, this is the same as the cochain com-
plex of derivations of C∗(g). Even if g is not finite dimensional, the com-
plex Vect(Bg) is, up to a shift of one, the Lie algebra controlling defor-
mations of the L∞ structure on g.

3.1.2 The fundamental theorem of deformation theory

The following statement is at the heart of the philosophy of deforma-
tion theory:

There is an equivalence of (∞, 1)-categories between the category of differential
graded Lie algebras and the category of formal pointed moduli problems.

In a different guise, this statement goes back to Quillen’s work Quillen
(1969) on rational homotopy theory. A precise formulation of this the-
orem has been proved in Hinich (2001); more general theorems of this
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nature are considered in Lurie (n.d.); Pridham (2010). We recommend
Lurie (2010) as an excellent survey of these ideas.

It would take us too far afield to describe the language in which this
statement can be made precise. We will simply use this statement as
motivation: we will only consider formal moduli problems described
by L∞ algebras, and this statement asserts that we lose no information
in doing so.

3.1.3 Elliptic moduli problems

We are interested in formal moduli problems which describe solutions
to differential equations on a manifold M. Since we can discuss solu-
tions to a differential equation on any open subset of M, such an ob-
ject will give a sheaf of derived moduli problems on M, described by a
sheaf of homotopy Lie algebras. Let us give a formal definition of such
a sheaf.

3.1.3.1 Definition. Let M be a manifold. A local L∞ algebra on M consists
of the following data.

(i) A graded vector bundle L on M, whose space of smooth sections will be
denoted L.

(ii) A differential operator d : L → L, of cohomological degree 1 and square 0.
(iii) A collection of poly-differential operators

ln : L⊗n → L

for n ≥ 2, which are alternating, are of cohomological degree 2− n, and
endow L with the structure of L∞ algebra.

3.1.3.2 Definition. An elliptic L∞ algebra is a local L∞ algebra L as above
with the property that (L, d) is an elliptic complex.

Remark: The reader who is not comfortable with the language of L∞ al-
gebras will lose little by only considering elliptic dg Lie algebras. Most
of our examples of classical field theories will be described using dg Lie
algebra rather than L∞ algebras.

If L is a local L∞ algebra on a manifold M, then it yields a presheaf



3.2 Examples of elliptic moduli problems related to scalar field theories 29

BL of formal moduli problems on M. This presheaf sends a dg Artinian
algebra (R, m) and an open subset U ⊂ M to the simplicial set

BL(U)(R) = MC(L(U)⊗m)

of Maurer-Cartan elements of the L∞ algebra L(U) ⊗ m (where L(U)
refers to the sections of L on U). We will think of this as the R-points of
the formal pointed moduli problem associated to L(U). One can show,
using the fact that L is a fine sheaf, that this sheaf of formal moduli
problems is actually a homotopy sheaf, i.e. it satisfies Čech descent.
Since this point plays no role in our work, we will not elaborate further.

3.1.3.3 Definition. A formal pointed elliptic moduli problem (or elliptic
moduli problem, for brevity) is a sheaf of formal moduli problems on M that
is represented by an elliptic L∞ algebra.

The basepoint of the moduli problem corresponds, in the setting of
field theory, to the distinguished solution we are expanding around.

3.2 Examples of elliptic moduli problems related to
scalar field theories

We examine the free scalar field before adding interactions. In Section
4.5 we relate this discussion to the usual formulation in terms of action
functionals.

3.2.1 The free scalar field theory

Let us start with the most basic example of an elliptic moduli problem,
that of harmonic functions. Let M be a Riemannian manifold. We want
to consider the formal moduli problem describing functions φ on M
that are harmonic, namely, functions that satisfy D φ = 0 where D is
the Laplacian. The base point of this formal moduli problem is the zero
function.

The elliptic L∞ algebra describing this formal moduli problem is de-
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fined by

L = C∞(M)[−1] D−→ C∞(M)[−2].

This complex is thus situated in degrees 1 and 2. The products ln in this
L∞ algebra are all zero for n ≥ 2.

In order to justify this definition, let us analyze the Maurer-Cartan
functor of this L∞ algebra. Let R be an ordinary (not dg) Artinian alge-
bra, and let m be the maximal ideal of R. The set of 0-simplices of the
simplicial set MCL(R) is the set

{φ ∈ C∞(M)⊗m | D φ = 0.}

Indeed, because the L∞ algebra L is Abelian, the set of solutions to the
Maurer-Cartan equation is simply the set of closed degree 1 elements
of the cochain complex L⊗m. All higher simplices in the simplicial set
MCL(R) are constant. To see this, note that if φ ∈ L ⊗ m⊗Ω∗(4n) is
a closed element in degree 1, then φ must be in C∞(M)⊗m⊗Ω0(4n).
The fact that φ is closed amounts to the statement that D φ = 0 and that
ddRφ = 0, where ddR is the de Rham differential on Ω∗(4n).

Let us now consider the Maurer-Cartan simplicial set associated to a
differential graded Artinian algebra (R, m) with differential dR. The the
set of 0-simplices of MCL(R) is the set

{φ ∈ C∞(M)⊗m0, ψ ∈ C∞(M)⊗m−1 | D φ = dRψ.}

(The superscripts on m indicate the cohomological degree.) Thus, the
0-simplices of our simplicial set can be identified with the set R-valued
smooth functions φ on M that are harmonic up to a homotopy given by
ψ and also vanish modulo the maximal ideal m.

Next, let us identify the set of 1-simplices of the Maurer-Cartan sim-
plicial set MCL(R). This is the set of closed degree 1 elements of L ⊗
m⊗Ω∗([0, 1]). Such a closed degree 1 element has four terms:

φ0(t) ∈ C∞(M)⊗m0 ⊗Ω0([0, 1])

φ1(t)dt ∈ C∞(M)⊗m−1 ⊗Ω1([0, 1])

ψ0(t) ∈ C∞(M)⊗m−1 ⊗Ω0([0, 1])

ψ1(t)dt ∈ C∞(M)⊗m−2 ⊗Ω1([0, 1]).
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Being closed amounts to satisfying the three equations

D φ0(t) = dRψ0(t)
d
dt

φ0(t) = dRφ1(t)

D φ1(t) +
d
dt

ψ0(t) = dRψ1(t).

These equations can be interpreted as follows. We think of φ0(t) as pro-
viding a family of R-valued smooth functions on M, which are har-
monic up to a homotopy specified by ψ0(t). Further, φ0(t) is indepen-
dent of t, up to a homotopy specified by φ1(t). Finally, we have a coher-
ence condition among our two homotopies.

The higher simplices of the simplicial set have a similar interpreta-
tion.

3.2.2 Interacting scalar field theories

Next, we will consider an elliptic moduli problem that arises as the
Euler-Lagrange equation for an interacting scalar field theory. Let φ de-
note a smooth function on the Riemannian manifold M with metric g.
The action functional is

S(φ) =
∫

M
1
2 φ D φ + 1

4! φ
4 dvolg .

The Euler-Lagrange equation for the action functional S is

D φ + 1
3! φ

3 = 0,

a nonlinear PDE, whose space of solutions is hard to describe.

Instead of trying to describe the actual space of solutions to this non-
linear PDE, we will describe the formal moduli problem of solutions to
this equation where φ is infinitesimally close to zero.

The formal moduli problem of solutions to this equation can be de-
scribed as the solutions to the Maurer-Cartan equation in a certain el-
liptic L∞ algebra which continue we call L. As a cochain complex, L
is

L = C∞(M)[−1] D−→ C∞(M)[−2].
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Thus, C∞(M) is situated in degrees 1 and 2, and the differential is the
Laplacian.

The L∞ brackets ln are all zero except for l3. The cubic bracket l3 is
the map

l3 : C∞(M)⊗3 → C∞(M)

φ1 ⊗ φ2 ⊗ φ3 7→ φ1φ2φ3.

Here, the copy of C∞(M) appearing in the source of l3 is the one situ-
ated in degree 1, whereas that appearing in the target is the one situated
in degree 2.

If R is an ordinary (not dg) Artinian algebra, then the Maurer-Cartan
simplicial set MCL(R) associated to R has for 0-simplices the set φ ∈
C∞(M)⊗m such that D φ + 1

3! φ
3 = 0. This equation may look as com-

plicated as the full nonlinear PDE, but it is substantially simpler than
the original problem. For example, consider R = R[ε]/(ε2), the “dual
numbers.” Then φ = εφ1 and the Maurer-Cartan equation becomes
D φ1 = 0. For R = R[ε]/(ε4), we have φ = εφ1 + ε2φ2 + ε3φ3 and
the Maurer-Cartan equation becomes a triple of simpler linear PDE:

D φ1 = 0, D φ2 = 0, and Dφ3 +
1
2 φ3

1 = 0.

We are simply reading off the εk components of the Maurer-Cartan
equation. The higher simplices of this simplicial set are constant.

If R is a dg Artinian algebra, then the simplicial set MCL(R) has for
0-simplices the set of pairs φ ∈ C∞(M) ⊗ m0 and ψ ∈ C∞(M) ⊗ m−1

such that

D φ + 1
3! φ

3 = dRψ.

We should interpret this as saying that φ satisfies the Euler-Lagrange
equations up to a homotopy given by ψ.

The higher simplices of this simplicial set have an interpretation sim-
ilar to that described for the free theory.
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3.3 Examples of elliptic moduli problems related to
gauge theories

We discuss three natural moduli problems: the moduli of flat connec-
tions on a smooth manifold, the moduli of self-dual connections on a
smooth 4-manifold, and the moduli of holomorphic bundles on a com-
plex manifold. In Section 4.6 we relate these directly to gauge theories.

3.3.1 Flat bundles

Next, let us discuss a more geometric example of an elliptic moduli
problem: the moduli problem describing flat bundles on a manifold M.
In this case, because flat bundles have automorphisms, it is more diffi-
cult to give a direct definition of the formal moduli problem.

Thus, let G be a Lie group, and let P → M be a principal G-bundle
equipped with a flat connection ∇0. Let gP be the adjoint bundle (asso-
ciated to P by the adjoint action of G on its Lie algebra g). Then gP is a
bundle of Lie algebras on M, equipped with a flat connection that we
will also denote ∇0.

For each Artinian dg algebra R, we want to define the simplicial set
DefP(R) of R-families of flat G-bundles on M that deform P. The ques-
tion is “what local L∞ algebra yields this elliptic moduli problem?”

The answer is L = Ω∗(M, gP), where the differential is d∇0 , the de
Rham differential coupled to our connection ∇0. But we need to ex-
plain how to find this answer so we will provide the reasoning behind
our answer. This reasoning is a model for finding the local L∞ algebras
associated to field theories.

Let us start by being more precise about the formal moduli problem
that we are studying. We will begin by considering only on the defor-
mations before we examine the issue of gauge equivalence. In other
words, we start by just discussing the 0-simplices of our formal moduli
problem.

As the underlying topological bundle of P is rigid, we can only de-
form the flat connection on P. Let’s consider deformations over a dg
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Artinian ring R with maximal ideal m. A deformation of the connection
∇0 on P is given by an element

A ∈ Ω1(M, gP)⊗m0,

since the difference∇−∇0 between any connection and our initial con-
nection is a gP-valued 1-form. The curvature of the deformed connec-
tion ∇0 + A is

F(A) = d∇0 A + 1
2 [A, A] ∈ Ω2(M, gP)⊗m.

Note that, by the Bianchi identity, d∇0 F(A) + [A, F(A)] = 0.

Our first attempt to define the formal moduli functor DefP might be
that our moduli problem only returns deformations A such that F(A) =
0. From a homotopical perspective, it is more natural to loosen up this
strict condition by requiring instead that F(A) be exact in the cochain
complex Ω2(M, gP)⊗m of m-valued 2-forms on M. In other words, we
ask for A to be flat up to homotopy. However, we should also ask that
F(A) is exact in a way compatible with the Bianchi identity, because a
curvature always satisfies this condition.

Thus, as a preliminary, tentative version of the formal moduli functor
DefP, we will define the 0-simplices Defprelim

P (R)[0] by{
A ∈ Ω1(M, gP)⊗m0, B ∈ Ω2(M, gP)⊗m−1

∣∣∣∣∣ F(A) = dRB

d∇0 B + [A, B] = 0

}
.

These equations say precisely that there exists a term B making F(A)
exact and that B satisfies a condition that enforces the Bianchi identity
on F(A).

This functor Defprelim
P [0] does not behave the way that we want, though.

Consider fixing our Artinian algebra to be R = R[εn]/(ε2
n), where εn

has degree −n; this is a shifted version of the “dual numbers.” As a
presheaf of sets on M, the functor Defprelim

P [0](R) assigns to each open
U the set

{a ∈ Ω1(U, gP), b ∈ Ω2(U, gP) | d∇0 a = 0, d∇0 b = 0}.

In other words, we obtain the sheaf of sets Ω1
cl(−, gP) × Ω2

cl(−, gP),
which returns closed 1-forms and closed 2-forms. This sheaf is not, how-
ever, a homotopy sheaf, because these sheaves are not fine and hence
have higher cohomology groups.
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How do we ensure that we obtain a homotopy sheaf of formal mod-
uli problems? We will ask that B satisfy the Bianchi constraint up a se-
quence of higher homotopies, rather than satisfy the constraint strictly.
Thus, the 0-simplices DefP(R)[0] of our simplicial set of deformations
are defined by

A ∈ Ω1(M, gP)⊗m0

B ∈
⊕
k≥2

Ωk(M, gP)⊗m1−k

∣∣∣∣∣∣∣ F(A) + dB + [A, B] + 1
2 [B, B] = 0

 .

Here, d refers to the total differential d∇0 + dR on the tensor product
Ω≥2(M, gP)⊗m of cochain complexes.

If we let Bi ∈ Ωi(M, gP)⊗m1−i, then the first few constraints on the
Bi can be written as

d∇0 B2 + [A, B2] + dRB3 = 0

d∇0 B3 + [A, B3] +
1
2 [B2, B2] + dRB4 = 0.

Thus, B2 satisfies the Bianchi constraint up to a homotopy defined by
B3, and so on.

The higher simplices of this simplicial set must relate gauge-equivalent
solutions. If we restricted our attention to ordinary Artinian algebras
— i.e., to dg algebras R concentrated in degree 0 (and so with zero dif-
ferential) — then we could define the simplicial set DefP(R) to be the
homotopy quotient of DefP(R)[0] by the nilpotent group associated to
the nilpotent Lie algebra Ω0(M, gP) ⊗ m, which acts on DefP(R)[0] in
the standard way (see, for instance, Kontsevich and Soibelman (n.d.) or
Manetti (2009)).

This approach, however, does not extend well to the dg Artinian al-
gebras. When the algebra R is not concentrated in degree 0, the higher
simplices of DefP(R) must also involve elements of R of negative co-
homological degree. Indeed, degree 0 elements of R should be thought
of as homotopies between degree 1 elements of R, and so should con-
tribute 1-simplices to our simplicial set.

A slick way to define a simplicial set DefP(R)[n] with both desiderata
is as{

A ∈ Ω∗(M, gP)⊗m⊗Ω∗(4n) | d∇0 A + dR A + d4n A + 1
2 [A, A] = 0

}
,
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where d4n denotes the exterior derivative on Ω∗(4n).

Suppose that R is concentrated in degree 0 (so that the differential on
R is zero). Then, the higher forms on M do not play any role, and

DefP(R)[0] = {A ∈ Ω1(M, gP)⊗m | d∇0 A + 1
2 [A, A] = 0}.

One can show (see Getzler (2009)) that in this case, the simplicial set
DefP(R) is weakly homotopy equivalent to the homotopy quotient of
DefP(R)[0] by the nilpotent group associated to the nilpotent Lie alge-
bra Ω0(M, gP)⊗m. Indeed, a 1-simplex in the simplicial set DefP(R) is
given by a family of the form A0(t) + A1(t)dt, where A0(t) is a smooth
family of elements of Ω1(M, gP)⊗m depending on t ∈ [0, 1], and A1(t)
is a smooth family of elements of Ω0(M, gP) ⊗ m. The Maurer-Cartan
equation in this context says that

d∇0 A0(t) + 1
2 [A0(t), A0(t)] = 0

d
dt A0(t) + [A1(t), A0(t)] = 0.

The first equation says that A0(t) defines a family of flat connections.
The second equation says that the gauge equivalence class of A0(t) is
independent of t. In this way, gauge equivalences are represented by
1-simplices in DefP(R).

It is immediate that the formal moduli problem DefP(R) is repre-
sented by the elliptic dg Lie algebra

L = Ω∗(M, g).

The differential on L is the de Rham differential d∇0 on M coupled to
the flat connection on g. The only nontrivial bracket is l2, which just
arises by extending the bracket of g over the commutative dg algebra
Ω∗(M) in the appropriate way.

3.3.2 Self-dual bundles

Next, we will discuss the formal moduli problem associated to the self-
duality equations on a 4-manifold. We won’t go into as much detail as
we did for flat connections; instead, we will simply write down the el-
liptic L∞ algebra representing this formal moduli problem. (For a care-
ful explanation, see the original article Atiyah et al. (1978).)
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Let M be an oriented 4-manifold. Let G be a Lie group, and let P→ M
be a principal G-bundle, and let gP be the adjoint bundle of Lie algebras.
Suppose we have a connection A on P with anti-self-dual curvature:

F(A)+ = 0 ∈ Ω2
+(M, gP)

(here Ω2
+(M) denotes the space of self-dual two-forms).

Then, the elliptic Lie algebra controlling deformations of (P, A) is
described by the diagram

Ω0(M, gP)
d−→ Ω1(M, gP)

d+−→ Ω2
+(M, gP).

Here d+ is the composition of the de Rham differential (coupled to the
connection on gP) with the projection onto Ω2

+(M, gP).

Note that this elliptic Lie algebra is a quotient of that describing the
moduli of flat G-bundles on M.

3.3.3 Holomorphic bundles

In a similar way, if M is a complex manifold and if P→ M is a holomor-
phic principal G-bundle, then the elliptic dg Lie algebra Ω0,∗(M, gP),
with differential ∂, describes the formal moduli space of holomorphic
G-bundles on M.

3.4 Cochains of a local L∞ algebra

Let L be a local L∞ algebra on M. If U ⊂ M is an open subset, thenL(U)
denotes the L∞ algebra of smooth sections of L on U. LetLc(U) ⊂ L(U)
denote the sub-L∞ algebra of compactly supported sections.

In appendix B.1, we define the algebra of functions on the space of
sections on a vector bundle on a manifold. We are interested in the al-
gebra

O(L(U)[1]) = ∏
n≥0

Hom
(
(L(U)[1])⊗n, R

)
Sn
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where the tensor product is the completed projective tensor product,
and Hom denotes the space of continuous linear maps.

This space is naturally a graded differentiable vector space (that is,
we can view it as a sheaf of graded vector spaces on the site of smooth
manifolds). However, it is important that we treat this object as a dif-
ferentiable pro-vector space. Basic facts about differentiable pro-vector
spaces are developed in appendix I.C.4. The pro-structure comes from
the filtration

FiO(L(U)[1]) = ∏
n≥i

Hom
(
(L(U)[1])⊗n, R

)
Sn

,

which is the usual filtration on “power series.”

The L∞ algebra structure on L(U) gives, as usual, a differential on
O(L(U)[1]), making O(L(U)[1]) into a differentiable pro-cochain com-
plex.

3.4.0.1 Definition. Define the Lie algebra cochain complex C∗(L(U)) to
be

C∗(L(U)) = O(L(U)[1])

equipped with the usual Chevalley-Eilenberg differential. Similarly, define

C∗red(L(U)) ⊂ C∗(L(U))

to be the reduced Chevalley-Eilenberg complex, that is, the kernel of the
natural augmentation map C∗(L(U)) → R. These are both differentiable
pro-cochain complexes.

We will think of C∗(L(U)) as the algebra of functions on the formal
moduli problem BL(U) associated to the L∞ algebra L(U). One defines
C∗(Lc(U)) in the same way, everywhere substituting Lc for L.

3.4.1 Cochains with coefficients in a module

Let L be a local L∞ algebra on M, and let L denote the smooth sections.
Let E be a graded vector bundle on M and equip the global smooth
sections E with a differential that is a differential operator.
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3.4.1.1 Definition. A local action of L on E is an action of L on E with the
property that the structure maps

L⊗n ⊗ E → E

(defined for n ≥ 1) are all polydifferential operators.

Note that L has an action on itself, called the adjoint action, where
the differential on L is the one coming from the L∞ structure, and the
action map

µn : L⊗n ⊗L → L

is the L∞ structure map ln+1.

Let L! = L∨⊗C∞
M

DensM. Then, L! has a natural local L-action, which
we should think of as the coadjoint action. This action is defined by
saying that if α1, . . . , αn ∈ L, the differential operator

µn(α1, . . . , αn,−) : L! → L!

is the formal adjoint to the corresponding differential operator arising
from the action of L on itself.

If E is a local module over L, then, for each U ⊂ M, we can define the
Chevalley-Eilenberg cochains

C∗(L(U), E (U))

of L(U) with coefficients in E (U). As above, one needs to take account
of the topologies on the vector spaces L(U) and E (U) when defin-
ing this Chevalley-Eilenberg cochain complex. Thus, as a graded vector
space,

C∗(L(U), E (U)) = ∏
n≥0

Hom((L(U)[1])⊗n, E (U))Sn

where the tensor product is the completed projective tensor product,
and Hom denotes the space of continuous linear maps. Again, we treat
this object as a differentiable pro-cochain complex.

As explained in the section on formal moduli problems (section 3.1),
we should think of a local module E over L as providing, on each
open subset U ⊂ M, a vector bundle on the formal moduli problem
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BL(U) associated to L(U). Then the Chevalley-Eilenberg cochain com-
plex C∗(L(U), E (U)) should be thought of as the space of sections of
this vector bundle.

3.5 D-modules and local L∞ algebras

Our definition of a local L∞ algebra is designed to encode the derived
moduli space of solutions to a system of non-linear differential equa-
tions. An alternative language for describing differential equations is
the theory of D-modules. In this section we will show how our local L∞
algebras can also be viewed as L∞ algebras in the symmetric monoidal
category of D-modules.

The main motivation for this extra layer of formalism is that local
action functionals — which play a central role in classical field theory
— are elegantly described using the language of D-modules.

Let C∞
M denote the sheaf of smooth functions on the manifold M, let

DensM denote the sheaf of smooth densities, and let DM the sheaf of
differential operators with smooth coefficients. The ∞-jet bundle Jet(E)
of a vector bundle E is the vector bundle whose fiber at a point x ∈ M is
the space of jets (or formal germs) at x of sections of E. The sheaf of sec-
tions of Jet(E), denoted J(E), is equipped with a canonical DM-module
structure, i.e., the natural flat connection sometimes known as the Car-
tan distribution. This flat connection is characterized by the property
that flat sections of J(E) are those sections which arise by taking the jet
at every point of a section of the vector bundle E. (For motivation, ob-
serve that a field φ (a section of E) gives a section of Jet(E) that encodes
all the local information about φ.)

The category of DM modules has a symmetric monoidal structure,
given by tensoring over C∞

M. The following lemma allows us to translate
our definition of local L∞ algebra into the world of D-modules.

3.5.0.1 Lemma. Let E1, . . . , En, F be vector bundles on M, and let Ei, F de-
note their spaces of global sections. Then, there is a natural bijection

PolyDiff(E1 × · · · × En, F ) � HomDM (J(E1)⊗ · · · ⊗ J(En), J(F))

where PolyDiff refers to the space of polydifferential operators. On the right
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hand side, we need to consider maps which are continuous with respect to the
natural adic topology on the bundle of jets.

Further, this bijection is compatible with composition.

A more formal statement of this lemma is that the multi-category of
vector bundles on M, with morphisms given by polydifferential op-
erators, is a full subcategory of the symmetric monoidal category of
DM modules. The embedding is given by taking jets. The proof of this
lemma (which is straightforward) is presented in Costello (2011b), Chap-
ter 5.

This lemma immediately tells us how to interpret a local L∞ algebra
in the language of D-modules.

3.5.0.2 Corollary. Let L be a local L∞ algebra on M. Then J(L) has the struc-
ture of L∞ algebra in the category of DM modules.

Indeed, the lemma implies that to give a local L∞ algebra on M is the
same as to give a graded vector bundle L on M together with an L∞
structure on the DM module J(L).

We are interested in the Chevalley-Eilenberg cochains of J(L), but
taken now in the category of DM modules. Because J(L) is an inverse
limit of the sheaves of finite-order jets, some care needs to be taken
when defining this Chevalley-Eilenberg cochain complex.

In general, if E is a vector bundle, let J(E)∨ denote the sheaf HomC∞
M
(J(E), C∞

M),
where HomC∞

M
denotes continuous linear maps of C∞

M-modules. This
sheaf is naturally a DM-module. We can form the completed symmet-
ric algebra

Ored(J(E)) = ∏
n>0

Symn
C∞

M

(
J(E)∨

)
= ∏

n>0
HomC∞

M
(J(E)⊗n, C∞

M)Sn .

Note that Ored(J(E) is a DM-algebra, as it is defined by taking the com-
pleted symmetric algebra of J(E)∨ in the symmetric monoidal category
of DM-modules where the tensor product is taken over C∞

M.

We can equivalently view J(E)∨ as an infinite-rank vector bundle
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with a flat connection. The symmetric power sheaf Symn
C∞

M
(J(E)∨) is

the sheaf of sections of the infinite-rank bundle whose fibre at x is the
symmetric power of the fibre of J(E)∨ at x.

In the case that E is the trivial bundle R, the sheaf J(R)∨ is naturally
isomorphic to DM as a left DM-module. In this case, sections of the sheaf
Symn

C∞
M
(DM) are objects which in local coordinates are finite sums of

expressions like

f (xi)∂I1 . . . ∂In .

where ∂Ij is the partial differentiation operator corresponding to a multi-
index.

We should think of an element of Ored(J(E)) as a Lagrangian on
the space E of sections of E (a Lagrangian in the sense that an action
functional is given by a Lagrangian density). Indeed, every element of
Ored(J(E)) has a Taylor expansion F = ∑ Fn where each Fn is a section

Fn ∈ HomC∞
M
(J(E)⊗n, C∞

M)Sn .

Each such Fn is a multilinear map which takes sections φ1, . . . , φn ∈ E

and yields a smooth function Fn(φ1, . . . , φn) ∈ C∞(M), with the prop-
erty that Fn(φ1, . . . , φn)(x) only depends on the ∞-jet of φi at x.

In the same way, we can interpret an element F ∈ Ored(J(E)) as some-
thing that takes a section φ ∈ E and yields a smooth function

∑ Fn(φ, . . . , φ) ∈ C∞(M),

with the property that F(φ)(x) only depends on the jet of φ at x.

Of course, the functional F is a formal power series in the variable
φ. One cannot evaluate most formal power series, since the putative
infinite sum makes no sense. Instead, it only makes sense to evaluate
a formal power series on infinitesimal elements. In particular, one can
always evaluate a formal power series on nilpotent elements of a ring.

Indeed, a formal way to characterize a formal power series is to use
the functor of points perspective on Artinian algebras: if R is an auxil-
iary graded Artinian algebra with maximal ideal m and if φ ∈ E ⊗ m,
then F(φ) is an element of C∞(M) ⊗ m. This assignment is functorial
with respect to maps of graded Artin algebras.
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3.5.1 Local functionals

We have seen that we can interpret Ored(J(E)) as the sheaf of Lagrangians
on a graded vector bundle E on M. Thus, the sheaf

DensM⊗C∞
M

Ored(J(E))

is the sheaf of Lagrangian densities on M. A section F of this sheaf is
something which takes as input a section φ ∈ E of E and produces a
density F(φ) on M, in such a way that F(φ)(x) only depends on the jet
of φ at x. (As before, F is a formal power series in the variable φ.)

The sheaf of local action functionals is the sheaf of Lagrangian den-
sities modulo total derivatives. Two Lagrangian densities that differ by
a total derivative define the same local functional on (compactly sup-
ported) sections because the integral of total derivative vanishes. Thus,
we do not want to distinguish them, as they lead to the same physics.
The formal definition is as follows.

3.5.1.1 Definition. Let E be a graded vector bundle on M, whose space of
global sections is E . Then the space of local functionals on E is

Oloc(E ) = DensM⊗DMOred(J(E)).

Here, DensM is the right DM-module of densities on M.

Let Ored(Ec) denote the algebra of functionals modulo constants on
the space Ec of compactly supported sections of E. Integration induces
a natural inclusion

ι : Oloc(E )→ Ored(Ec),

where the Lagrangian density S ∈ Oloc(E ) becomes the functional ι(S) :
φ 7→

∫
M S(φ). (Again, φ must be nilpotent and compactly supported.)

From here on, we will use this inclusion without explicitly mentioning
it.

3.5.2 Local Chevalley-Eilenberg complex of a local L∞ algebra

Let L be a local L∞ algebra. Then we can form, as above, the reduced
Chevalley-Eilenberg cochain complex C∗red(J(L)) of L. This is the DM-
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algebra Ored(J(L)[1]) equipped with a differential encoding the L∞ struc-
ture on L.

3.5.2.1 Definition. For L a local L∞-algebra, the local Chevalley-Eilenberg
complex is

C∗red,loc(L) = DensM⊗DM C∗red(J(L)).

This is the space of local action functionals on L[1], equipped with
the Chevalley-Eilenberg differential. In general, if g is an L∞ algebra, we
think of the Lie algebra cochain complex C∗(g) as being the algebra of
functions on Bg. In this spirit, we sometimes use the notation Oloc(BL)
for the complex C∗red,loc(L).

Note that C∗red,loc(L) is not a commutative algebra. Although the DM-
module C∗red(J(L)) is a commutative DM-module, the functor DensM⊗DM−
is not a symmetric monoidal functor from DM-modules to cochain com-
plexes, so it does not take commutative algebras to commutative alge-
bras.

Note that there is a natural inclusion of cochain complexes

C∗red,loc(L)→ C∗red(Lc(M)),

where Lc(M) denotes the L∞ algebra of compactly supported sections
of L. The complex on the right hand side was defined earlier (see defi-
nition 3.4.0.1) and includes nonlocal functionals.

3.5.3 Central extensions and local cochains

In this section we will explain how local cochains are in bijection with
certain central extensions of a local L∞ algebra. To avoid some minor
analytical difficulties, we will only consider central extensions that are
split as precosheaves of graded vector spaces.

3.5.3.1 Definition. Let L be a local L∞ algebra on M. A k-shifted local
central extension of L is an L∞ structure on the precosheaf Lc⊕C[k], where
C is the constant precosheaf which takes value C on any open subset. We use
the notation L̃c for the precosheafLc⊕C[k]. We require that this L∞ structure
has the following properties.
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(i) The sequence

0→ C[k]→ L̃c → Lc → 0

is an exact sequence of precosheaves of L∞ algebras, where C[k] is given the
abelian structure and Lc is given its original structure.

(ii) This implies that the L∞ structure on L̃c is determined from that on Lc by
L∞ structure maps

l̃n : Lc → C[k]

for n ≥ 1. We require that these structure maps are given by local action
functionals.

Two such central extensions, say L̃c and L̃′c, are isomorphic if there is an
L∞-isomorphism

L̃c → L̃′c

that is the identity on C[k] and on the quotient Lc. This L∞ isomorphism must
satisfy an additional property: the terms in this L∞ -isomorphism, which are
given (using the decomposition of L̃c and L̃′c as Lc ⊕C[k]) by functionals

L⊗n
c → C[k],

must be local.

This definition refines the definition of central extension given in sec-
tion I.3.6 to include an extra locality property.

Example: Let Σ be a Riemann surface, and let g be a Lie algebra with an
invariant pairing. Let L = Ω0,∗

Σ ⊗ g. Consider the Kac-Moody central
extension, as defined in section I.3.6. We let

L̃c = C · c⊕Lc,

where the central parameter c is of degree 1 and the Lie bracket is de-
fined by

[α, β]L̃c
= [α, β]Lc + c

∫
α∂β.

This is a local central extension. As shown in section I.5.5, the factoriza-
tion envelope of this extension recovers the vertex algebra of an associ-
ated affine Kac-Moody algebra. ♦
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3.5.3.2 Lemma. Let L be a local L∞ algebra on a manifold M. There is a
bijection between isomorphism classes of k-shifted local central extensions of
L and classes in Hk+2(Oloc(BL)).

Proof This result is almost immediate. Indeed, any closed degree k + 2
element of Oloc(BL) give a local L∞ structure on C[k]⊕ Lc, where the
L∞ structure maps

l̃n : Lc(U)→ C[k]

arise from the natural cochain map Oloc(BL) → C∗red(Lc(U)). The fact
that we start with a closed element of Oloc(BL) corresponds to the fact
that the L∞ axioms hold. Isomorphisms of local central extensions cor-
respond to adding an exact cocycle to a closed degree k + 2 element in
Oloc(BL). �

Particularly important is the case when we have a −1-shifted central
extension. As explained in section I.3.6.3, in this situation we can form
the twisted factorization envelope, which is a factorization algebra over
C[t] (where t is of degree 0) defined by sending an open subset U to the
Chevalley-Eilenberg chain complex C∗(L̃c(U)). We think of C[t] as the
Chevalley-Eilenberg chains of the Abelian Lie algebra C[−1]. In this
situation, we can set t to be a particular value, leading to a twisted fac-
torization envelope of L. Twisted factorization envelopes will play a
central role in our formulation of Noether’s theorem at the quantum
level in chapter 13.

3.5.4

Calculations of local L∞ algebra cohomology play an important role
in quantum field theory. Indeed, the obstruction-deformation complex
describing quantizations of a classical field theory are local L∞ algebra
cohomology groups. Thus, it will be helpful to be able to compute some
examples.

Before we start, let us describe a general result that will facilitate com-
putation.

3.5.4.1 Lemma. Let M be an oriented manifold and let L be a local L∞-
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algebra on M. Then, there is a natural quasi-isomorphism

Ω∗(M, C∗red(J(L)))[dimM] � C∗red,loc(L).

Proof By definition,

O(BL) = DensM⊗DM C∗red J(L)

where DM is the sheaf of C∞ differential operators. The DM-module
C∗red(J(L)) is flat (this was checked in Costello (2011b)), so we can re-
place the tensor product over DM with the left-derived tensor product.

Since M is oriented, we can replace DensM by Ωd
M where d = dim M.

The right DM-module Ωd
M has a free resolution of the form

· · · → Ωd−1
M ⊗C∞

M
DM → Ωd M⊗C∞

M
DM

where Ωi
M ⊗C∞

M
DM is in cohomological degree −i, and the differen-

tial in this complex is the de Rham differential coupled to the left DM-
module structure on DM. (This is sometimes called the Spencer resolu-
tion.)

It follows that we the derived tensor product can be represented as

Ωd
M ⊗mbbL

DM
C∗red(J(L)) = Ω∗(M, C∗red(J(L)))[d]

as desired. �

3.5.4.2 Lemma. Let Σ be a Riemann surface. Let L be the local L∞ algebra
on Σ defined by L(U) = Ω0,∗(U, TU). In other words, L is the Dolbeault
resolution of the sheaf of holomorphic vector fields on Σ.

Then,

Hi(O(BL)) = H∗(Σ)[−1].

Remark: The class in H1(O(BL)) corresponding to the class 1 ∈ H0(Σ)
leads to a local central extension of L. One can check that the corre-
sponding twisted factorization envelope corresponds to the Virasoro
vertex algebra, in the same way that we showed in section I.5.5 that the
Kac-Moody extension above leads to the Kac-Moody vertex algebra. ♦

Proof The previous lemma tells us that we need to compute the de
Rham cohomology with coefficients in the DΣ-module C∗red(J(L))[2].
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Suppose we want to compute the de Rham cohomology with coeffi-
cients in any complex M of DΣ-modules. There is a spectral sequence
converging to this cohomology, associated to the filtration on Ω∗(Σ, M)
by form degree. The E2 page of this spectral sequence is the de Rham
complex Ω∗(Σ,H∗(M)) with coefficients in the cohomology DΣ-moduleH∗(M).

We will use this spectral sequence in our example. The first step is to
compute the cohomology of the DΣ-module C∗red(J(L)). We will com-
pute the cohomology of the fibres of this sheaf at an arbitrary point
x ∈ Σ. Let us choose a holomorphic coordinate z at x. The fibre Jx(L)
at x is the dg Lie algebra C[[z, z, dz]]∂z with differential ∂. This dg Lie
algebra is quasi-isomorphic to the Lie algebra of formal vector fields
C[[z]]∂z.

A calculation performed by Gelfand-Fuchs shows that the reduced
Lie algebra cohomology of C[[z]]∂z is concentrated in degree 3, where
it is one-dimensional. A cochain representative for the unique non-zero
cohomology class is ∂∨z (z∂z)∨(z2∂z)∨ where (zk∂z)∨ refers to the ele-
ment in (C[[z]]∂z)∨ in the dual basis.

Thus, we find that the cohomology of C∗red(J(L)) is a rank one local
system situated in cohomological degree 3. Choosing a formal coor-
dinate at a point in a Riemann surface trivializes the fibre of this line
bundle. The trivialization is independent of the coordinate choice, and
compatible with the flat connection. From this we deduce that

H∗(C∗red(J(L))) = C∞
Σ [−3]

is the trivial rank one local system, situated in cohomological degree 3.

Therefore, the cohomology of Oloc(BL) is a shift by −1 of the de
Rham cohomology of this trivial flat line bundle, completing the re-
sult. �

3.5.5 Cochains with coefficients in a local module for a local
L∞ algebras

Let L be a local L∞ algebra on M, and let E be a local module for L. Then
J(E) has an action of the L∞ algebra J(L), in a way compatible with the
DM-module on both J(E) and J(L).
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3.5.5.1 Definition. Suppose that E has a local action of L. Then the local
cochains C∗loc(L, E ) ofLwith coefficients in E is defined to be the flat sections
of the DM-module of cochains of J(L) with coefficients in J(E).

More explicitly, the DM-module C∗(J(L), J(E) is

∏
n≥0

HomC∞
M

(
(J(L)[1])⊗n, J(E)

)
Sn

,

equipped with the usual Chevalley-Eilenberg differential. The sheaf of
flat sections of this DM module is the subsheaf

∏
n≥0

HomDM

(
(J(L)[1])⊗n, J(E)

)
Sn

,

where the maps must be DM-linear. In light of the fact that

HomDM

(
J(L)⊗n, J(E)

)
= PolyDiff(L⊗n, E ),

we see that C∗loc(L, E ) is precisely the subcomplex of the Chevalley-
Eilenberg cochain complex

C∗(L, E ) = ∏
n≥0

HomR((L[1])⊗n, E )Sn

consisting of those cochains built up from polydifferential operators.



4
The classical Batalin-Vilkovisky formalism

In the preceding chapter we explained how to encode the formal neigh-
borhood of a solution to the Euler-Lagrange equations — a formal el-
liptic moduli problem — by an elliptic L∞ algebra. As we explain in
this chapter, the elliptic moduli problems arising from action function-
als possess even more structure: a shifted symplectic form, so that the
formal moduli problem is a derived symplectic space.

Our starting point is the finite-dimensional model that motivates the
Batalin-Vilkovisky formalism for classical field theory. With this model
in mind, we then develop the relevant definitions in the language of
elliptic L∞ algebras. The end of the chapter is devoted to several exam-
ples of classical BV theories, notably cotangent field theories, which are
the analogs of cotangent bundles in ordinary symplectic geometry.

4.1 The classical BV formalism in finite dimensions

Before we discuss the Batalin-Vilkovisky formalism for classical field
theory, we will discuss a finite-dimensional toy model (which we can
think of as a 0-dimensional classical field theory). Our model for the
space of fields is a finite-dimensional smooth manifold manifold M.
The “action functional” is given by a smooth function S ∈ C∞(M).
Classical field theory is concerned with solutions to the equations of
motion. In our setting, the equations of motion are given by the sub-
space Crit(S) ⊂ M. Our toy model will not change if M is a smooth

50



4.1 The classical BV formalism in finite dimensions 51

algebraic variety or a complex manifold, or indeed a smooth formal
scheme. Thus we will write O(M) to indicate whatever class of func-
tions (smooth, polynomial, holomorphic, power series) we are consid-
ering on M.

If S is not a nice function, then this critical set can by highly singular.
The classical Batalin-Vilkovisky formalism tells us to take, instead the
derived critical locus of S. (Of course, this is exactly what a derived al-
gebraic geometer — see Lurie (n.d.), Toën (2009) — would tell us to do
as well.) We will explain the essential idea without formulating it pre-
cisely inside any particular formalism for derived geometry. For such a
treatment, see Vezzosi (2020).

The critical locus of S is the intersection of the graph

Γ(dS) ⊂ T∗M

with the zero-section of the cotangent bundle of M. Algebraically, this
means that we can write the algebra O(Crit(S)) of functions on Crit(S)
as a tensor product

O(Crit(S)) = O(Γ(dS))⊗O(T∗M) O(M).

Derived algebraic geometry tells us that the derived critical locus is ob-
tained by replacing this tensor product with a derived tensor product.
Thus, the derived critical locus of S, which we denote Crith(S), is an
object whose ring of functions is the commutative dg algebra

O(Crith(S)) = O(Γ(dS))⊗L
O(T∗M) O(M).

In derived algebraic geometry, as in ordinary algebraic geometry, spaces
are determined by their algebras of functions. In derived geometry,
however, one allows differential-graded algebras as algebras of func-
tions (normally one restricts attention to differential-graded algebras
concentrated in non-positive cohomological degrees).

We will take this derived tensor product as a definition of O(Crith(S)).

4.1.1 An explicit model

It is convenient to consider an explicit model for the derived tensor
product. By taking a standard Koszul resolution of O(M) as a module
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over O(T∗M), one sees that O(Crith(S)) can be realized as the complex

O(Crith(S)) ' . . . ∨dS−−→ Γ(M,∧2TM)
∨dS−−→ Γ(M, TM)

∨dS−−→ O(M).

In other words, we can identify O(Crith(S)) with functions on the “graded
manifold” T∗[−1]M, equipped with the differential given by contract-
ing with the 1-form dS. This notation T∗[−1]M denotes the ordinary
smooth manifold M equipped with the graded-commutative algebra
SymC∞

M
(Γ(M, TM)[1]) as its ring of functions.

Note that

O(T∗[−1]M) = Γ(M,∧∗TM)

has a Poisson bracket of cohomological degree 1, called the Schouten-
Nijenhuis bracket. This Poisson bracket is characterized by the fact that
if f , g ∈ O(M) and X, Y ∈ Γ(M, TM), then

{X, Y} = [X, Y]

{X, f } = X f

{ f , g} = 0

and the Poisson bracket between other elements of O(T∗[−1]M) is in-
ferred from the Leibniz rule.

The differential on O(T∗[−1]M) corresponding to that on O(Crith(S))
is given by

dφ = {S, φ}

for φ ∈ O(T∗[−1]M).

The derived critical locus of any function thus has a symplectic form
of cohomological degree −1. It is manifest in this model and hence can
be found in others. In the Batalin-Vilkovisky formalism, the space of
fields always has such a symplectic structure. However, one does not
require that the space of fields arises as the derived critical locus of a
function.
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4.2 The classical BV formalism in infinite dimensions

We would like to consider classical field theories in the BV formalism.
We have already explained how the language of elliptic moduli prob-
lems captures the formal geometry of solutions to a system of PDE.
Now we need to discuss the shifted symplectic structures possessed by
a derived critical locus. For us, a classical field theory will be specified
by an elliptic moduli problem equipped with a symplectic form of co-
homological degree −1.

We defined the notion of formal elliptic moduli problem on a man-
ifold M using the language of L∞ algebras. Thus, in order to give the
definition of a classical field theory, we need to understand the follow-
ing question: what extra structure on an L∞ algebra g endows the cor-
responding formal moduli problem with a symplectic form?

In order to answer this question, we first need to understand a lit-
tle about what it means to put a shifted symplectic form on a (formal)
derived stack.

In the seminal work of Schwarz (1993); Alexandrov et al. (1997), a
definition of a shifted symplectic form on a dg manifold is given. Dg
manifolds where an early attempt to develop a theory of derived ge-
ometry. It turns out that dg manifolds are sufficient to capture some
aspects of the modern theory of derived geometry, including formal
derived geometry.

In the world of dg manifolds, as in any model of derived geometry,
all spaces of tensors are cochain complexes. In particular, the space of
i-forms Ωi(M) on a dg manifold is a cochain complex. The differential
on this cochain complex is called the internal differential on i-forms. In
addition to the internal differential, there is also a de Rham differential
ddR : Ωi(M) → Ωi+1(M) which is a cochain map. Schwarz defined a
symplectic form on a dg manifoldM to be a two-form ω which is both
closed in the differential on the complex of two-forms, and which is
also closed under the de Rham differential mapping two-forms to three-
forms. A symplectic form is also required to be non-degenerate. The
symplectic two-form ω will have some cohomological degree, which
for the case relevant to the BV formalism is −1.
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Following these ideas, Pantev et al. (2013a) give a definition of shifted
symplectic structure in the more recent language of derived stacks. In
this approach, instead of asking that the two-form defining the sym-
plectic structure be closed both in the internal differential on two-forms
and closed under the de Rham differential, one constructs a double
complex

Ω≥2 = Ω2 → Ω3[−1]→ . . .

as the subcomplex of the de Rham complex consisting of 2 and higher
forms. One then looks for an element of this double complex which is
closed under the total differential (the sum of the de Rham differential
and the internal differential on each space of k-forms) and whose 2-
form component is non-degenerate in a suitable sense.

However, it turns out that, in the case of formal derived stacks, the
definition given by Schwarz and that given by Pantev et al. coincides.
One can also show that in this situation there is a Darboux lemma,
showing that we can take the symplectic form to have constant coef-
ficients. In order to explain what we mean by this, let us explain how to
understand forms on a formal derived stack in terms of the associated
L∞-algebra.

Given a pointed formal moduli problemM, the associated L∞ alge-
bra gM has the property that

gM = TpM[−1].

Further, we can identify geometric objects onM in terms of gM as fol-
lows.

C∗(gM) the algebra O(M)
of functions onM

gM-modules OM-modules

the gM-module gM[1] the tangent bundle TM

the gM-module g∗M[1] the cotangent bundle T∗M

C∗(gM, V) the OM-module for
the gM-module V
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Following this logic, we see that the complex of 2-forms onM is iden-
tified with C∗(gM,∧2(g∨M[−1])).

As we have seen, according to Schwarz, a symplectic form onM is
a two-form on M which is closed for both the internal and de Rham
differentials. Any constant-coefficient two-form is automatically closed
under the de Rham differential. A constant-coefficient two-form of de-
gree k is an element of Sym2(gM)∨ of cohomological degree k− 2, i.e. a
symmetric pairing on gM of this degree. Such a two-form is closed for
the internal differential if and only if it is invariant.

To give a formal pointed moduli problem with a symplectic form of
cohomological degree k is the same as to give an L∞ algebra with an
invariant and non-degenerate pairing of cohomological degre k− 2.

Thus, we find that constant coefficient symplectic two-forms of de-
gree k on M are precisely the same as non-degenerate symmetric in-
variant pairings on gM. The relation between derived symplectic geom-
etry and invariant pairings on Lie algebras was first developed in Kont-
sevich (1993).

The following formal Darboux lemma makes this relationship into
an equivalence.

4.2.0.1 Lemma. Let g be a finite-dimensional L∞ algebra. Then, k-shifted
symplectic structures on the formal derived stack Bg (in the sense of Pantev
et al. (2013a)) are the same as symmetric invariant non-degenerate pairings
on g of cohomological degree k− 2.

The proof is a little technical, and appears in Appendix C. The proof
of a closely related statement in a non-commutative setting was given
in Kontsevich and Soibelman (2009). In the statement of the lemma,
“the same” means that simplicial sets parametrizing the two objects are
canonically equivalent.

Following this idea, we will define a classical field theory to be an
elliptic L∞ algebra equipped with a non-degenerate invariant pairing
of cohomological degree −3. Let us first define what it means to have
an invariant pairing on an elliptic L∞ algebra.

4.2.0.2 Definition. Let M be a manifold, and let E be an elliptic L∞ algebra
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on M. An invariant pairing on E of cohomological degree k is a symmetric
vector bundle map

〈−,−〉E : E⊗ E→ Dens(M)[k]

satisfying some additional conditions:

(i) Non-degeneracy: we require that this pairing induces a vector bundle
isomorphism

E→ E∨ ⊗Dens(M)[−3].

(ii) Invariance: let Ec denotes the space of compactly supported sections of E.
The pairing on E induces an inner product on Ec, defined by

〈−,−〉 : Ec ⊗ Ec → R

α⊗ β→
∫

M
〈α, β〉 .

We require it to be an invariant pairing on the L∞ algebra Ec.

Recall that a symmetric pairing on an L∞ algebra g is called invariant
if, for all n, the linear map

g
⊗n+1 → R

α1 ⊗ · · · ⊗ αn+1 7→ 〈ln(α1, . . . , αn), αn+1〉

is graded anti-symmetric in the αi.

4.2.0.3 Definition. A formal pointed elliptic moduli problem with a
symplectic form of cohomological degree k on a manifold M is an elliptic
L∞ algebra on M with an invariant pairing of cohomological degree k− 2.

4.2.0.4 Definition. In the BV formalism, a (perturbative) classical field
theory on M is a formal pointed elliptic moduli problem on M with a sym-
plectic form of cohomological degree −1.

4.3 The derived critical locus of an action functional

The critical locus of a function f is, of course, the zero locus of the 1-
form d f . We are interested in constructing the derived critical locus of
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a local functional S ∈ Oloc(BL) on the formal moduli problem associ-
ated to a local L∞ algebra L on a manifold M. Thus, we need to under-
stand what kind of object the exterior derivative dS of such an action
functional S is.

If g is an L∞ algebra, then we should think of C∗red(g) as the algebra
of functions on the formal moduli problem Bg that vanish at the base
point. Similarly, C∗(g, g∨[−1]) should be the thought of as the space of
1-forms on Bg. The exterior derivative is thus a map

d : C∗red(g)→ C∗(g, g∨[−1]),

namely the universal derivation.

We will define a similar exterior derivative for a local Lie algebra L
on M. The analog of g∨ is the L-module L!, whose sections are (up to
completion) the Verdier dual of the sheaf L. Thus, our exterior deriva-
tive will be a map

d : Oloc(BL)→ C∗loc(L,L![−1]).

Recall that Oloc(BL) denotes the subcomplex of C∗red(Lc(M)) con-
sisting of local functionals. The exterior derivative for the L∞ algebra
Lc(M) is a map

d : C∗red(Lc(M))→ C∗(Lc(M),Lc(M)∨[−1]).

Note that the dual Lc(M)∨ of Lc(M) is the space L!
(M) of distribu-

tional sections of the bundle L! on M. Thus, the exterior derivative is a
map

d : C∗red(Lc(M))→ C∗(Lc(M),L!
(M)[−1]).

Note that

C∗loc(L,L![−1]) ⊂ C∗(Lc(M),L!(M)) ⊂ C∗(Lc(M),L!
(M)).

We will now show that d preserves locality and more.

4.3.0.1 Lemma. The exterior derivative takes the subcomplex Oloc(BL) of
C∗red(Lc(M)) to the subcomplex C∗loc(L,L![−1]) of C∗(Lc(M),L!

(M)).

Proof The content of this lemma is the familiar statement that the Euler-
Lagrange equations associated to a local action functional are differen-
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tial equations. We will give a formal proof, but the reader will see that
we only use integration by parts.

Any functional

F ∈ Oloc(BL)

can be written as a sum F = ∑ Fn where

Fn ∈ DensM⊗DM HomC∞
M

(
J(L)⊗n, C∞

M
)

Sn
.

Any such Fn can be written as a finite sum

Fn = ∑
i

ωDi
1 . . . Di

n

where ω is a section of DensM and Di
j are differential operators from

L to C∞
M. (The notation ωDi

1 . . . Di
n means simply to multiply the den-

sity ω by the outputs of the differential operators, which are smooth
functions.)

If we view F ∈ O(Lc(M)), then the nth Taylor component of F is the
linear map

Lc(M)⊗n → R

defined by

φ1 ⊗ · · · ⊗ φn →∑
i

∫
M

ω(Di
1φ1) . . . (Di

nφn).

Thus, the (n− 1)th Taylor component of dF is given by the linear map

dFn : Lc(M)⊗n−1 → L!
(M) = Lc(M)∨

φ1 ⊗ · · · ⊗ φn−1 7→
∑

i
ω(Di

1φ1) · · · (Di
n−1φn−1)Di

n(−)

+ symmetric terms

where the right hand side is viewed as a linear map from Lc(M) to R.
Now, using integration by parts, we see that

(dFn)(φ1, . . . , φn−1)

is in the subspace L!(M) ⊂ L!
(M) of smooth sections of the bundle

L!(M), inside the space of distributional sections.

It is clear from the explicit expressions that the map

dFn : Lc(M)⊗n−1 → L!(M)
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is a polydifferential operator, and so it defines an element of C∗loc(L,L![−1])
as desired. �

4.3.1 Field theories from action functionals

Physicists normally think of a classical field theory as being associated
to an action functional. In this section we will show how to construct a
classical field theory in our sense from an action functional.

We will work in a very general setting. Recall (section 3.1.3) that we
defined a local L∞ algebra on a manifold M to be a sheaf of L∞ algebras
where the structure maps are given by differential operators. We will
think of a local L∞ algebra L on M as defining a formal moduli problem
cut out by some differential equations. We will use the notation BL to
denote this formal moduli problem.

We want to take the derived critical locus of a local action functional

S ∈ Oloc(BL)

of cohomological degree 0. (We also need to assume that S is at least
quadratic: this condition insures that the base-point of our formal mod-
uli problem BL is a critical point of S). We have seen (section 4.3) how
to apply the exterior derivative to a local action functional S yields an
element

dS ∈ C∗loc(L,L![−1]),

which we think of as being a local 1-form on BL.

The critical locus of S is the zero locus of dS. We thus need to explain
how to construct a new local L∞ algebra that we interpret as being the
derived zero locus of dS.

4.3.2 Finite dimensional model

We will first describe the analogous construction in finite dimensions.
Let g be an L∞ algebra, M be a g-module of finite total dimension, and
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α be a closed, degree zero element of C∗red(g, M). The subscript red indi-
cates that we are taking the reduced cochain complex, so that α is in the
kernel of the augmentation map C∗(g, M)→ M.

We think of M as a dg vector bundle on the formal moduli problem
Bg, and so α is a section of this vector bundle. The condition that α

is in the reduced cochain complex translates into the statement that α

vanishes at the basepoint of Bg. We are interested in constructing the
L∞ algebra representing the zero locus of α.

We start by writing down the usual Koszul complex associated to a
section of a vector bundle. In our context, the commutative dg algebra
representing this zero locus of α is given by the total complex of the
double complex

· · · → C∗(g,∧2M∨) ∨α−→ C∗(g, M∨) ∨α−→ C∗(g).

In words, we have written down the symmetric algebra on the dual of
g[1]⊕M[−1]. It follows that this commutative dg algebra is the Chevalley-
Eilenberg cochain complex of g⊕ M[−2], equipped with an L∞ struc-
ture arising from the differential on this complex.

Note that the direct sum g⊕ M[−2] (without a differential depend-
ing on α) has a natural semi-direct product L∞ structure, arising from
the L∞ structure on g and the action of g on M[−2]. This L∞ structure
corresponds to the case α = 0.

4.3.2.1 Lemma. The L∞ structure on g⊕M[−2] describing the zero locus of
α is a deformation of the semidirect product L∞ structure, obtained by adding
to the structure maps ln the maps

Dnα : g⊗n → M

X1 ⊗ · · · ⊗ Xn 7→
∂

∂X1
. . .

∂

∂Xn
α.

This is a curved L∞ algebra unless the section α vanishes at 0 ∈ g.

Proof The proof is a straightforward computation. �

Note that the maps Dnα in the statement of the lemma are simply the
homogeneous components of the cochain α.
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We will let Z(α) denote g⊕M[−2], equipped with this L∞ structure
arising from α.

Recall that the formal moduli problem Bg is the functor from dg Artin
rings (R, m) to simplicial sets, sending (R, m) to the simplicial set of
Maurer-Cartan elements of g⊗ m. In order to check that we have con-
structed the correct derived zero locus for α, we should describe the
formal moduli problem associated Z(α).

Thus, let (R, m) be a dg Artin ring, and x ∈ g ⊗ m be an element
of degree 1, and y ∈ M ⊗ m be an element of degree −1. Then (x, y)
satisfies the Maurer-Cartan equation in Z(α) if and only if

(i) x satisfies the Maurer-Cartan equation in g⊗m and
(ii) α(x) = dxy ∈ M, where

dx = dy + µ1(x, y) + 1
2! µ2(x, x, y) + · · · : M→ M

is the differential obtained by deforming the original differential by
that arising from the Maurer-Cartan element x. (Here µn : g⊗n ⊗
M→ M are the action maps.)

In other words, we see that an R-point of BZ(α) is both an R-point x of
Bg and a homotopy between α(x) and 0 in the fiber Mx of the bundle
M at x ∈ Bg. The fibre Mx is the cochain complex M with differential
dx arising from the solution x to the Maurer-Cartan equation. Thus, we
are described the homotopy fiber product between the section α and
the zero section in the bundle M, as desired.

4.3.3 The derived critical locus of a local functional

Let us now return to the situation where L is a local L∞ algebra on
a manifold M and S ∈ O(BL) is a local functional that is at least
quadratic. Let

dS ∈ C∗loc(L,L![−1])

denote the exterior derivative of S. Note that dS is in the reduced cochain
complex, i.e. the kernel of the augmentation map C∗loc(L,L![−1]) →
L![−1].



62 The classical Batalin-Vilkovisky formalism

Let

dnS : L⊗n → L!

be the nth Taylor component of dS. The fact that dS is a local cochain
means that dnS is a polydifferential operator.

4.3.3.1 Definition. The derived critical locus of S is the local L∞ algebra
obtained by adding the maps

dnS : L⊗n → L!

to the structure maps ln of the semi-direct product L∞ algebra L ⊕ L![−3].
We denote this local L∞ algebra by Crit(S).

If (R, m) is an auxiliary Artinian dg ring, then a solution to the Maurer-
Cartan equation in Crit(S)⊗m consists of the following data:

(i) a Maurer-Cartan element x ∈ L⊗m and
(ii) an element y ∈ L! ⊗m such that

(dS)(x) = dxy.

Here dxy is the differential on L! ⊗ m induced by the Maurer-Cartan
element x. These two equations say that x is an R-point of BL that sat-
isfies the Euler-Lagrange equations up to a homotopy specified by y.

4.3.4 Symplectic structure on the derived critical locus

Recall that a classical field theory is given by a local L∞ algebra that is
elliptic and has an invariant pairing of degree −3. The pairing on the
local L∞ algebra Crit(S) constructed above is evident: it is given by the
natural bundle isomorphism

(L⊕ L![−3])![−3] � L![−3]⊕ L.

In other words, the pairing arises, by a shift, from the natural bundle
map L⊗ L! → DensM .

4.3.4.1 Lemma. This pairing on Crit(S) is invariant.
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Proof The original L∞ structure onL⊕L![−3] (that is, the L∞ structure
not involving S) is easily seen to be invariant. We will verify that the
deformation of this structure coming from S is also invariant.

We need to show that if

α1, . . . , αn+1 ∈ Lc ⊕L!
c[−3]

are compactly supported sections of L⊕ L1[−3], then

〈ln(α1, . . . , αn), αn+1〉

is totally antisymmetric in the variables αi. Now, the part of this expres-
sion that comes from S is just(

∂

∂α1
. . .

∂

∂αn+1

)
S(0).

The fact that partial derivatives commute — combined with the shift
in grading due to C∗(Lc) = O(Lc[1]) — immediately implies that this
term is totally antisymmetric. �

Note that, although the local L∞ algebra Crit(S) always has a sym-
plectic form, it does not always define a classical field theory, in our
sense. To be a classical field theory, we also require that the local L∞
algebra Crit(S) is elliptic.

4.4 A succinct definition of a classical field theory

We defined a classical field theory to be a formal elliptic moduli prob-
lem equipped with a symplectic form of degree −1. In this section we
will rewrite this definition in a more concise (but less conceptual) way.
This version is included largely for consistency with Costello (2011b)
— where the language of elliptic moduli problems is not used — and
for ease of reference when we discuss the quantum theory.

4.4.0.1 Definition. Let E be a graded vector bundle on a manifold M. A de-
gree −1 symplectic structure on E is an isomorphism of graded vector bun-
dles

φ : E � E![−1]
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that is anti-symmetric, in the sense that φ∗ = −φ where φ∗ is the formal
adjoint of φ.

Note that if L is an elliptic L∞ algebra on M with an invariant pairing
of degree −3, then the graded vector bundle L[1] on M has a −1 sym-
plectic form. Indeed, by definition, L is equipped with a symmetric iso-
morphism L � L![−3], which becomes an antisymmetric isomorphism
L[1] � (L[1])![−1].

Note also that the tangent space at the basepoint to the formal mod-
uli problem BL associated to L is L[1] (equipped with the differential
induced from that on L). Thus, the algebra C∗(L) of cochains of L is
isomorphic, as a graded algebra without the differential, to the algebra
O(L[1]) of functionals on L[1].

Now suppose that E is a graded vector bundle equipped with a −1
symplectic form. Let Oloc(E ) denote the space of local functionals on E ,
as defined in section 3.5.1.

4.4.0.2 Proposition. For E a graded vector bundle equipped with a −1 sym-
plectic form, let Oloc(E ) denote the space of local functionals on E . Then we
have the following.

(i) The symplectic form on E induces a Poisson bracket on Oloc(E ), of de-
gree 1.

(ii) Equipping E[−1] with a local L∞ algebra structure compatible with the
given pairing on E[−1] is equivalent to picking an element S ∈ Oloc(E )
that has cohomological degree 0, is at least quadratic, and satisfies

{S, S} = 0,

the classical master equation.

Proof Let L = E[−1]. Note that L is a local L∞ algebra, with the zero
differential and zero higher brackets (i.e., a totally abelian L∞ algebra).
We write Oloc(BL) or C∗red,loc(L) for the reduced local cochains of L.
This is a complex with zero differential that coincides with Oloc(E ).

We have seen that the exterior derivative (section 4.3) gives a map

d : Oloc(E ) = Oloc(BL)→ C∗loc(L,L![−1]).
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Note that the isomorphism

L � L![−3]

gives an isomorphism

C∗loc(L,L![−1]) � C∗loc(L,L[2]).

Finally, C∗loc(L,L[2]) is the L∞ algebra controlling deformations of L as
a local L∞ algebra. It thus remains to verify that Oloc(BL) ⊂ C∗loc(L,L[2])
is a sub L∞ algebra, which is straightforward. �

Note that the finite-dimensional analog of this statement is simply
the fact that on a formal symplectic manifold, all symplectic deriva-
tions (which correspond, after a shift, to deformations of the formal
symplectic manifold) are given by Hamiltonian functions, defined up
to the addition of an additive constant. The additive constant is not
mentioned in our formulation because Oloc(E ), by definition, consists
of functionals without a constant term.

Thus, we can make a concise definition of a field theory.

4.4.0.3 Definition. A pre-classical field theory on a manifold M consists of
a graded vector bundle E on M, equipped with a symplectic pairing of degree
−1, and a local functional

S ∈ Oloc(Ec(M))

of cohomological degree 0, satisfying the following properties.

(i) S satisfies the classical master equation {S, S} = 0.
(ii) S is at least quadratic (so that 0 ∈ Ec(M) is a critical point of S).

In this situation, we can write S as a sum (in a unique way)

S(e) = 〈e, Qe〉+ I(e)

where Q : E → E is a skew self-adjoint differential operator of coho-
mological degree 1 and square zero.

4.4.0.4 Definition. A pre-classical field is a classical field theory if the com-
plex (E , Q) is elliptic.
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There is one more property we need of a classical field theories in
order to be apply the quantization machinery of Costello (2011b).

4.4.0.5 Definition. A gauge fixing operator is a map

QGF : E (M)→ E (M)

that is a differential operator of cohomological degree −1 such that (QGF)2 =
0 and

[Q, QGF] : E (M)→ E (M)

is a generalized Laplacian in the sense of Berline et al. (1992).

The only classical field theories we will try to quantize are those
that admit a gauge fixing operator. Thus, we will only consider clas-
sical field theories which have a gauge fixing operator. An important
point which will be discussed at length in the chapter on quantum field
theory is the fact that the observables of the quantum field theory are
independent (up to homotopy) of the choice of gauge fixing condition.

4.5 Examples of scalar field theories from action
functionals

Let us now give some basic examples of field theories arising as the
derived critical locus of an action functional. We will only discuss scalar
field theories in this section.

4.5.1

Let (M, g) be a Riemannian manifold. Let R be the trivial line bundle
on M and DensM the density line bundle. Note that the volume form
dVolg provides an isomorphism between these line bundles. Let

S(φ) = 1
2

∫
M

φ D φ

denote the action functional for the free massless field theory on M.
Here D is the Laplacian on M, viewed as a differential operator from
C∞(M) to Dens(M), so Dφ = (∆gφ)dVolg.
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The derived critical locus of S is described by the elliptic L∞ algebra

L = C∞(M)[−1] D−→ Dens(M)[−2]

where Dens(M) is the global sections of the bundle of densities on M.
Thus, C∞(M) is situated in degree 1, and the space Dens(M) is situ-
ated in degree 2. The pairing between Dens(M) and C∞(M) gives the
invariant pairing on L, which is symmetric of degree −3 as desired.

4.5.2 Interacting scalar field theories

Next, let us write down the derived critical locus for a basic interacting
scalar field theory, given by the action functional

S(φ) = 1
2

∫
M

φ D φ + 1
4!

∫
M

φ4.

The cochain complex underlying our elliptic L∞ algebra is, as before,

L = C∞(M)[−1] D−→ Dens(M)[−2].

The interacting term 1
4!

∫
M φ4 gives rise to a higher bracket l3 on L, de-

fined by the map

C∞(M)⊗3 → Dens(M)

φ1 ⊗ φ2 ⊗ φ3 7→ φ1φ2φ3dVolg.

Let (R, m) be a nilpotent Artinian ring, concentrated in degree 0.
Then a section of φ ∈ C∞(M) ⊗ m satisfies the Maurer-Cartan equa-
tion in this L∞ algebra if and only if

D φ + 1
3! φ

3dVol = 0.

Note that this is precisely the Euler-Lagrange equation for S. Thus, the
formal moduli problem associated to L is, as desired, the derived ver-
sion of the moduli of solutions to the Euler-Lagrange equations for S.

4.6 Cotangent field theories

We have defined a field theory to be a formal elliptic moduli problem
equipped with a symplectic form of degree −1. In geometry, cotangent
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bundles are the basic examples of symplectic manifolds. We can apply
this construction in our setting: given any elliptic moduli problem, we
will produce a new elliptic moduli problem – its shifted cotangent bun-
dle – that has a symplectic form of degree −1. We call the field theories
that arise by this construction cotangent field theories. It turns out that
a surprising number of field theories of interest in mathematics and
physics arise as cotangent theories, including, for example, both the A-
and the B-models of mirror symmetry and their half-twisted versions.

We should regard cotangent field theories as the simplest and most
basic class of non-linear field theories, just as cotangent bundles are
the simplest class of symplectic manifolds. One can show, for example,
that the phase space of a cotangent field theory is always an (infinite-
dimensional) cotangent bundle, whose classical Hamiltonian function
is linear on the cotangent fibers.

4.6.1 The cotangent bundle to an elliptic moduli problem

Let L be an elliptic L∞ algebra on a manifold X, and let ML be the
associated elliptic moduli problem.

Let L! be the bundle L∨ ⊗Dens(X). Note that there is a natural pair-
ing between compactly supported sections of L and compactly sup-
ported sections of L!.

Recall that we use the notation L to denote the space of sections of L.
Likewise, we will let L! denote the space of sections of L!.

4.6.1.1 Definition. Let T∗[k]BL denote the elliptic moduli problem associ-
ated to the elliptic L∞ algebra L⊕L![k− 2].

This elliptic L∞ algebra has a pairing of cohomological degree k− 2.

The L∞ structure on the space L ⊕ L![k− 2] of sections of the direct
sum bundle L⊕ L![k− 2] arises from the natural L-module structure on
L!.

4.6.1.2 Definition. LetM = BL be an elliptic moduli problem correspond-
ing to an elliptic L∞ algebra L. Then the cotangent field theory associated
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toM is the −1-symplectic elliptic moduli problem T∗[−1]M, whose elliptic
L∞ algebra is L⊕L![−3].

To animate these definition, we will now list some basic examples of
cotangent theories, both gauge theories and nonlinear sigma models.

In order to make the discussion more transparent, we will not ex-
plicitly describe the elliptic L∞ algebra related to every elliptic moduli
problem we mention. Instead, we may simply define the elliptic moduli
problem in terms of the geometric objects it classifies. In all examples,
it is straightforward, using the techniques we have discussed so far, to
write down the elliptic L∞ algebra describing the formal neighborhood
of a point in the elliptic moduli problems we will consider.

4.6.2 Self-dual Yang-Mills theory

Let X be an oriented 4-manifold equipped with a conformal class of a
metric. Let G be a compact Lie group. LetM(X, G) denote the elliptic
moduli problem parametrizing principal G-bundles on X with a con-
nection whose curvature is self-dual.

Then we can consider the cotangent theory T∗[−1]M(X, G). This
theory is known in the physics literature as self-dual Yang-Mills theory.

Let us describe the L∞ algebra of this theory explicitly. Observe that
the elliptic L∞ algebra describing the completion of M(X, G) near a
point (P,∇) is

Ω0(X, gP)
d∇−→ Ω1(X, gP)

d−−→ Ω2
−(X, gP)

where gP is the adjoint bundle of Lie algebras associated to the principal
G-bundle P. Here d− denotes the connection followed by projection
onto the anti-self-dual 2-forms.

Thus, the elliptic L∞ algebra describing T∗[−1]M is given by the di-
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agram

Ω0(X, gP)
d∇−→ Ω1(X, gP)

d−−→ Ω2
−(X, gP)

⊕ ⊕
Ω2
−(X, gP)

d∇−→ Ω3(X, gP)
d∇−→ Ω4(X, gP)

This is a standard presentation of the fields of self-dual Yang-Mills the-
ory in the BV formalism (see Cattaneo et al. (1998b) and Costello (2011b)).
Note that it is, in fact, a dg Lie algebra, so there are no nontrivial higher
brackets.

Ordinary Yang-Mills theory arises as a deformation of the self-dual
theory. One simply deforms the differential in the diagram above by
including a term that is the identity from Ω2

−(X, gP) in degree 1 to the
copy of Ω2

−(X, gP) situated in degree 2.

4.6.3 The holomorphic σ-model

Let E be an elliptic curve and let X be a complex manifold. LetM(E, X)
denote the elliptic moduli problem parametrizing holomorphic maps
from E → X. As before, there is an associated cotangent field theory
T∗[−1]M(E, X). (In Costello (2011a) it is explained how to describe the
formal neighborhood of any point in this mapping space in terms of an
elliptic L∞ algebra on E.)

In Costello (2010), this field theory was called a holomorphic Chern-
Simons theory, because of the formal similarities between the action
functional of this theory and that of the holomorphic Chern-Simons
gauge theory. In the physics literature (Witten (2007); Nekrasov (2005))
this theory is known as the twisted (0, 2) supersymmetric sigma model,
or as the curved βγ system.

This theory has an interesting role in both mathematics and physics.
For instance, it was shown in Costello (2010, 2011a) that the partition
function of this theory (at least, the part which discards the contribu-
tions of non-constant maps to X) is the Witten genus of X.
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4.6.4 Twisted supersymmetric gauge theories

Of course, there are many more examples of cotangent theories, as there
are very many elliptic moduli problems. In Costello (2013a), it is shown
how twisted versions of supersymmetric gauge theories can be writ-
ten as cotangent theories. We will focus on holomorphic (or minimal)
twists. Holomorphic twists are richer than the more well-studied topo-
logical twists, but contain less information than the full untwisted su-
persymmetric theory. As explained in Costello (2013a), one can obtain
topological twists from holomorphic twists by applying a further twist.

The most basic example is the twisted N = 1 field theory. If X is a
complex surface and G is a complex Lie group, then the N = 1 twisted
theory is simply the cotangent theory to the elliptic moduli problem of
holomorphic principal G-bundles on X. If we fix a principal G-bundle
P→ X, then the elliptic L∞ algebra describing this formal moduli prob-
lem near P is

Ω0,∗(X, gP),

where gP is the adjoint bundle of Lie algebras associated to P. It is a
classic result of Kodaira and Spencer that this dg Lie algebra describes
deformations of the holomorphic principal bundle P.

The cotangent theory to this elliptic moduli problem is thus described
by the elliptic L∞ algebra

Ω0,∗(X, gP ⊕ g∨P ⊗ KX [−1].).

Note that KX denotes the canonical line bundle, which is the appropri-
ate holomorphic substitute for the smooth density line bundle.

4.6.5 The twisted N = 2 theory

Twisted versions of gauge theories with more supersymmetry have
similar descriptions, as is explained in Costello (2013a). The N = 2
theory is the cotangent theory to the elliptic moduli problem for holo-
morphic G-bundles P → X together with a holomorphic section of the
adjoint bundle gP. The underlying elliptic L∞ algebra describing this
moduli problem is

Ω0,∗(X, gP + gP[−1]).
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Thus, the cotangent theory has

Ω0,∗(X, gP + gP[−1]⊕ g∨P ⊗ KX ⊕ g∨P ⊗ KX [−1])

for its elliptic L∞ algebra.

4.6.6 The twisted N = 4 theory

Finally, we will describe the twisted N = 4 theory. There are two ver-
sions of this twisted theory: one used in the work of Vafa-Witten Vafa
and Witten (1994) on S-duality, and another by Kapustin-Witten Ka-
pustin and Witten (2007) in their work on geometric Langlands. Here
we will describe only the latter.

Let X again be a complex surface and G a complex Lie group. Then
the twisted N = 4 theory is the cotangent theory to the elliptic mod-
uli problem describing principal G-bundles P → X, together with a
holomorphic section φ ∈ H0(X, T∗X⊗ gP) satisfying

[φ, φ] = 0 ∈ H0(X, KX ⊗ gP).

Here T∗X is the holomorphic cotangent bundle of X.

The elliptic L∞ algebra describing this is

Ω0,∗(X, gP ⊕ T∗X⊗ gP[−1]⊕ KX ⊗ gP[−2]).

Of course, this elliptic L∞ algebra can be rewritten as

(Ω∗,∗(X, gP), ∂),

where the differential is just ∂ and does not involve ∂. The Lie bracket
arises from extending the Lie bracket on gP by tensoring with the com-
mutative algebra structure on the algebra Ω∗,∗(X) of forms on X.

Thus, the corresponding cotangent theory has

Ω∗,∗(X, gP)⊕Ω∗,∗(X, gP)[1]

for its elliptic Lie algebra.
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The observables of a classical field theory

So far we have given a definition of a classical field theory, combining
the ideas of derived deformation theory and the classical BV formal-
ism. Our goal in this chapter is to show that the observables for such
a theory do indeed form a commutative factorization algebra, denoted
Obscl , and to explain how to equip it with a shifted Poisson bracket. The
first part is straightforward — implicitly, we have already done it! —
but the Poisson bracket is somewhat subtle, due to complications that
arise when working with infinite-dimensional vector spaces. We will

exhibit a sub-factorization algebra Õbs
cl

of Obscl which is equipped
with a commutative product and Poisson bracket, and such that the

inclusion map Õbs
cl
→ Obscl is a quasi-isomorphism.

5.1 The factorization algebra of classical observables

We have given two descriptions of a classical field theory, and so we
provide the two descriptions of the associated observables.

Let L be the elliptic L∞ algebra of a classical field theory on a mani-
fold M. Thus, the associated elliptic moduli problem is equipped with
a symplectic form of cohomological degree −1.

5.1.0.1 Definition. The observables with support in the open subset U

73
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is the commutative dg algebra

Obscl(U) = C∗(L(U)).

The factorization algebra of observables for this classical field theory, de-
noted Obscl , assigns the cochain complex Obscl(U) to the open set U.

The interpretation of this definition should be clear from the preced-
ing chapters. The elliptic L∞ algebra L encodes the space of solutions
to the Euler-Lagrange equations for the theory (more accurately, the
formal neighborhood of the solution given by the basepoint of the for-
mal moduli problem). Its Chevalley-Eilenberg cochains C∗(L(U)) on
the open U are interpreted as the algebra of functions on the space of
solutions over the open U.

By the results of section I.6.6, we know that this construction is in fact
a factorization algebra.

We often call Obscl simply the classical observables, in contrast to the
factorization algebras of some quantization, which we will call the quan-
tum observables.

Alternatively, let E be a graded vector bundle on M, equipped with
a symplectic pairing of degree −1 and a local action functional S which
satisfies the classical master equation. As we explained in section 4.4
this data is an alternative way of describing a classical field theory. The
bundle L whose sections are the local L∞ algebra L is E[−1].

5.1.0.2 Definition. The observables with support in the open subset U
is the commutative dg algebra

Obscl(U) = O(E (U)),

equipped with the differential {S,−}.

The factorization algebra of observables for this classical field theory,
denoted Obscl , assigns the cochain complex Obscl(U) to the open U.

Recall that the operator {S,−} is well-defined because the bracket
with the local functional is always well-defined.

The underlying graded-commutative algebra of Obscl(U) is mani-
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festly the functions on the fields E (U) over the open set U. The dif-
ferential imposes the relations between observables arising from the
Euler-Lagrange equations for S. In physical language, we are giving a
cochain complex whose cohomology is the “functions on the fields that
are on-shell.”

It is easy to check that this definition of classical observables coin-
cides with the one in terms of cochains of the sheaf of L∞-algebrasL(U).

5.2 The graded Poisson structure on classical
observables

Recall the following definition.

5.2.0.1 Definition. A P0 algebra (in the category of cochain complexes) is a
commutative differential graded algebra together with a Poisson bracket {−,−}
of cohomological degree 1, which satisfies the Jacobi identity and the Leibniz
rule.

The main result of this chapter is the following.

5.2.0.2 Theorem. For any classical field theory (Section 4.4) on M, there is a

P0 factorization algebra Õbs
cl

, together with a weak equivalence of commuta-

tive factorization algebras Õbs
cl
' Obscl .

Concretely, Õbs
cl
(U) is built from functionals on the space of solu-

tions to the Euler-Lagrange equations that have more regularity than
the functionals in Obscl(U).

The idea of the definition of the P0 structure is very simple. Let us
start with a finite-dimensional model. Let g be an L∞ algebra equipped
with an invariant antisymmetric element P ∈ g ⊗ g of cohomologi-
cal degree 3. This element can be viewed (according to the correspon-
dence between formal moduli problems and Lie algebras given in sec-
tion 3.1) as a bivector on Bg, and so it defines a Poisson bracket on
O(Bg) = C∗(g). Concretely, this Poisson bracket is defined, on the gen-
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erators g∨[−1] of C∗(g), as the map

g
∨ ⊗ g∨ → R

determined by the tensor P.

Now let L be an elliptic L∞ algebra describing a classical field theory.
Then the kernel for the isomorphism L(U) � L!(U)[−3] is an element
P ∈ L(U)⊗L(U), which is symmetric, invariant, and of degree 3.

We would like to use this idea to define the Poisson bracket on

Obscl(U) = C∗(L(U)).

As in the finite dimensional case, in order to define such a Poisson
bracket, we would need an invariant tensor in L(U)⊗2. The tensor rep-
resenting our pairing is instead in L(U)⊗2, which contains L(U)⊗2 as
a dense subspace. In other words, we run into a standard problem in
analysis: our construction in finite-dimensional vector spaces does not
port immediately to infinite-dimensional vector spaces.

We solve this problem by finding a subcomplex

Õbs
cl
(U) ⊂ Obscl(U)

such that the Poisson bracket is well-defined on the subcomplex and
the inclusion is a weak equivalence. Up to quasi-isomorphism, then,
we have the desired Poisson structure.

5.3 The Poisson structure for free field theories

In this section, we will construct a P0 structure on the factorization al-
gebra of observables of a free field theory. More precisely, we will con-
struct for every open subset U, a subcomplex

Õbs
cl
(U) ⊂ Obscl(U)

of the complex of classical observables such that

(i) Õbs
cl

forms a sub-commutative factorization algebra of Obscl ;



5.3 The Poisson structure for free field theories 77

(ii) the inclusion Õbs
cl
(U) ⊂ Obscl(U) is a weak equivalence of differ-

entiable pro-cochain complexes for every open set U; and

(iii) Õbs
cl

has the structure of P0 factorization algebra.

The complex Obscl(U) consists of a product over all n of certain distri-

butional sections of a vector bundle on Un. The complex Õbs
cl

is de-
fined by considering instead smooth sections on Un of the same vector
bundle.

Let us now make this definition more precise. Recall that a free field
theory is a classical field theory associated to an elliptic L∞ algebra L
that is abelian, i.e., where all the brackets {ln | n ≥ 2} vanish.

Thus, let L be the graded vector bundle associated to an abelian el-
liptic L∞ algebra, and let L(U) be the elliptic complex of sections of L
on U. To say that L defines a field theory means we have a symmetric
isomorphism L � L![−3].

Recall (see appendix I.B.7.2) that we use the notation L(U) to denote
the space of distributional sections of L on U. A lemma of Atiyah-Bott
(see appendix I.D) shows that the inclusion

L(U) ↪→ L(U)

is a continuous homotopy equivalence of topological cochain complexes.

It follows that the natural map

C∗(L(U)) ↪→ C∗(L(U))

is a cochain homotopy equivalence. Indeed, because we are dealing
with an abelian L∞ algebra, the Chevalley-Eilenberg cochains become
quite simple:

C∗(L(U)) = Ŝym(L(U)∨[−1]),

C∗(L(U)) = Ŝym(L(U)∨[−1]),

where, as always, the symmetric algebra is defined using the completed
tensor product. The differential is simply the differential on, for in-
stance, L(U)∨ extended as a derivation, so that we are simply taking
the completed symmetric algebra of a complex. The complex C∗(L(U))
is built from distributional sections of the bundle (L!)�n[−n] on Un,
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and the complex C∗(L(U)) is built from smooth sections of the same
bundle.

Note that

L(U)∨ = L!
c(U) = Lc(U)[3].

Thus,

C∗(L(U)) = Ŝym(Lc(U)[2]),

C∗(L(U)) = Ŝym(Lc(U)[2]).

We can define a Poisson bracket of degree 1 on C∗(L(U)) as follows.
On the generators Lc(U)[2], it is defined to be the given pairing

〈−,−〉 : Lc(U)×Lc(U)→ R,

since we can pair smooth sections. This pairing extends uniquely, by the
Leibniz rule, to continuous bilinear map

C∗(L(U))× C∗(L(U))→ C∗(L(U)).

In particular, we see that C∗(L(U)) has the structure of a P0 algebra in
the multicategory of differentiable cochain complexes.

Let us define the modified observables in this theory by

Õbs
cl
(U) = C∗(L(U)).

We have seen that Õbs
cl
(U) is homotopy equivalent to Obscl(U) and

that Õbs
cl
(U) has a P0 structure.

5.3.0.1 Lemma. Obscl(U) has the structure of a P0 factorization algebra.

Proof It remains to verify that if U1, . . . , Un are disjoint open subsets of
M, each contained in an open subset W, then the map

Õbs
cl
(U1)× · · · × Õbs

cl
(Un)→ Õbs

cl
(W)

is compatible with the P0 structures. This map automatically respects

the commutative structure, so it suffices to verify that for α ∈ Õbs
cl
(Ui)

and β ∈ Õbs
cl
(Uj), where i , j, then

{α, β} = 0 ∈ Õbs
cl
(W).
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That this bracket vanishes follows from the fact that if two “linear ob-
servables” φ, ψ ∈ Lc(W) have disjoint support, then

〈φ, ψ〉 = 0.

Every Poisson bracket reduces to a sum of brackets between linear terms
by applying the Leibniz rule repeatedly. �

5.4 The Poisson structure for a general classical field
theory

In this section we will prove the following.

5.4.0.1 Theorem. For any classical field theory (section 4.4) on M, there is a

P0 factorization algebra Õbs
cl

, together with a quasi-isomorphism

Õbs
cl
� Obscl

of commutative factorization algebras.

5.4.1 Functionals with smooth first derivative

For a free field theory, we defined a subcomplex Õbs
cl

of observables
which are built from smooth sections of a vector bundle on Un, instead
of distributional sections as in the definition of Obscl . It turns out that,
for an interacting field theory, this subcomplex of Obscl is not preserved
by the differential. Instead, we have to find a subcomplex built from
distributions on Un which are not smooth but which satisfy a mild reg-

ularity condition. We will call also this complex Õbs
cl

(thus introducing
a conflict with the terminology introduced in the case of free field the-
ories).

Let L be an elliptic L∞ algebra on M that defines a classical field
theory. Recall that the cochain complex of observables is

Obscl(U) = C∗(L(U)),

where L(U) is the L∞ algebra of sections of L on U.
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Recall that as a graded vector space, C∗(L(U)) is the algebra of func-
tionals O(L(U)[1]) on the graded vector spaceL(U)[1]. In appendix B.1,
given any graded vector bundle E on M, we define a subspace

O sm(E (U)) ⊂ O(E (U))

of functionals that have “smooth first derivative”. A function Φ ∈ O(E (U))
is in O sm(E (U)) precisely if

dΦ ∈ O(E (U))⊗ E !
c (U).

(The exterior derivative of a general function in O(E (U)) will lie a pri-
ori in the larger space O(E (U)) ⊗ E

!
c(U).) The space O sm(E (U)) is a

differentiable pro-vector space.

Recall that if g is an L∞ algebra, the exterior derivative maps C∗(g)
to C∗(g, g∨[−1]). The complex C∗sm(L(U)) of cochains with smooth first
derivative is thus defined to be the subcomplex of C∗(L(U)) consisting
of those cochains whose first derivative lies in C∗(L(U),L!

c(U)[−1]),
which is a subcomplex of C∗(L(U),L(U)∨[−1]).

In other words, C∗sm(L(U)) is defined by the fiber diagram

C∗sm(L(U))
d−→ C∗(L(U),L!

c(U)[−1])
↓ ↓

C∗(L(U))
d−→ C∗(L(U),Lc

!
(U)[−1]).

(Note that differentiable pro-cochain complexes are closed under tak-
ing limits, so that this fiber product is again a differentiable pro-cochain
complex; more details are provided in appendix B.1.)

Note that

C∗sm(L(U)) ⊂ C∗(L(U))

is a sub-commutative dg algebra for every open U. Furthermore, as U
varies, C∗sm(L(U)) defines a sub-commutative prefactorization algebra
of the prefactorization algebra defined by C∗(L(U)).

We define

Õbs
cl
(U) = C∗sm(L(U)) ⊂ C∗(L(U)) = Obscl(U).

The next step is to construct the Poisson bracket.
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5.4.2 The Poisson bracket

Because the elliptic L∞ algebra L defines a classical field theory, it is
equipped with an isomorphism L � L![−3]. Thus, we have an isomor-
phism

Φ : C∗(L(U),L!
c(U)[−1]) � C∗(L(U),Lc(U)[2]).

In appendix B.2, we show that C∗(L(U),L(U)[1]) — which we think of
as vector fields on the formal manifold BL(U) — has a natural structure
of a dg Lie algebra in the multicategory of differentiable pro-cochain
complexes. The bracket is, of course, a version of the bracket of vec-
tor fields. Further, C∗(L(U),L(U)[1]) acts on C∗(L(U)) by derivations.
This action is in the multicategory of differentiable pro-cochain com-
plexes: the map

C∗(L(U),L(U)[1])× C∗(L(U))→ C∗(L(U))

is a smooth bilinear cochain map. We will write Der(C∗(L(U))) for this
dg Lie algebra C∗(L(U),L(U)[1]).

Thus, composing the map Φ above with the exterior derivative d and
with the inclusion Lc(U) ↪→ L(U), we find a cochain map

C∗sm(L(U))→ C∗(L(U),Lc(U)[2])→ Der(C∗(L(U)))[1].

If f ∈ C∗sm(L(U)), we will let X f ∈ Der(C∗(L(U))) denote the cor-
responding derivation. If f has cohomological degree k, then X f has
cohomological degree k + 1.

If f , g ∈ C∗sm(L(U)) = Õbs
cl
(U), we define

{ f , g} = X f g ∈ Õbs
cl
(U).

This bracket defines a bilinear map

Õbs
cl
(U)× Õbs

cl
(U)→ Õbs

cl
(U).

Note that we are simply adopting the usual formulas to our setting.

5.4.2.1 Lemma. This map is smooth, i.e., a bilinear map in the multicategory
of differentiable pro-cochain complexes.

Proof This follows from the fact that the map

d : Õbs
cl
(U)→ Der(C∗(L(U)))[1]
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is smooth, which is immediate from the definitions, and from the fact
that the map

Der(C∗(L(U))× C∗(L(U))→ C∗(L(U))

is smooth (which is proved in appendix B.2). �

5.4.2.2 Lemma. This bracket satisfies the Jacobi rule and the Leibniz rule.
Further, for U, V disjoint subsets of M, both contained in W, and for any

f ∈ Õbs
cl
(U), g ∈ Õbs

cl
(V), we have

{ f , g} = 0 ∈ Õbs
cl
(W).

Proof The proof is straightforward. �

Following the argument for lemma 5.3.0.1, we obtain a P0 factoriza-
tion algebra.

5.4.2.3 Corollary. Õbs
cl

defines a P0 factorization algebra in the valued in
the multicategory of differentiable pro-cochain complexes.

The final thing we need to verify is the following.

5.4.2.4 Proposition. For all open subset U ⊂ M, the map

Õbs
cl
(U)→ Obscl(U)

is a weak equivalence.

Proof It suffices to show that it is a weak equivalence on the associated

graded for the natural filtration on both sides. Now, Grn Õbs
cl
(U) fits

into a fiber diagram

Grn Õbs
cl
(U) //

��

Symn(L!
c(U)[−1])⊗L!

c(U)

��

Grn Obscl(U) // Symn(L!
c(U)[−1])⊗L!

c(U).

Note also that

Grn Obscl(U) = Symn L!
c(U).
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The Atiyah-Bott lemma of appendix I.D shows that the inclusion

L!
c(U) ↪→ L!

c(U)

is a continuous cochain homotopy equivalence. We can thus choose a
homotopy inverse

P : L!
c(U)→ L!

c(U)

and a homotopy

H : L!
c(U)→ L!

c(U)

such that [d, H] = P− Id and such that H preserves the subspaceL!
c(U).

Now,

Symn L!
c(U) ⊂ Grn Õbs

cl
(U) ⊂ Symn L!

c(U).

Using the projector P and the homotopy H, one can construct a projec-
tor

Pn = P⊗n : L!
c(U)⊗n → L!

c(U)⊗n.

We can also construct a homotopy

Hn : L!
c(U)⊗n → L!

c(U)⊗n.

The homotopy Hn is defined inductively by the formula

Hn = H ⊗ Pn−1 + 1⊗ Hn−1.

This formula defines a homotopy because

[d, Hn] = P⊗ Pn−1 − 1⊗ Pn−1 + 1⊗ Pn−1 − 1⊗ 1.

Notice that the homotopy Hn preserves all the subspaces of the form

L!
c(U)⊗k ⊗L!

c(U)⊗L!
c(U)⊗n−k−1.

This will be important momentarily.

Next, let

π : L!
c(U)⊗n[−n]→ Symn(L!

c(U)[−1])

be the projection, and let

Γn = π−1 Grn Õbs
cl
(U).
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Then Γn is acted on by the symmetric group Sn, and the Sn invariants

are Õbscl(U).

Thus, it suffices to show that the inclusion

Γn ↪→ Lc(U)⊗n

is a weak equivalence of differentiable spaces. We will show that it is
continuous homotopy equivalence.

The definition of Õbs
cl
(U) allows one to identify

Γn = ∩n−1
k=0L

!
c(U)⊗k ⊗L!

c(U)⊗L!
c(U)⊗n−k−1.

The homotopy Hn preserves Γn, and the projector Pn maps

L!
c(U)⊗n → Lc(U)⊗n ⊂ Γn.

Thus, Pn and Hn provide a continuous homotopy equivalence between
L!

c(U)⊗n and Γn, as desired. �



PART TWO

QUANTUM FIELD THEORY





6
Introduction to quantum field theory

As explained in the introduction, this book develops a version of de-
formation quantization for field theories, rather than mechanics. In the
chapters on classical field theory, we showed that the observables of
a classical BV theory naturally form a commutative factorization alge-
bra, with a homotopical P0 structure. In the following chapters, we will
show that every quantization of a classical BV theory produces a factor-
ization algebra that we call the quantum observables of the quantum
field theory. To be precise, the main theorem of this part is the follow-
ing.

6.0.0.1 Theorem. Any quantum field theory on a manifold M, in the sense of
Costello (2011b), gives rise to a factorization algebra Obsq on M of quantum
observables. This is a factorization algebra over C[[h̄]], valued in differen-
tiable pro-cochain complexes, and it quantizes the homotopy P0 factorization
algebra of classical observables of the corresponding classical field theory.

For free field theories, this factorization algebra of quantum observ-
ables is essentially the same as the one discussed in Chapter I.4. The
only difference is that, when discussing free field theories, we normally
set h̄ = 1 and took our observables to be polynomial functions of the
fields. When we discuss interacting theories, we take our observables
to be power series on the space of fields, and we take h̄ to be a formal
parameter.

Chapter 7 is thus devoted to reviewing the formalism of Costello
(2011b), stated in a form most suitable to our purposes here. It’s impor-

87
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tant to note that, in contrast to the deformation quantization of Poisson
manifolds, a classical BV theory may not possess any quantizations (i.e.,
quantization may be obstructed) or it may have many quantizations. A
central result of Costello (2011b), stated in section 7.5, is that there is
a space of BV quantizations. Moreover, this space can be constructed
as a tower of fibrations, where the fiber between any pair of successive
layers is described by certain cohomology groups of local functionals.
These cohomology groups can be computed just from the classical the-
ory.

The machinery of Costello (2011b) allows one to construct many ex-
amples of quantum field theories, by calculating the appropriate coho-
mology groups. For example, in Costello (2011b), the quantum Yang-
Mills gauge theory is constructed. Theorem 6.0.0.1, together with the
results of Costello (2011b), thus produces many interesting examples of
factorization algebras.

Remark: We forewarn the reader that our definitions and constructions
involve a heavy use of functional analysis and (perhaps more surpris-
ingly) simplicial sets, which is our preferred way of describing a space
of field theories. Making a quantum field theory typically requires many
choices, and as mathematicians, we wish to pin down precisely how the
quantum field theory depends on these choices. The machinery we use
gives us very precise statements, but statements that can be forbidding
at first sight. We encourage the reader, on a first pass through this ma-
terial, to simply make all necessary choices (such as a parametrix) and
focus on the output of our machine, namely the factorization algebra of
quantum observables. Keeping track of the dependence on choices re-
quires careful bookkeeping (aided by the machinery of simplicial sets)
but is straightforward once the primary construction is understood. ♦

The remainder of this chapter consists of an introduction to the quan-
tum BV formalism, building on our motivation for the classical BV for-
malism in section 4.1.
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6.1 The quantum BV formalism in finite dimensions

In section 4.1, we motivated the classical BV formalism with a finite-
dimensional toy model. To summarize, we described the derived critical
locus of a function S on a smooth manifold M of dimension n. The
functions on this derived space O(Crith(S)) form a commutative dg
algebra,

Γ(M,∧nTM)
∨dS−−→ . . . ∨dS−−→ Γ(M,∧2TM)

∨dS−−→ Γ(M, TM)
∨dS−−→ C∞(M),

the polyvector fields PV(M) on M with the differential given by con-
traction with dS. This complex remembers how dS vanishes and not
just where it vanishes.

The quantum BV formalism uses a deformation of this classical BV
complex to encode, in a homological way, oscillating integrals.

In finite dimensions, there already exists a homological approach to
integration: the de Rham complex. For instance, on a compact, oriented
n-manifold without boundary, M, we have the commuting diagram

Ωn(M)

∫
M //

[−] %%

R

Hn(M)

〈[M],−〉

<<

where [µ] denotes the cohomology class of the top form µ and 〈[M],−〉
denotes pairing the class with the fundamental class of M. Thus, inte-
gration factors through the de Rham cohomology.

Suppose µ is a smooth probability measure, so that
∫

M µ = 1 and µ is
everywhere nonnegative (which depends on the choice of orientation).
Then we can interpret the expected value of a function f on M — an
“observable on the space of fields M” — as the cohomology class [ f µ] ∈
Hn(M).

The BV formalism in finite dimensions secretly exploits this use of the
de Rham complex, as we explain momentarily. For an infinite-dimensional
manifold, though, the de Rham complex ceases to encode integration
over the whole manifold because there are no top forms. In contrast,
the BV version scales to the infinite-dimensional setting. Infinite dimen-
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sions, of course, introduces extra difficulties to do with the fact that in-
tegration in infinite dimensions is not well-defined. These difficulties
manifest themselves as ultraviolte divergences of quantum field the-
ory, and we deal with them using the techniques developed in Costello
(2011b).

In the classical BV formalism, we work with the polyvector fields
rather than de Rham forms. A choice of probability measure µ, how-
ever, produces a map between these graded vector spaces

Γ(M,∧nTM)

∨µ

��

. . . Γ(M,∧2TM)

∨µ

��

Γ(M, TM)

∨µ

��

C∞(M)

∨µ

��
C∞(M) . . . Ωn−2(M) Ωn−1(M) Ωn(M)

where ∨µ simply contracts a k-polyvector field with µ to get a n − k-
form. When µ is nowhere-vanishing (i.e., when µ is a volume form), this
map is an isomorphism and so we can “pull back” the exterior deriva-
tive to equip the polyvector fields with a differential. This differential
is usually called the divergence operator for µ, so we denote it divµ.

By the divergence complex for µ, we mean the polyvector fields (con-
centrated in nonpositive degrees) with differential divµ. Its cohomol-
ogy is isomorphic, by construction, to H∗dR(M)[n]. In particular, given
a function f on M, viewed as living in degree zero and providing an
“observable,” we see that its cohomology class [ f ] in the divergence
complex corresponds to the expected value of f against µ. More pre-
cisely, we can define the ratio [ f ]/[1] as the expected value of f . Under
the map ∨µ, it goes to the usual expected value.

What we’ve done above is provide an alternative homological ap-
proach to integration. More accurately, we’ve shown how “integration
against a volume form” can be encoded by an appropriate choice of
differential on the polyvector fields. Cohomology classes in this diver-
gence complex encode the expected values of functions against this
measure. Of course, this is what we want from the path integral! The
divergence complex is the motivating example for the quantum BV for-
malism, and so it is also called a quantum BV complex.

We can now explain why this approach to homological integration
is more suitable to extension to infinite dimensions than the usual de
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Rham picture. Even for an infinite-dimensional manifold M, the polyvec-
tor fields are well-defined (although one must make choices in how to
define them, depending on one’s preferences with functional analysis).
One can still try to construct a “divergence-type operator” and view
it as the effective replacement for the probability measure. By taking
cohomology classes, we compute the expected values of observables.
The difficult part is making sense of the divergence operator; this is
achieved through renormalization.

This vein of thought leads to a question: how to characterize, in an
abstract fashion, the nature of a divergence operator? An answer leads,
as we’ve shown, to a process for defining a homological path integral.
Below, we’ll describe one approach, but first we examine a simple case.

Remark: The cohomology of the complex (both in the finite and infinite
dimensional settings) always makes sense, but H0 is not always one-
dimensional. For example, on a manifold X that is not closed, the de
Rham cohomology often vanishes at the top. If the manifold is discon-
nected but closed, the top de Rham cohomology has dimension equal
to the number of components of the manifold. In general, one must
choose what class of functions to integrate against the volume form,
and the cohomology depends on this choice (e.g., consider compactly
supported de Rham cohomology).

Instead of computing expected values, the cohomology provides re-
lations between expected values of observables. We will see how the
cohomology encodes relations in the example below. In the setting of
conformal field theory, for instance, one often uses such relations to ob-
tain formulas for the operator product expansion. ♦

6.2 The “free scalar field” in finite dimensions

A concrete example is in order. We will work with a simple manifold,
the real line, equipped with the Gaussian measure and recover the baby
case of Wick’s lemma. The generalization to a finite-dimensional vector
space will be clear.

Remark: This example is especially pertinent to us because in this book
we are working with perturbative quantum field theories. Hence, for
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us, there is always a free field theory — whose space of fields is a vec-
tor space equipped with some kind of Gaussian measure — that we’ve
modified by adding an interaction to the action functional. The under-
lying vector space is equipped with a linear pairing that yields the BV
Laplacian, as we work with it. As we will see in this example, the usual
BV formalism relies upon the underlying “manifold” being linear in
nature. To extend to a global nonlinear situation, on e needs to develop
new techniques (see, for instance, Costello (2011a)). ♦

Before we undertake the Gaussian measure, let’s begin with the Lebesgue
measure dx on R. This is not a probability measure, but it is nowhere-
vanishing, which is the only property necessary to construct a diver-
gence operator. In this case, we compute

divLeb : f
∂

∂x
7→ ∂ f

∂x
.

In one popular notion, we use ξ to denote the vector field ∂/∂x, and the
polyvector fields are then C∞(R)[ξ], where ξ has cohomological degree
−1. The divergence operator becomes

divLeb =
∂

∂x
∂

∂ξ
,

which is also the standard example of the BV Laplacian 4. (In short,
the usual BV Laplacian on Rn is simply the divergence operator for the
Lebesgue measure.) We will use 4 for it, as this notation will continue
throughout the book.

It is easy to see, by direct computation or the Poincaré lemma, that
the cohomology of the divergence complex for the Lebesgue measure
is simply H−1 � R and H0 � R.

Let µb be the usual Gaussian probability measure on R with variance
b:

µb =

√
1

2πb
e−x2/2bdx.

As µ is a nowhere-vanishing probability measure, we obtain a diver-
gence operator

divb : f
∂

∂x
7→ ∂ f

∂x
− x

b
f .
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We have

divb = 4+ ∨dS

where S = −x2/2b. Note that this complex is a deformation of the
classical BV complex for S by adding the BV Laplacian4.

This divergence operator preserves the subcomplex of polynomial
polyvector fields. That is, a vector field with polynomial coefficient goes
to a polynomial function.

Explicitly, we see

divb

(
xn ∂

∂x

)
= nxn−1 − 1

b
xn+1.

Hence, at the level of cohomology, we see [xn+1] = bn[xn−1]. We have
just obtained the following, by a purely cohomological process.

6.2.0.1 Lemma (Baby case of Wick’s lemma). The expected value of xn

with respect to the Gaussian measure is zero if n odd and bk(2k − 1)(2k −
3) · · · 5 · 3 if n = 2k.

Since Wick’s lemma appears by this method, it should be clear that
one can recover the usual Feynman diagrammatic expansion. Indeed,
the usual arguments with integration by parts are encoded here by the
relations between cohomology classes.

Note that for any function S : R → R, the volume form eSdx has
divergence operator

divS = 4+
∂S
∂x

∂

∂x
,

and using the Schouten bracket {−,−} on polyvector fields, we can
write it as

divS = 4+ {S,−}.

The quantum master equation (QME) is the equation div2
S = 0. The classi-

cal master equation (CME) is the equation {S, S} = 0, which just encodes
the fact that the differential of the classical BV complex is square-zero.
(In the examples we’ve discussed so far, this property is immediate, but
in many contexts, such as gauge theories, finding such a function S can
be a nontrivial process.)
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6.3 An operadic description

Before we provide abstract properties that characterize a divergence
operator, we should recall properties that characterize the classical BV
complex. Of course, functions on the derived critical locus are a com-
mutative dg algebra. Polyvector fields, however, also have the Schouten
bracket — the natural extension of the Lie bracket of vector fields and
functions — which is a Poisson bracket of cohomological degree 1 and
which is compatible with the differential ∨S = {S,−}. Thus, we intro-
duced the notion of a P0 algebra, where P0 stands for “Poisson-zero,” in
appendix I.A.3.2. In chapter 5, we showed that the factorization algebra
of observables for a classical BV theory have a lax P0 structure.

Examining the divergence complex for a measure of the form eSdx in
the preceding section, we saw that the divergence operator was a de-
formation of {S,−}, the differential for the classical BV complex. More-
over, a simple computation shows that a divergence operator satisfies

div(ab) = (div a)b + (−1)|a|a(div b) + (−1)|a|{a, b}

for any polyvector fields a and b. (This relation follows, under the polyvector-
de Rham isomorphism given by the measure, from the fact that the ex-
terior derivative is a derivation for the wedge product.) Axiomatizing
these two properties, we obtain the notion of a Beilinson-Drinfeld alge-
bra, discussed in appendix I.A.3.2. The differential of a BD algebra pos-
sesses many of the essential properties of a divergence operator, and so
we view a BD algebra as a homological way to encode integration on (a
certain class of) derived spaces.

In short, the quantum BV formalism aims to find, for a P0 algebra
Acl , a BD algebra Aq such that Acl = Aq ⊗R[[h̄]] R[[h̄]]/(h̄). We view
it as moving from studying functions on the derived critical locus of
some action functional S to the divergence complex for eSDφ.

This motivation for the definition of a BD algebra is complementary
to our earlier motivation, which emphasizes the idea that we simply
want to deform from a commutative factorization algebra to a “plain,”
or E0, factorization algebra. It grows out of the path integral approach
to quantum field theory, rather than extending to field theory the de-
formation quantization approach to mechanics.
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For us, the basic situation is a formal moduli space M with −1-
symplectic pairing. Its algebra of functions is a P0 algebra. By a ver-
sion of the Darboux lemma for formal moduli spaces, we can identify
M with an L∞ algebra g equipped with an invariant symmetric pair-
ing. Geometrically, this means the symplectic pairing is translation-
invariant and all the nonlinearity is pushed into the brackets. As the
differential d on O(M) respects the Poisson bracket, we view it as a
symplectic vector field of cohomological degree 1, and in this formal
situation, we can find a Hamiltonian function S such that d = {S,−}.

Comparing to our finite-dimensional example above, we are seeing
the analog of the fact that any nowhere-vanishing volume form on
Rn can be written as eSdx1 · · ·dxn. The associated divergence opera-
tor looks like4+ {S,−}, where the BV Laplacian4 is the divergence
operator for Lebesgue measure.

The translation-invariant Poisson bracket on O(M) also produces
a translation-invariant BV Laplacian 4. Quantizing then amounts to
finding a function I ∈ h̄O(M)[[h̄]] such that

{S,−}+ {I,−}+ h̄4

is square-zero. In the BV formalism, we call I a “solution to the quan-
tum master equation for the action S.” As shown in chapter 6 of Costello
(2011b), we have the following relationship.

6.3.0.1 Proposition. Let M be a formal moduli space with −1-symplectic
structure. There is an equivalence of spaces

{solutions of the QME} ' {BD quantizations}.

6.4 Equivariant BD quantization and volume forms

We now return to our discussion of volume forms and formulate a pre-
cise relationship with BD quantization. This relationship, first noted in
Koszul (1985), generalizes naturally to the setting of cotangent field the-
ories. In section 9.4, we explain how cotangent quantizations provide
volume forms on elliptic moduli problems.

For a smooth manifold M, there is a special feature of a divergence
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complex that we have not yet discussed. Polyvector fields have a natu-
ral action of the multiplicative group Gm, where functions have weight
zero, vector fields have weight −1, and k-vector fields have weight −k.
This action arises because polyvector fields are functions on the shifted
cotangent bundle T∗[−1]M, and there is always a scaling action on the
cotangent fibers.

We can make the classical BV complex into a Gm-equivariant P0 al-
gebra, as follows. Simply equip the Schouten bracket with weight 1
and the commutative product with weight zero. We now ask for a Gm-
equivariant BD quantization.

To make this question precise, we rephrase our observations operad-
ically. Equip the operad P0 with the Gm action where the commutative
product is weight zero and the Poisson bracket is weight 1. An equiv-
ariant P0 algebra is then a P0 algebra with a Gm action such that the
bracket has weight 1 and the product has weight zero. Similarly, equip
the operad BD with the Gm action where h̄ has weight −1, the product
has weight zero, and the bracket has weight 1. A filtered BD algebra is
a BD algebra with a Gm action with the same weights.

Given a volume form µ on M, the h̄-weighted divergence complex
(PV(M)[[h̄]], h̄ divµ) is a filtered BD algebra.

On an smooth manifold, we saw that each volume form µ produced a
divergence operator divµ, via “conjugating” the exterior derivative d by
the isomorphism ∨µ. In fact, any rescaling cµ, with c ∈ R×, produces
the same divergence operator. Since we want to work with probability
measures, this fact meshes well with our objectives: we would always
divide by the integral

∫
X µ anyway. In fact, one can show that every

filtered BD quantization of the P0 algebra PV(M) arises in this way.

6.4.0.1 Proposition. There is a bijection between projective volume forms on
M, and filtered BV quantizations of PV(M).

See Costello (2011a) for more details on this point.
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6.5 How renormalization group flow interlocks with the
BV formalism

So far, we have introduced the quantum BV formalism in the finite di-
mensional setting and extracted the essential algebraic structures. Ap-
plying these ideas in the setting of field theories requires nontrivial
work. Much of this work is similar in flavor to our construction of a
lax P0 structure on Obscl : issues with functional analysis block the most
naive approach, but there are alternative approaches, often well-known
in physics, that accomplish our goal, once suitably reinterpreted.

Here, we build on the approach of Costello (2011b). The book uses
exact renormalization group flow to define the notion of effective field
theory and develops an effective version of the BV formalism. In chap-
ter 7, we review these ideas in detail. We will sketch how to apply the
BV formalism to formal elliptic moduli problemsMwith−1-symplectic
pairing.

The main problem here is the same as in defining a shifted Pois-
son structure on the classical observables: the putative Poisson bracket
{−,−}, arising from the symplectic structure, is well-defined only on a
subspace of all observables. As a result, the associated BV Laplacian4
is also only partially-defined.

To work around this problem, we use the fact that every parametrix
Φ for the elliptic complex underlyingM yields a mollified version4Φ
of the BV Laplacian, and hence a mollified bracket {−,−}Φ. An effec-
tive field theory consists of a BD algebra ObsΦ for every parametrix and
a homotopy equivalence for any two parametrices, ObsΦ ' ObsΨ , sat-
isfying coherence relations. In other words, we get a family of BD al-
gebras over the space of parametrices. The renormalization group (RG)
flow provides the homotopy equivalences for any pair of parametrices.
Modulo h̄, we also get a family Obscl

Φ of P0 algebras over the space of
parametrices. The tree-level RG flow produces the homotopy equiva-
lences modulo h̄.

An effective field theory is a quantization ofM if, in the limit as4Φ
goes to 4, the P0 algebra goes to the functions O(M) on the formal
moduli problem.
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The space of parametrices is contractible, so an effective field theory
describes just one BD algebra, up to homotopy equivalence. From the
perspective developed thus far, we interpret this BD algebra as encod-
ing integration overM.

There is another way to interpret this definition, though, that may
be attractive. The RG flow amounts to a Feynman diagram expansion,
and hence we can see it as a definition of functional integration (in par-
ticular, flowing from energy scale Λ to Λ′ integrates over the space of
functions with energies between those scales). In Costello (2011b), the
RG flow is extended to the setting where the underlying free theory is
an elliptic complex, not just given by an elliptic operator.

6.6 Overview of the rest of this Part

Here is a detailed summary of the chapters on quantum field theory.

(i) In sections 7.1 to 7.5 we give an overview of the definition of QFT
developed in Costello (2011b).

(ii) In section 8.1 we recall the definition of a free theory in the BV for-
malism and construct the factorization algebra of quantum observ-
ables of a general free theory, using the factorization envelope con-
struction of section I.3.3. It generalizes the discussion in chapter I.4.

(iii) In section 8.2 we show how the definition of a QFT leads immedi-
ately to a construction of a BD algebra of “global observables” on the
manifold M, which we denote Obsq

P (M).
(iv) In section 8.3 we start the construction of the factorization algebra

associated to a QFT. We construct a cochain complex Obsq(M) of
global observables, which is quasi-isomorphic to (but much smaller
than) the BD algebra Obsq

P (M).
(v) In section 8.5 we construct, for every open subset U ⊂ M, the sub-

space Obsq(U) ⊂ Obsq(M) of observables supported on U.
(vi) Section 8.6 accomplishes the primary aim of the chapter. In it, we

prove that the cochain complexes Obsq(U) form a factorization alge-
bra. The proof of this result is the most technical part of the chapter.

(vii) In section 9.1 we show that translation-invariant theories have translation-
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invariant factorization algebras of observables, and we treat the holo-
morphic situation as well.

(viii) In section 9.4 we explain how to interpret our definition of a QFT in
the special case of a cotangent theory: roughly speaking, a quantiza-
tion of the cotangent theory to an elliptic moduli problem yields a
locally-defined volume form on the moduli problem we start with.



7
Effective field theories and

Batalin-Vilkovisky quantization

In this chapter, we will give a summary of the definition of a QFT as
developed in Costello (2011b). We will emphasize the aspects used in
our construction of the factorization algebra associated to a QFT. This
means that important aspects of the story there — such as the concept of
renormalizability — will not be mentioned. The introductory chapter of
Costello (2011b) is a leisurely exposition of the main physical and math-
ematical ideas, and we encourage the reader to examine it before delv-
ing into what follows. The approach there is perturbative and hence
has the flavor of formal geometry (that is, geometry with formal mani-
folds).

A perturbative field theory is defined to be a family of effective field
theories parametrized by some notion of “scale.” The notion of scale
can be quite flexible; the simplest version is where the scale is a positive
real number, the length. In this case, the effective theory at a length
scale L is obtained from the effective theory at scale ε by integrating
out over fields with length scale between ε and L. In order to construct
factorization algebras, we need a more refined notion of “scale,” where
there is a scale for every parametrix Φ of a certain elliptic operator. We
denote such a family of effective field theories by {I[Φ]}, where I[Φ]
is the “interaction term” in the action functional S[Φ] at “scale” Φ. We
always study families with respect to a fixed free theory.

A local action functional (see section 7.1) S is a real-valued function
on the space of fields such that S(φ) is given by integrating some func-
tion of the field and its derivatives over the base manifold (the “space-

100
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time”). The main result of Costello (2011b) states that the space of per-
turbative QFTs is the “same size” as the space of local action function-
als. More precisely, the space of perturbative QFTs defined modulo h̄n+1

is a torsor over the space of QFTs defined modulo h̄n for the abelian
group of local action functionals. In consequence, the space of perturba-
tive QFTs is non-canonically isomorphic to local action functionals with
values in R[[h̄]] (where the choice of isomorphism amounts to choosing
a way to construct counterterms).

The starting point for many physical constructions — such as the
path integral — is a local action functional. However, a naive appli-
cation of these constructions to such an action functional yields a non-
sensical answer. Many of these constructions do work if, instead of ap-
plying them to a local action functional, they are applied to a family
{I[Φ]} of effective action functionals. Thus, one can view the family
of effective action functionals {I[Φ]} as a quantum version of the local
action functional defining classical field theory. The results of Costello
(2011b) allow one to construct such families of action functionals. Many
formal manipulations with path integrals in the physics literature ap-
ply rigorously to families {I[Φ]} of effective actions. Our strategy for
constructing the factorization algebra of observables is to mimic path-
integral definitions of observables one can find in the physics literature,
but replacing local functionals by families of effective actions.

7.1 Local action functionals

In studying field theory, there is a special class of functions on the fields,
known as local action functionals, that parametrize the possible classi-
cal physical systems. Let M be a smooth manifold. Let E = C∞(M, E)
denote the smooth sections of a Z-graded super vector bundle E on M,
which has finite rank when all the graded components are included.
We call E the fields.

Various spaces of functions on the space of fields are defined in the
Appendix B.1.
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7.1.0.1 Definition. A functional F is an element of

O(E ) =
∞

∏
n=0

HomDVS(E
×n, R)Sn .

This is also the completed symmetric algebra of E ∨, where the tensor product
is the completed projective one.

Let Ored(E ) = O(E )/C be the space of functionals on E modulo constants.

Note that every element of O(E ) has a Taylor expansion whose terms
are smooth multilinear maps

E ×n → C.

Such smooth mulitilinear maps are the same as compactly-supported
distributional sections of the bundle (E!)�n on Mn. Concretely, a func-
tional is then an infinite sequence of vector-valued distributions on
powers of M.

The local functionals depend only on the local behavior of a field, so
that at each point of M, a local functional should only depend on the jet
of the field at that point. In the Lagrangian formalism for field theory,
their role is to describe the permitted actions, so we call them local action
functionals. A local action functional is the essential datum of a classical
field theory.

7.1.0.2 Definition. A functional F is local if each homogeneous component
Fn is a finite sum of terms of the form

Fn(φ) =
∫

M
(D1φ) · · · (Dnφ) dµ,

where each Di is a differential operator from E to C∞(M) and dµ is a density
on M.

We let

Oloc(E ) ⊂ Ored(E )

denote denote the space of local action functionals modulo constants.

As explained in section 4.4, a classical BV theory is a choice of local
action functional S of cohomological degree 0 such that {S, S} = 0. That
is, S must satisfy the classical master equation.
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7.2 The definition of a quantum field theory

In this section, we will give the formal definition of a quantum field the-
ory. The definition is a little long and somewhat technical. The reader
should consult the first chapter of Costello (2011b) for physical motiva-
tions for this definition. We will provide some justification for the def-
inition from the point of view of homological algebra shortly (section
8.2).

7.2.1

7.2.1.1 Definition. A free BV theory on a manifold M consists of the fol-
lowing data:

(i) a Z-graded super vector bundle π : E→ M that is of finite rank;
(ii) a graded antisymmetric map of vector bundles 〈−,−〉loc : E ⊗ E →

Dens(M) of cohomological degree −1 that is fiberwise nondegenerate. It
induces a graded antisymmetric pairing of degree −1 on compactly sup-
ported smooth sections Ec of E:

〈φ, ψ〉 =
∫

x∈M
〈φ(x), ψ(x)〉loc;

(iii) a square-zero differential operator Q : E → E of cohomological degree 1
that is skew self adjoint for the symplectic pairing.

In our constructions, we require the existence of a gauge-fixing opera-
tor QGF : E → E with the following properties:

(i) it is a square-zero differential operator of cohomological degree −1 ;
(ii) it is self adjoint for the symplectic pairing;

(iii) D = [Q, QGF] is a generalized Laplacian on M, in the sense of Berline
et al. (1992). This means that D is an order 2 differential operator
whose symbol σ(D), which is an endomorphism of the pullback
bundle p∗E on the cotangent bundle p : T∗M→ M, is

σ(D) = g Idp∗E

where g is some Riemannian metric on M, viewed as a function on
T∗M.
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All our constructions vary homotopically with the choice of gauge
fixing operator. In practice, there is a natural contractible space of gauge
fixing operators, so that our constructions are independent (up to con-
tractible choice) of the choice of gauge fixing operator. (As an exam-
ple of contractibility, if the complex E is simply the de Rham complex,
each metric gives a gauge fixing operator d∗. The space of metrics is
contractible.)

7.2.2 Operators and kernels

Let us recall the relationship between kernels and operators on E . Any
continuous linear map F : Ec → E can be represented by a kernel

KF ∈ D(M2, E� E!).

HereD(M,−) denotes distributional sections. We can also identify this
space as

D(M2, E� E!) = HomDVS(E
!
c × Ec, C)

= HomDVS(Ec, E )

= E ⊗̂πE
!.

Here ⊗̂π denotes the completed projective tensor product.

The symplectic pairing on E gives an isomorphism between E and
E

!
[−1]. This allows us to view the kernel for any continuous linear map

F as an element

KF ∈ E ⊗̂πE = HomDVS(E
!
c × E !

c , C)

. If F is of cohomological degree k, then the kernel KF is of cohomologi-
cal degree k + 1.

If the map F : Ec → E has image in E c and extends to a continuous
linear map E → E c, then the kernel KF has compact support. If F has
image in E and extends to a continuous linear map E c → E , then the
kernel KF is smooth.

Our conventions are such that the following hold.

(i) K[Q,F] = QKF, where Q is the total differential on E ⊗̂πE .
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(ii) Suppose that F : Ec → Ec is skew-symmetric with respect to the de-
gree −1 pairing on Ec. Then KF is symmetric. Similarly, if F is sym-
metric, then KF is anti-symmetric.

7.2.3 The heat kernel

In this section we will discuss heat kernels associated to the generalized
Laplacian D = [Q, QGF]. These generalized heat kernels will not be es-
sential to our story; most of our constructions will work with a general
parametrix for the operator D, and the heat kernel simply provides a
convenient example.

Suppose that we have a free BV theory with a gauge fixing operator
QGF. As above, let D = [Q, QGF]. If our manifold M is compact, then
this leads to a heat operator e−tD acting on sections E . The heat kernel
Kt is the corresponding kernel, which is an element of E ⊗̂πE ⊗̂πC∞(R≥0).
Further, if t > 0, the operator e−tD is a smoothing operator, so that the
kernel Kt is in E ⊗̂πE . Since the operator e−tD is skew symmetric for the
symplectic pairing on E , the kernel Kt is symmetric.

The kernel Kt is uniquely characterized by the following properties:

(i) The heat equation:

d
dt

Kt + (D⊗ 1)Kt = 0.

(ii) The initial condition that K0 ∈ E ⊗̂πE is the kernel for the identity
operator.

On a non-compact manifold M, there is more than one heat kernel sat-
isfying these properties.

7.2.4 Parametrices

In Costello (2011b), two equivalent definitions of a field theory are given:
one based on the heat kernel, and one based on a general parametrix.
We will use exclusively the parametrix version in this book.
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Before we define the notion of parametrix, we need a technical defi-
nition.

7.2.4.1 Definition. If M is a manifold, a subset V ⊂ Mn is proper if all of
the projection maps π1, . . . , πn : V → M are proper. We say that a function,
distribution, etc. on Mn has proper support if its support is a proper subset
of Mn.

7.2.4.2 Definition. A parametrix Φ is a distributional section

Φ ∈ E (M)⊗̂πE (M)

of the bundle E� E on M×M with the following properties.

(i) Φ is symmetric under the natural Z/2 action on E (M)⊗̂πE (M).
(ii) Φ is of cohomological degree 1.

(iii) Φ has proper support.
(iv) Let QGF : E → E be the gauge fixing operator. We require that

([Q, QGF]⊗ 1)Φ− KId

is a smooth section of E� E on M×M. Thus,

([Q, QGF]⊗ 1)Φ− KId ∈ E (M)⊗̂πE (M).

(Here KId is the kernel corresponding to the identity operator).

Remark: For clarity’s sake, note that our definition depends on a choice
of QGF. Thus, we are defining here parametrices for the generalized
Laplacian [Q, QGF], not general parametrices for the elliptic complex E .
♦

Note that the parametrix Φ can be viewed (using the correspondence
between kernels and operators described above) as a linear map AΦ :
E → E . This operator is of cohomological degree 0, and has the prop-
erty that

AΦ[Q, QGF] = Id+ a smoothing operator

[Q, QGF]AΦ = Id+ a smoothing operator.

This property – being both a left and right inverse to the operator [Q, QGF],
up to a smoothing operator – is the standard definition of a parametrix.

An example of a parametrix is the following. For M compact, let Kt ∈
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E ⊗̂πE be the heat kernel. Then, the kernel
∫ L

0 Ktdt is a parametrix, for
any L > 0.

It is a standard result in the theory of pseudodifferential operators
(see e.g. Tar (n.d.)) that every elliptic operator admits a parametrix.
Normally a parametrix is not assumed to have proper support; how-
ever, if Φ is a parametrix satisfying all conditions except that of proper
support, and if f ∈ C∞(M×M) is a smooth function with proper sup-
port that is 1 in a neighborhood of the diagonal, then f Φ is a parametrix
with proper support. This shows that parametrices with proper support
always exist.

Let us now list some key properties of parametrices, all of which are
consequences of elliptic regularity.

7.2.4.3 Lemma. Parametrices satisfy the following:

(i) If Φ, Ψ are parametrices, then the section Φ − Ψ of the bundle E� E on
M×M is smooth.

(ii) Any parametrix Φ is smooth away from the diagonal in M×M.
(iii) Any parametrix Φ is such that (Q ⊗ 1 + 1 ⊗ Q)Φ is smooth on all of

M×M.

(Note that Q⊗ 1 + 1⊗Q is the natural differential on the space E ⊗̂β E .)

Proof We will let Q denote Q⊗ 1+ 1⊗Q, and similarly QGF = QGF ⊗
1 + 1⊗QGF, acting on the space E ⊗̂βE . Note that

[Q, QGF] = [Q, QGF]⊗ 1 + 1⊗ [Q, QGF].

We now verify the assertions:

(i) Since [Q, QGF](Φ−Ψ) is smooth, and the operator [Q, QGF] is ellip-
tic, this step follows from elliptic regularity.

(ii) Away from the diagonal, Φ is annihilated by the elliptic operator
[Q, QGF], and so is smooth.

(iii) Note that

[Q, QGF]QΦ = Q[Q, QGF]Φ

and that [Q, QGF]Φ− 2KId is smooth, where KId is the kernel for the
identity operator. Since QKId = 0, the statement follows.
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�

If Φ, Ψ are parametrices, we say that Φ < Ψ if the support of Φ is con-
tained in the support of Ψ. In this way, parametrices acquire a partial
order.

7.2.5 The propagator for a parametrix

In what follows, we will use the notation Q, QGF, [Q, QGF] for the oper-
ators Q⊗ 1 + 1⊗Q, etc.

If Φ is a parametrix, we let

P(Φ) = 1
2 QGFΦ ∈ E ⊗̂πE .

This is the propagator associated to Φ. We let

KΦ = KId −QP(Φ)..

Note that

QP(Φ)) = 1
2 [Q, QGF]Φ−QΦ

= Kid + smooth kernels .

Thus, KΦ is smooth.

We remark that

KΦ − KΨ = QP(Ψ)−QP(Φ),

which is an important identity we will use repeatedly.

To relate to Section 7.2.3 and Costello (2011b), we note that if M is a
compact manifold and if

Φ =
∫ L

0
Ktdt

is the parametrix associated to the heat kernel, then

P(Φ) = P(0, L) =
∫ L

0
(QGF ⊗ 1)Ktdt

and KΦ = KL.



7.2 The definition of a quantum field theory 109

7.2.6 Classes of functionals

In the appendix B.1 we define various classes of functions on the space
Ec of compactly-supported fields. Here we give an overview of those
classes. Many of the conditions seem somewhat technical at first, but
they arise naturally as one attempts both to discuss the support of an
observable and to extend the algebraic ideas of the BV formalism in this
infinite-dimensional setting.

We are interested, firstly, in functions modulo constants, which we
call Ored(Ec). Every functional F ∈ Ored(Ec) has a Taylor expansion in
terms of symmetric smooth linear maps

Fk : E ×k
c → C

(for k > 0). Such linear maps are the same as distributional sections of
the bundle (E!)�k on Mk. We say that F has proper support if the support
of each Fk (as defined above) is a proper subset of Mk. The space of
functionals with proper support is denoted OP(Ec) (as always in this
section, we work with functionals modulo constants). This condition
equivalently means that, when we think of Fk as an operator

E ×k−1
c → E

!,

it extends to a smooth multilinear map

Fk : E ×k−1 → E
!.

At various points in this book, we will need to consider functionals
with smooth first derivative, which are functionals satisfying a certain
technical regularity constraint. Functionals with smooth first derivative
are needed in two places in the text: when we define the Poisson bracket
on classical observables, and when we give the definition of a quantum
field theory. In terms of the Taylor components Fk, viewed as multilin-
ear operators E ×k−1

c → E
!, this condition means that the Fk has image

in E !. (For more detail, see Appendix B.1.)

We are interested in the functionals with smooth first derivative and
with proper support. We denote this space by OP,sm(E ). These are the
functionals with the property that the Taylor components Fk, when viewed
as operators, give continuous linear maps

E ×k−1 → E !.
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7.2.7 The renormalization group flow

Let Φ and Ψ be parametrices. Then P(Φ) − P(Ψ) is a smooth kernel
with proper support.

Given any element

α ∈ E ⊗̂πE = C∞(M×M, E� E)

of cohomological degree 0, we define an operator

∂α : O(E )→ O(E ).

This map is an order 2 differential operator, which, on components, is
the map given by contraction with α:

α ∨− : Symn E ∨ → Symn−2 E ∨.

The operator ∂α is the unique order 2 differential operator that is given
by pairing with α on Sym2 E ∨ and that is zero on Sym≤1 E ∨.

We define a map

W (α,−) : O+(E )[[h̄]]→ O+(E )[[h̄]]

F 7→ h̄ log
(

eh̄∂α eF/h̄
)

,

known as the renormalization group flow with respect to α. (When α =
P(Φ) − P(Ψ), we call it the RG flow from Ψ to Φ.) This formula is a
succinct way of summarizing a Feynman diagram expansion. In par-
ticular, W (α, F) can be written as a sum over Feynman diagrams with
the Taylor components Fk of F labelling vertices of valence k, and with
α as propagator. (All of this, and indeed everything else in this section,
is explained in far greater detail in chapter 2 of Costello (2011b).) For
this map to be well-defined, the functional F must have only cubic and
higher terms modulo h̄. The notation O+(E )[[h̄]] denotes this restricted
class of functionals.

If α ∈ E ⊗̂πE has proper support, then the operator W (α,−) extends
(uniquely, of course) to a continuous (or equivalently, smooth) operator

W (α,−) : O+
P,sm(Ec)[[h̄]]→ O+

P,sm(Ec)[[h̄]].

Our philosophy is that a parametrix Φ is like a choice of “scale”
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for our field theory. The renormalization group flow relating the scale
given by Φ and that given by Ψ is W (P(Φ)− P(Ψ),−).

Because P(Φ) is not a smooth kernel, the operator W (P(Φ),−) is
not well-defined. This is just because the definition of W (P(Φ),−) in-
volves multiplying distributions. In physics terms, the singularities that
appear when one tries to define W (P(Φ),−) are called ultraviolet di-
vergences.

However, if I ∈ O+
P,sm(E ), the tree level part

W0 (P(Φ), I) = W ((P(Φ), I) mod h̄

is a well-defined element of O+
P,sm(E ). The h̄→ 0 limit of W (P(Φ), I) is

called the tree-level part because, whereas the whole object W (P(Φ), I)
is defined as a sum over graphs, the h̄→ 0 limit W0 (P(Φ), I) is defined
as a sum over trees. It is straightforward to see that W0 (P(Φ), I) only
involves multiplication of distributions with transverse singular sup-
port, and so is well defined.

7.2.8 The BD algebra structure associated to a parametrix

A parametrix also leads to a BV operator

4Φ = ∂KΦ : O(E )→ O(E ).

Again, this operator preserves the subspace OP,sm(E ) of functions with
proper support and smooth first derivative. The operator 4Φ com-
mutes with Q, and it satisfies (4Φ)

2 = 0. In a standard way, we can
use the BV operator4Φ to define a bracket

{I, J}Φ = 4Φ(I J)− (4Φ I)J − (−1)|I| I4Φ J

on the space O(E ).

This bracket is a Poisson bracket of cohomological degree 1. If we
give the graded-commutative algebra O(E )[[h̄]] the standard product,
the Poisson bracket {−,−}Φ, and the differential Q + h̄4Φ, then it be-
comes a BD algebra.

The bracket {−,−}Φ extends uniquely to a continuous linear map

OP(E )×O(E )→ O(E ).
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Further, the space OP,sm(E ) is closed under this bracket. (Note, how-
ever, that OP,sm(E ) is not a commutative algebra if M is not compact: the
product of two functionals with proper support no longer has proper
support.)

A functional F ∈ O(E )[[h̄]] is said to satisfy the Φ-quantum master
equation if

QF + h̄4ΦF + 1
2{F, F}Φ = 0.

It is shown in Costello (2011b) that if F satisfies the Φ-QME, and if Ψ
is another parametrix, then W (P(Ψ)− P(Φ), F) satisfies the Ψ-QME.
This follows from the identity

[Q, ∂P(Φ) − ∂P(Ψ)] = 4Ψ −4Φ

of order 2 differential operators on O(E ). This relationship between the
renormalization group flow and the quantum master equation is a key
part of the approach to QFT of Costello (2011b).

7.2.9 The definition of a field theory

Our definition of a field theory is as follows.

7.2.9.1 Definition. Let (E , Q, 〈−,−〉) be a free BV theory. Fix a gauge fix-
ing condition QGF. Then a quantum field theory (with this space of fields)
consists of the following data.

(i) For all parametrices Φ, a functional

I[Φ] ∈ O+
P,sm(Ec)[[h̄]]

that we call the scale Φ effective interaction. As we explained above, the
subscripts indicate that I[Φ] must have smooth first derivative and proper
support. The superscript + indicates that, modulo h̄, I[Φ] must be at least
cubic. Note that we work with functions modulo constants.

(ii) For two parametrices Φ, Ψ, I[Φ] must be related by the renormalization
group flow:

I[Φ] = W (P(Φ)− P(Ψ), I[Ψ]) .

(iii) Each I[Φ] must satisfy the Φ-quantum master equation

(Q + h̄4Φ)eI[Φ]/h̄ = 0.
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Equivalently,

QI[Φ] + h̄4Φ I[Φ] + 1
2{I[Φ], I[Φ]}Φ.

(iv) Finally, we require that I[Φ] satisfies a locality axiom. Let

Ii,k[Φ] : E ×k
c → C

be the kth Taylor component of the coefficient of h̄i in I[Φ]. We can view
this as a distributional section of the bundle (E!)�k on Mk. Our locality
axiom says that, as Φ tends to zero, the support of

Ii,k[Φ]

becomes closer and closer to the small diagonal in Mk.
For the constructions in this book, it turns out to be useful to have pre-

cise bounds on the support of Ii,k[Φ]. To give these bounds, we need some
notation. Let Supp(Φ) ⊂ M2 be the support of the parametrix Φ, and
let Supp(Φ)n ⊂ M2 be the subset obtained by convolving Supp(Φ)
with itself n times. (Thus, (x, y) ∈ Supp(Φ)n if there exists a sequence
x = x0, x1, . . . , xn = y such that (xi, xi+1) ∈ Supp(Φ).)

Our support condition is that, if ej ∈ Ec, then

Ii,k(e1, . . . , ek) = 0

unless, for all 1 ≤ r < s ≤ k,

Supp(er)× Supp(es) ⊂ Supp(Φ)3i+k.

Remark: (i) The locality axiom condition as presented here is a little un-
appealing. An equivalent axiom is that for all open subsets U ⊂ Mk

containing the small diagonal M ⊂ Mk, there exists a parametrix ΦU
such that

Supp Ii,k[Φ] ⊂ U for all Φ < ΦU .

In other words, by choosing a small parametrix Φ, we can make the
support of Ii,k[Φ] as close as we like to the small diagonal on Mk.

We present the definition with a precise bound on the size of the
support of Ii,k[Φ] because this bound will be important later in the
construction of the factorization algebra. Note, however, that the
precise exponent 3i+ k which appears in the definition (in Supp(Φ)3i+k)
is not important. What is important is that we have some bound of
this form.
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(ii) It is important to emphasize that the notion of quantum field theory
is only defined once we have chosen a gauge fixing operator. Later,
we will explain in detail how to understand the dependence on this
choice. More precisely, we will construct a simplicial set of QFTs and
show how this simplicial set only depends on the homotopy class of
gauge fixing operator (in most examples, the space of natural gauge
fixing operators is contractible).

♦

Let I0 ∈ Oloc(E ) be a local functional (defined modulo constants) that
satisfies the classical master equation

QI0 +
1
2{I0, I0} = 0.

Suppose that I0 is at least cubic.

Then, as we have seen above, we can define a family of functionals

I0[Φ] = W0 (P(Φ), I0) ∈ OP,sm(E )

as the tree-level part of the renormalization group flow operator from
scale 0 to the scale given by the parametrix Φ. The compatibility be-
tween this classical renormalization group flow and the classical master
equation tells us that I0[Φ] satisfies the Φ-classical master equation

QI0[Φ] + 1
2{I0[Φ], I0[Φ]}Φ = 0.

7.2.9.2 Definition. Let I[Φ] ∈ O+
P,sm(E )[[h̄]] be the collection of effective

interactions defining a quantum field theory. Let I0 ∈ Oloc(E ) be a local func-
tional satisfying the classical master equation, and so defining a classical field
theory. We say that the quantum field theory {I[Φ]} is a quantization of the
classical field theory defined by I0 if

I[Φ] = I0[Φ] mod h̄,

or, equivalently, if

lim
Φ→0

I[Φ]− I0 mod h̄ = 0.
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7.3 Families of theories over nilpotent dg manifolds

Before discussing the interpretation of these axioms and also explaining
the results of Costello (2011b) that allow one to construct such quantum
field theories, we will explain how to define families of quantum field
theories over some base dg algebra. The fact that we can work in fami-
lies in this way means that the moduli space of quantum field theories
is something like a derived stack. For instance, by considering families
over the base dg algebra of forms on the n-simplex, we see that the set
of quantizations of a given classical field theory is a simplicial set.

One particularly important use of the families version of the theory is
that it allows us to show that our constructions and results are indepen-
dent, up to homotopy, of the choice of gauge fixing condition (provided
one has a contractible — or at least connected — space of gauge fixing
conditions, which happens in most examples).

In later sections, we will work implicitly over some base dg ring in
the sense described here, although we will normally not mention this
base ring explicitly.

7.3.0.1 Definition. A nilpotent dg manifold is a manifold X (possibly with
corners), equipped with a sheaf A of commutative differential graded algebras
over the sheaf Ω∗X , with the following properties.

(i) A is concentrated in finitely many degrees.
(ii) Each A i is a locally free sheaf of Ω0

X-modules of finite rank. This means
that A i is the sheaf of sections of some finite rank vector bundle Ai on X.

(iii) We are given a map of dg Ω∗X-algebras A → C∞
X .

We will let I ⊂ A be the ideal which is the kernel of the map A → C∞
X :

we require that I , its powers I k, and each A /I k are locally free sheaves
of C∞

X -modules. Also, we require that I k = 0 for k sufficiently large.

Note that the differential d on A is necessary a differential operator.

We will use the notation A ] to refer to the bundle of graded algebras on X
whose smooth sections are A ], the graded algebra underlying the dg algebra
A .

If (X, A ) and (Y, B) are nilpotent dg manifolds, a map (Y, B)→ (X, A )
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is a smooth map f : Y → X together with a map of dg Ω∗(X)-algebras
A → B.

Here are some basic examples.

(i) A = C∞(X) and I = 0. This describes the smooth manifold X.
(ii) A = Ω∗(X) and I = Ω>0(X). This equips X with its de Rham

complex as a structure sheaf. (Informally, we can say that “constant
functions are the only functions on a small open” so that this dg
manifold is sensitive to topological rather than smooth structure.)

(iii) If R is a dg Artinian C-algebra with maximal ideal m, then R can
be viewed as giving the structure of nilpotent graded manifold on a
point.

(iv) If again R is a dg Artinian algebra, then for any manifold (X, R ⊗
Ω∗(X)) is a nilpotent dg manifold.

(v) If X is a complex manifold, then A = (Ω0,∗(X), ∂) is a nilpotent dg
manifold.

Remark: We study field theories in families over nilpotent dg manifolds
for both practical and structural reasons. First, we certainly wish to
discuss familes of field theories over smooth manifolds. However, we
would also like to access a “derived moduli space” of field theories.

In derived algebraic geometry, one says that a derived stack is a func-
tor from the category of non-positively graded dg rings to that of sim-
plicial sets. Thus, such non-positively graded dg rings are the “test ob-
jects” one uses to define derived algebraic geometry. Our use of nilpo-
tent dg manifolds mimics this story: we could say that a C∞ derived
stack is a functor from nilpotent dg manifolds to simplicial sets. The
nilpotence hypothesis is not a great restriction, as the test objects used
in derived algebraic geometry are naturally pro-nilpotent, where the
pro-nilpotent ideal consists of the elements in degrees < 0.

Second, from a practical point of view, our arguments are tractable
when working over nilpotent dg manifolds. This is related to the fact
that we choose to encode the analytic structure on the vector spaces we
consider using the language of differentiable vector spaces. Differen-
tiable vector spaces are, by definition, objects where one can talk about
smooth families of maps depending on a smooth manifold. In fact, the
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definition of differentiable vector space is strong enough that one can
talk about smooth families of maps depending on nilpotent dg mani-
folds. ♦

We can now give a precise notion of “family of field theories.” We
will start with the case of a family of field theories parameterized by
the nilpotent dg manifold X = (X, C∞

X ), i.e. the sheaf of dg rings on X
is just the sheaf of smooth functions.

7.3.0.2 Definition. Let M be a manifold and let (X, A ) be a nilpotent dg
manifold. A family over (X, A ) of free BV theories is the following data.

(i) A graded bundle E on M× X of locally free A]-modules. We will refer to
global sections of E as E . The space of those sections s ∈ Γ(M × X, E)
with the property that the map Supp s → X is proper will be denoted Ec.
Similarly, we let E denote the space of sections which are distributional on
M and smooth on X, that is,

E = E ⊗C∞(M×X)

(
D(M)⊗̂πC∞(X)

)
.

(This is just the algebraic tensor product, which is reasonable as E is a
finitely generated projective C∞(M× X)-module).

As above, we let

E! = HomA](E, A])⊗DensM

denote the “dual” bundle. There is a natural A ]-valued pairing between E

and E !
c .

(ii) A differential operator Q : E → E , of cohomological degree 1 and square-
zero, making E into a dg module over the dg algebra A .

(iii) A map

E⊗A] E→ DensM⊗A]

which is of degree −1, anti-symmetric, and leads to an isomorphism

HomA](E, A])⊗DensM → E

of sheaves of A]-modules on M× X.
This pairing leads to a degree −1 anti-symmetric A -linear pairing

〈−,−〉 : Ec⊗̂πEc → A .

We require it to be a cochain map. In other words, if e, e′ ∈ Ec,

dA
〈
e, e′
〉
=
〈

Qe, e′
〉
+ (−1)|e|

〈
e, Qe′

〉
.
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7.3.0.3 Definition. Let (E, Q, 〈−,−〉) be a family of free BV theories on M
parameterized by A . A gauge fixing condition on E is an A -linear differ-
ential operator

QGF : E → E

such that

D = [Q, QGF] : E → E

is a generalized Laplacian, in the following sense.

Note that D is an A -linear cochain map. Thus, we can form

D0 : E ⊗A C∞(X)→ E ⊗A C∞(X)

by reducing modulo the maximal ideal I of A .

Let E0 = E/I be the bundle on M × X obtained by reducing modulo the
ideal I in the bundle of algebras A. Let

σ(D0) : π∗E0 → π∗E0

be the symbol of the C∞(X)-linear operator D0. Thus, σ(D0) is an endomor-
phism of the bundle of π∗E0 on (T∗M)× X.

We require that σ(D0) is the product of the identity on E0 with a smooth
family of metrics on M parameterized by X.

Throughout this section, we will fix a family of free theories on M,
parameterized by A . We will take A to be our base ring throughout,
so that everything will be A -linear. We would also like to take tensor
products over A . Since A is a topological dg ring and we are dealing
with topological modules, the issue of tensor products is a little fraught.
Instead of trying to define such things, we will use the following short-
hand notations:

(i) E ⊗A E is defined to be sections of the bundle

E�A] E = π∗1 E⊗A] π∗2 E

on M × M × X, with its natural differential which is a differential
operator induced from the differentials on each copy of E .
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(ii) E is the space of sections of the bundle E on M×X which are smooth
in the X-direction and distributional in the M-direction. Similarly for
E c, E

!, etc.
(iii) E ⊗A E is defined to be sections of the bundle E�A] E on M×M×

X, which are distributions in the M-directions and smooth as func-
tions of X.

(iv) If x ∈ X, let Ex denote the sections on M of the restriction of the
bundle E on M× X to M× x. Note that Ex is an A]

x-module. Then,
we define O(E ) to be the space of smooth sections of the bundle of
topological (or differentiable) vector spaces on X whose fibre at x is

O(E )x = ∏
n

Hom
DVS/A]

x
(E ×n

x , A ]
x )Sn .

That is an element of O(Ex) is something whose Taylor expansion is
given by smooth A]

x-multilinear maps to A]
x.

If F ∈ O(E ) is a smooth section of this bundle, then the Taylor
terms of F are sections of the bundle (E!)�A]n on Mn × X which are
distributional in the Mn-directions, smooth in the X-directions, and
whose support maps properly to X.

In other words: when we want to discuss spaces of functionals on E ,
or tensor powers of E or its distributional completions, we just to ev-
erything we did before fibrewise on X and linear over the bundle of
algebras A]. Then, we take sections of this bundle on X.

7.3.1

Now that we have defined free theories over a base ring A , the defi-
nition of an interacting theory over A is very similar to the definition
given when A = C. First, one defines a parametrix to be an element

Φ ∈ E ⊗A E

with the same properties as before, but where now we take all tensor
products (and so on) over A . More precisely,

(i) Φ is symmetric under the natural Z/2 action on E ⊗ E .
(ii) Φ is of cohomological degree 1.

(iii) Φ is closed under the differential on E ⊗ E .
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(iv) Φ has proper support: this means that the map Supp Φ → M× X is
proper.

(v) Let QGF : E → E be the gauge fixing operator. We require that

([Q, QGF]⊗ 1)Φ− KId

is an element of E ⊗ E (where, as before, KId ∈ E ⊗ E is the kernel
for the identity map).

An interacting field theory is then defined to be a family of A -linear
functionals

I[Φ] ∈ Ored(E )[[h̄]] = ∏
n≥1

HomA (E ⊗A n, A )Sn [[h̄]]

satisfying the renormalization group flow equation, quantum master
equation, and locality condition, just as before. In order for the RG
flow to make sense, we require that each I[Φ] has proper support and
smooth first derivative. In this context, this means the following. Let
Ii,k[Φ] : E ⊗k → A be the kth Taylor component of the coefficient of h̄i

in Ii,k[Φ]. Proper support means that any projection map

Supp Ii,k[Φ] ⊂ Mk × X → M× X

is proper. Smooth first derivative means, as usual, that when we think
of Ii,k[Φ] as an operator E ⊗k−1 → E , the image lies in E .

If we have a family of theories over (X, A ), and a map

f : (Y, B)→ (X, A )

of dg manifolds, then we can base change to get a family over (Y, B).
The bundle on Y of B]

x-modules of fields is defined, fibre by fibre, by

( f ∗E )y = E f (y) ⊗A]
f (y)

B]
y.

The gauge fixing operator

QGF : f ∗E → f ∗E

is the B-linear extension of the gauge fixing condition for the family of
theories over A .

If

Φ ∈ E ⊗A E ⊂ f ∗E ⊗B f ∗E
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is a parametrix for the family of free theories E over A , then it defines
a parametrix f ∗Φ for the family of free theories f ∗E over B. For para-
metrices of this form, the effective action functionals

f ∗ I[ f ∗Φ] ∈ O+
sm,P( f ∗E )[[h̄]] = O+

sm,P(E )[[h̄]]⊗A B

is simply the image of the original effective action functional

I[Φ] ∈ O+
sm,P(E )[[h̄]] ⊂ O+

sm,P( f ∗E )[[h̄]].

For a general parametrix Ψ for f ∗E , the effective action functional is
defined by the renormalization group equation

f ∗ I[Ψ] = W (P(Ψ)− P( f ∗Φ), f ∗ I[ f ∗Φ]) .

This is well-defined because

P(Ψ)− P( f ∗Φ) ∈ f ∗E ⊗B f ∗E

has no singularities.

The compatibility between the renormalization group equation and
the quantum master equation guarantees that the effective action func-
tionals f ∗ I[Ψ] satisfy the QME for every parametrix Ψ. The locality ax-
iom for the original family of effective action functionals I[Φ] guaran-
tees that the pulled-back family f ∗ I[Ψ] satisfy the locality axiom neces-
sary to define a family of theories over B.

7.4 The simplicial set of theories

One of the main reasons for introducing theories over a nilpotent dg
manifold (X, A ) is that this allows us to talk about the simplicial set
of theories. This is essential, because the main result we will use from
Costello (2011b) is homotopical in nature: it relates the simplicial set of
theories to the simplicial set of local functionals.

We introduce some useful notation. Let us fix a family of classical
field theories on a manifold M over a nilpotent dg manifold (X, A ). As
above, the fields of such a theory are a dg A -module E equipped with
an A -linear local functional I ∈ Oloc(E ) satisfying the classical master
equation QI + 1

2{I, I} = 0.
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By pulling back along the projection map

(X×4n, A ⊗ C∞(4n))→ (X, A ),

we get a new family of classical theories over the dg base ring A ⊗
C∞(4n), whose fields are E ⊗ C∞(4n). We can then ask for a gauge
fixing operator

QGF : E ⊗ C∞(4n)→ E ⊗ C∞(4n).

for this family of theories. This is the same thing as a smooth family of
gauge fixing operators for the original theory depending on a point in
the n-simplex.

7.4.0.1 Definition. Let (E , I) denote the classical theory we start with over
A . Let G F (E , I) denote the simplicial set whose n-simplices are such families
of gauge fixing operators over A ⊗ C∞(4n). If there is no ambiguity as to
what classical theory we are considering, we will denote this simplicial set
by G F .

Any such gauge fixing operator extends, by Ω∗(4n)-linearity, to a
linear map E ⊗Ω∗(4n) → E ⊗Ω∗(4n), which thus defines a gauge
fixing operator for the family of theories over A ⊗Ω∗(4n) pulled back
via the projection

(X×4n, A ⊗Ω∗(4n))→ (X, A ).

(Note that Ω∗(4n) is equipped with the de Rham differential.)

Example: Suppose that A = C, and the classical theory we are con-
sidering is Chern-Simons theory on a 3-manifold M, where we perturb
around the trivial bundle. Then, the space of fields is E = Ω∗(M)⊗ g[1]
and Q = ddR. For every Riemannian metric on M, we find a gauge fix-
ing operator QGF = d∗. More generally, if we have a smooth family

{gσ | σ ∈ 4n}

of Riemannian metrics on M, depending on the point σ in the n-simplex,
we get an n-simplex of the simplicial set G F of gauge fixing operators.

Thus, if Met(M) denotes the simplicial set whose n-simplices are the
set of Riemannian metrics on the fibers of the submersion M×4n →
4n, then we have a map of simplicial sets

Met(M)→ G F .
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Note that the simplicial set Met(M) is (weakly) contractible (which fol-
lows from the familiar fact that, as a topological space, the space of
metrics on M is contractible).

A similar remark holds for almost all theories we consider. For exam-
ple, suppose we have a theory where the space of fields

E = Ω0,∗(M, V)

is the Dolbeault complex on some complex manifold M with coeffi-
cients in some holomorphic vector bundle V. Suppose that the linear
operator Q : E → E is the ∂-operator. The natural gauge fixing oper-
ators are of the form ∂

∗
. Thus, we get a gauge fixing operator for each

choice of Hermitian metric on M together with a Hermitian metric on
the fibers of V. This simplicial set is again contractible.

It is in this sense that we mean that, in most examples, there is a
natural contractible space of gauge fixing operators. ♦

7.4.1

We will use the shorthand notation (E , I) to denote the classical field
theory over A that we start with; and we will use the notation (E4n , I4n)
to refer to the family of classical field theories over A ⊗ Ω∗(4n) ob-
tained by base-change along the projection (X ×4n, A ⊗Ω∗(4n)) →
(X, A ).

7.4.1.1 Definition. We let T (n) denote the simplicial set whose k-simplices
consist of the following data.

(i) A k-simplex QGF
4k ∈ G F [k], defining a gauge-fixing operator for the family

of theories (E4k , I4k ) over A ⊗Ω∗(4k).
(ii) A quantization of the family of classical theories with gauge fixing operator

(E4k , I4k , QGF
4k ), defined modulo h̄n+1.

We let T (∞) denote the corresponding simplicial set where the quantizations
are defined to all orders in h̄.

Note that there are natural maps of simplicial sets T (n) → T (m), and that
T (∞) = lim←−T (n). Further, there are natural maps T (n) → G F .
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Note further that T (0) = G F .

This definition describes the most sophisticated version of the set of
theories we will consider. Let us briefly explain how to interpret this
simplicial set of theories.

Suppose for simplicity that our base ring A is just C. Then, a 0-
simplex of T (0) is simply a gauge-fixing operator for our theory. A
0-simplex of T (n) is a gauge fixing operator, together with a quanti-
zation (defined with respect to that gauge-fixing operator) to order n in
h̄.

A 1-simplex of T (0) is a homotopy between two gauge fixing opera-
tors. Suppose that we fix a 0-simplex of T (0), and consider a 1-simplex
of T (∞) in the fiber over this 0-simplex. Such a 1-simplex is given by a
collection of effective action functionals

I[Φ] ∈ O+
P,sm(E )⊗Ω∗([0, 1])[[h̄]]

one for each parametrix Φ, which satisfy a version of the QME and the
RG flow, as explained above.

We explain in some more detail how one should interpret such a 1-
simplex in the space of theories. Let us fix a parametrix Φ on E and
extend it to a parametrix for the family of theories over Ω∗([0, 1]). We
can then expand our effective interaction I[Φ] as

I[Φ] = J[Φ](t) + J′[Φ](t)dt

where J[Φ](t), J′[Φ](t) are elements

J[Φ](t), J′[Φ](t) ∈ O+
P,sm(E )⊗ C∞([0, 1])[[h̄]].

Here t is the coordinate on the interval [0, 1].

The quantum master equation implies that the following two equa-
tions hold, for each value of t ∈ [0, 1],

QJ[Φ](t) + 1
2{J[Φ](t), J[Φ](t)}Φ + h̄4Φ J[Φ](t) = 0,

∂

∂t
J[Φ](t) + QJ′[Φ](t) + {J[Φ](t), J′[Φ](t)}Φ + h̄4Φ J′[Φ](t) = 0.

The first equation tells us that for each value of t, J[Φ](t) is a solution
of the quantum master equation. The second equation tells us that the
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t-derivative of J[Φ](t) is homotopically trivial as a deformation of the
solution to the QME J[Φ](t).

In general, if I is a solution to some quantum master equation, a
transformation of the form

I 7→ I + εJ = I + εQI′ + {I, I′}+ h̄4I′

is often called a “BV canonical transformation” in the physics literature.
In the physics literature, solutions of the QME related by a canonical
transformation are regarded as equivalent: the canonical transforma-
tion can be viewed as a change of coordinates on the space of fields.

For us, this interpretation is not so important. If we have a family of
theories over Ω∗([0, 1]), given by a 1-simplex in T (∞), then the factor-
ization algebra we will construct from this family of theories will be
defined over the dg base ring Ω∗([0, 1]). This implies that the factoriza-
tion algebras obtained by restricting to 0 and 1 are quasi-isomorphic.

7.4.2 Generalizations

We will shortly state the theorem that allows us to construct such quan-
tum field theories. Let us first, however, briefly introduce a slightly
more general notion of “theory.”

We work over a nilpotent dg manifold (X, A ). Recall that part of the
data of such a manifold is a differential ideal I ⊂ A whose quotient is
C∞(X). In the above discussion, we assumed that our classical action
functional S was at least quadratic; we then split S as

S = 〈e, Qe〉+ I(e)

into kinetic and interacting terms.

We can generalize this to the situation where S contains linear terms,
as long as they are accompanied by elements of the ideal I ⊂ A . In this
situation, we also have some freedom in the splitting of S into kinetic
and interacting terms; we require only that linear and quadratic terms
in the interaction I are weighted by elements of the nilpotent ideal I .

In this more general situation, the classical master equation {S, S} =
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0 does not imply that Q2 = 0, only that Q2 = 0 modulo the ideal I .
However, this does not lead to any problems; the definition of quan-
tum theory given above can be easily modified to deal with this more
general situation.

In the L∞ language used in Chapter 3, this more general situation
describes a family of curved L∞ algebras over the base dg ring A with
the property that the curving vanishes modulo the nilpotent ideal I .

Recall that ordinary (not curved) L∞ algebras correspond to formal
pointed moduli problems. These curved L∞ algebras correspond to fam-
ilies of formal moduli problems over A which are pointed modulo I .

7.5 The theorem on quantization

Let M be a manifold, and suppose we have a family of classical BV the-
ories on M over a nilpotent dg manifold (X, A ). Suppose that the space
of fields on M is the A -module E . Let Oloc(E ) be the dg A -module of
local functionals with differential Q + {I,−}.

Given a cochain complex C, we denote the Dold-Kan simplicial set
associated to C by DK(C). Its n-simplices are the closed, degree 0 ele-
ments of C⊗Ω∗(4n).

7.5.0.1 Theorem. All of the simplicial sets T (n)(E , I) are Kan complexes
and T (∞)(E , I). The maps p : T (n+1)(E , I) → T (n)(E , I) are Kan fibra-
tions.

Further, there is a homotopy fiber diagram of simplicial sets

T (n+1)(E , I)

p
��

// 0

��
T (n)(E , I) O // DK(Oloc(E )[1], Q + {I,−})

where O is the “obstruction map.”

In more prosaic terms, the second part of the theorem says the fol-
lowing. If α ∈ T (n)(E , I)[0] is a zero-simplex of T (n)(E , I), then there
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is an obstruction O(α) ∈ Oloc(E ). This obstruction is a closed degree 1
element. The simplicial set p−1(α) ∈ T (n+1)(E , I) of extensions of α to
the next order in h̄ is homotopy equivalent to the simplicial set of ways
of making O(α) exact. In particular, if the cohomology class [O(α)] ∈
H1(Oloc(E), Q + {I,−}) is non-zero, then α does not admit a lift to the
next order in h̄. If this cohomology class is zero, then the simplicial set of
possible lifts is a torsor for the simplicial Abelian group DK(Oloc(E ))[1].

Note also that a first order deformation of the classical field theory
(E , Q, I) is given by a closed degree 0 element of Oloc(E ). Further, two
such first order deformations are equivalent if they are cohomologous.
Thus, this theorem tells us that the moduli space of QFTs is “the same
size” as the moduli space of classical field theories: at each order in h̄,
the data needed to describe a QFT is a local action functional.

The first part of the theorem says can be interpreted as follows. A
Kan simplicial set can be thought of as an “infinity-groupoid.” Since we
can consider families of theories over arbitrary nilpotent dg manifolds,
we can consider T ∞(E , I) as a functor from the category of nilpotent
dg manifolds to that of Kan complexes, or infinity-groupoids. Thus,
the space of theories forms something like a “derived stack,” follow-
ing Toën (2009); Lurie (n.d.).

This theorem also tells us in what sense the notion of “theory” is
independent of the choice of gauge fixing operator. The simplicial set
T (0)(E , I) is the simplicial set G F of gauge fixing operators. Since the
map

T (∞)(E , I)→ T (0)(E , I) = G F

is a fibration, a path between two gauge fixing conditions QGF
0 and QGF

1
leads to a homotopy between the corresponding fibers, and thus to an
equivalence between the ∞-groupoids of theories defined using QGF

0
and QGF

1 .

As we mentioned several times, there is often a natural contractible
simplicial set mapping to the simplicial set G F of gauge fixing opera-
tors. Thus, G F often has a canonical “homotopy point”. From the ho-
motopical point of view, having a homotopy point is just as good as
having an actual point: if S → G F is a map out of a contractible sim-
plicial set, then the fibers in T (∞) above any point in S are canonically
homotopy equivalent.
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The observables of a quantum field theory

8.1 Free fields

Before we give our general construction of the factorization algebra as-
sociated to a quantum field theory, we will give the much easier con-
struction of the factorization algebra for a free field theory.

Let us recall the definition of a free BV theory.

8.1.0.1 Definition. A free BV theory on a manifold M consists of the follow-
ing data:

(i) a Z-graded super vector bundle π : E→ M that has finite rank;
(ii) an antisymmetric map of vector bundles 〈−,−〉loc : E⊗E→ Dens(M) of

degree −1 that is fiberwise nondegenerate. It induces a symplectic pairing
on compactly supported smooth sections Ec of E:

〈φ, ψ〉 =
∫

x∈M
〈φ(x), ψ(x)〉loc;

(iii) a square-zero differential operator Q : E → E of cohomological degree 1
that is skew self adjoint for the symplectic pairing.

Remark: When we consider deforming free theories into interacting the-
ories, we will need to assume the existence of a “gauge fixing operator”:
this is a degree −1 operator QGF : E → E such that [Q, QGF] is a gener-
alized Laplacian in the sense of Berline et al. (1992). ♦

On any open set U ⊂ M, the commutative dg algebra of classical

128
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observables supported in U is

Obscl(U) = (Ŝym(E ∨(U)), Q),

where

E ∨(U) = E
!
c(U)

denotes the distributions dual to E with compact support in U and Q
is the derivation given by extending the natural action of Q on the dis-
tributions.

In section 5.3 we constructed a sub-factorization algebra

Õbs
cl
(U) = (Ŝym(E !

c (U)), Q)

defined as the symmetric algebra on the compactly-supported smooth
(rather than distributional) sections of the bundle E!. We showed that

the inclusion Õbs
cl
(U) → Obscl(U) is a weak equivalence of factoriza-

tion algebras. Further, Õbs
cl
(U) has a Poisson bracket of cohomological

degree 1, defined on the generators by the natural pairing

E !
c (U)⊗̂πE !

c (U)→ R,

which arises from the dual pairing on Ec(U). In this section we will
show how to construct a quantization of the P0 factorization algebra

Õbs
cl

.

8.1.1 The Heisenberg algebra construction

Our quantum observables on an open set U will be built from a certain
Heisenberg Lie algebra.

Recall the usual construction of a Heisenberg algebra. If V is a sym-
plectic vector space, viewed as an abelian Lie algebra, then the Heisen-
berg algebra Heis(V) is the central extension

0→ C · h̄→ Heis(V)→ V

whose bracket is [x, y] = h̄〈x, y〉.

Since the element h̄ ∈ Heis(V) is central, the algebra Û(Heis(V)) is
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an algebra over C[[h̄]], the completed universal enveloping algebra of
the Abelian Lie algebra C · h̄.

In quantum mechanics, this Heisenberg construction typically ap-
pears in the study of systems with quadratic Hamiltonians. In this con-
text, the space V can be viewed in two ways. Either it is the space of
solutions to the equations of motion, which is a linear space because
we are dealing with a free field theory; or it is the space of linear ob-
servables dual to the space of solutions to the equations of motion. The
natural symplectic pairing on V gives an isomorphism between these
descriptions. The algebra Û(Heis(V)) is then the algebra of non-linear
observables.

Our construction of the quantum observables of a free field theory
will be formally very similar. We will start with a space of linear observ-
ables, which (after a shift) is a cochain complex with a symplectic pair-
ing of cohomological degree 1. Then, instead of applying the usual uni-
versal enveloping algebra construction, we will take Chevalley-Eilenberg
chain complex, whose cohomology is the Lie algebra homology.1 This
fits with our operadic philosophy: Chevalley-Eilenberg chains are the
E0 analog of the universal enveloping algebra.

8.1.2 The basic homological construction

Let us start with a 0-dimensional free field theory. Thus, let V be a
cochain complex equipped with a symplectic pairing of cohomologi-
cal degree −1. We will think of V as the space of fields of our theory.
The space of linear observables of our theory is V∨; the Poisson bracket
on O(V) induces a symmetric pairing of degree 1 on V∨. We will con-
struct the space of all observables from a Heisenberg Lie algebra built
on V∨[−1], which has a symplectic pairing 〈−,−〉 of degree −1. Note
that there is an isomorphism V � V∨[−1] compatible with the pairings
on both sides.

8.1.2.1 Definition. The Heisenberg algebra Heis(V) is the Lie algebra cen-
tral extension

0→ C · h̄[−1]→ Heis(V)→ V∨[−1]→ 0

1 As usual, we always use gradings such that the differential has degree +1.
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whose bracket is

[v + h̄a, w + h̄b] = h̄ 〈v, w〉

The element h̄ labels the basis element of the center C[−1].

Putting the center in degree 1 may look strange, but it is necessary to
do this in order to get a Lie bracket of cohomological degree 0.

Let Ĉ∗(Heis(V)) denote the completion2 of the Lie algebra chain com-
plex of Heis(V), defined by the product of the spaces Symn Heis(V),
instead of their sum.

In this zero-dimensional toy model, the classical observables are

Obscl = O(V) = ∏
n

Symn(V∨).

This is a commutative dg algebra equipped with the Poisson bracket of
degree 1 arising from the pairing on V. Thus, O(V) is a P0 algebra.

8.1.2.2 Lemma. The completed Chevalley-Eilenberg chain complex Ĉ∗(Heis(V))
is a BD algebra (recall appendix I.A.3.2) that quantizes the P0 algebra O(V).

Proof The completed Chevalley-Eilenberg complex for Heis(V) has
the completed symmetric algebra Ŝym(Heis(V)[1]) as its underlying
graded vector space. Note that

Ŝym(Heis(V)[1]) = Sym(V∨ ⊕C · h̄) = Ŝym(V∨)[[h̄]],

so that Ĉ∗(Heis(V)) is a flat C[[h̄]] module which reduces to Ŝym(V∨)
modulo h̄. The Chevalley-Eilenberg chain complex Ĉ∗(Heis(V)) inher-
its a product, corresponding to the natural product on the symmetric
algebra Ŝym(Heis(V)[1]). Further, it has a natural Poisson bracket of
cohomological degree 1 arising from the Lie bracket on Heis(V), ex-
tended to be a derivation of Ĉ∗(Heis(V)). Note that, since C · h̄[−1] is
central in Heis(V), this Poisson bracket reduces to the given Poisson
bracket on Ŝym(V∨) modulo h̄.

In order to prove that we have a BD quantization, it remains to verify

2 One doesn’t need to take the completed Lie algebra chain complex. We do this to be
consistent with our discussion of the observables of interacting field theories, where
it is essential to complete.
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that, although the commutative product on Ĉ∗(Heis(V)) is not compat-
ible with the product, it satisfies the BD axiom:

d(a · b) = (da) · b + (−1)|a|a · (db) + h̄{a, b}.

This follows by definition. �

8.1.3 Cosheaves of Heisenberg algebras

Next, let us give the analog of this construction for a general free BV
theory E on a manifold M. As above, our classical observables are de-
fined by

Õbs
cl
(U) = Ŝym E !

c (U)

which has a Poisson bracket arising from the pairing on E !
c (U). Recall

that this is a factorization algebra.

To construct the quantum theory, we define, as above, a Heisenberg
algebra Heis(U) as a central extension

0→ C[−1] · h̄→ Heis(U)→ E !
c (U)[−1]→ 0.

Note that Heis(U) is a pre-cosheaf of Lie algebras. The bracket in this
Heisenberg algebra arises from the pairing on E !

c (U).

We then define the quantum observables by

Obsq(U) = Ĉ∗(Heis(U)).

The underlying cochain complex is, as before,

Ŝym(Heis(U)[1])

where the completed symmetric algebra is defined (as always) using
the completed tensor product.

8.1.3.1 Proposition. Sending U to Obsq(U) defines a BD factorization alge-
bra in the category of differentiable pro-cochain complexes over R[[h̄]], which
quantizes Obscl(U).

Proof First, we need to define the filtration on Obsq(U) making it into
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a differentiable pro-cochain complex. The filtration is defined, in the
identification

Obsq(U) = Ŝym E !
c (U)[[h̄]]

by saying

Fn Obsq(U) = ∏
k

h̄k Sym≥n−2k E !
c (U).

This filtration is engineered so that the Fn Obsq(U) is a subcomplex of
Obsq(U).

It is immediate that Obsq is a BD pre-factorization algebra quantiz-
ing Obscl(U). The fact that it is a factorization algebra follows from the
fact that Obscl(U) is a factorization algebra, and then a simple spec-
tral sequence argument. (A more sophisticated version of this spectral
sequence argument, for interacting theories, is given in section 8.6.) �

8.2 The BD algebra of global observables

In this section, we will try to motivate our definition of a quantum
field theory from the point of view of homological algebra. All of the
constructions we will explain will work over an arbitrary nilpotent dg
manifold (X, A ), but to keep the notation simple we will not normally
mention the base ring A .

Thus, suppose that (E , I, Q, 〈−,−〉) is a classical field theory on a
manifold M. We have seen (Chapter 5, section 5.2) how such a classi-
cal field theory gives immediately a commutative factorization algebra
whose value on an open subset is

Obscl(U) = (O(E (U)), Q + {I,−}) .

Further, we saw that there is a P0 sub-factorization algebra

Õbs
cl
(U) = (Osm(E (U)), Q + {I,−}) .

In particular, we have a P0 algebra Õbs
cl
(M) of global sections of this

P0 algebra. We can think of Õbs
cl
(M) as the algebra of functions on the

derived space of solutions to the Euler-Lagrange equations.
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In this section we will explain how a quantization of this classical
field theory will give a quantization (in a homotopical sense) of the

P0 algebra Õbs
cl
(M) into a BD algebra Obsq(M) of global observables.

This BD algebra has some locality properties, which we will exploit
later to show that Obsq(M) is indeed the global sections of a factoriza-
tion algebra of quantum observables.

In the case when the classical theory is the cotangent theory to some
formal elliptic moduli problem BL on M (encoded in an elliptic L∞ al-
gebra L on M), there is a particularly nice class of quantizations, which
we call cotangent quantizations. Cotangent quantizations have a very
clear geometric interpretation: they are locally-defined volume forms
on the sheaf of formal moduli problems defined by L.

8.2.1 The BD algebra associated to a parametrix

Suppose we have a quantization of our classical field theory (defined
with respect to some gauge fixing condition, or family of gauge fixing
conditions). Then, for every parametrix Φ, we have seen how to con-
struct a cohomological degree 1 operator

4Φ : O(E )→ O(E )

and a Poisson bracket

{−,−}Φ : O(E )×O(E )→ O(E )

such that O(E )[[h̄]], with the usual product, with bracket {−,−}Φ and
with differential Q + h̄4Φ, forms a BD algebra.

Further, since the effective interaction I[Φ] satisfies the quantum mas-
ter equation, we can form a new BD algebra by adding {I[Φ],−}Φ to
the differential of O(E )[[h̄]].

8.2.1.1 Definition. Let Obsq
Φ(M) denote the BD algebra

Obsq
Φ(M) = (O(E )[[h̄]], Q + h̄4Φ + {I[Φ],−}Φ) ,

with bracket {−,−}Φ and the usual product.

Remark: Note that I[Φ] is not in O(E )[[h̄]], but rather in O+
P,sm(E )[[h̄]].
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However, as we remarked earlier in 7.2.8, the bracket

{I[Φ],−}Φ : O(E )[[h̄]]→ O(E )[[h̄]]

is well-defined. ♦

Remark: Note that we consider Obsq
Φ(M) as a BD algebra valued in the

multicategory of differentiable pro-cochain complexes (see appendix
I.C). This structure includes a filtration on Obsq

Φ(M) = O(E )[[h̄]]. The
filtration is defined by saying that

FnO(E )[[h̄]] = ∏
i

h̄i Sym≥(n−2i)(E ∨);

it is easily seen that the differential Q + h̄4Φ + {I[Φ],−}Φ preserves
this filtration. ♦

We will show that for varying Φ, the BD algebras Obsq
Φ(M) are canon-

ically weakly equivalent. Moreover, we will show that there is a canon-
ical weak equivalence of P0 algebras

Obsq
Φ(M)⊗C[[h̄]] C ' Õbs

cl
(M).

To show this, we will construct a family of BD algebras over the dg base
ring of forms on a certain contractible simplicial set of parametrices that
restricts to Obsq

Φ(M) at each vertex.

Before we get into the details of the construction, however, let us say
something about how this result allows us to interpret the definition of
a quantum field theory.

A quantum field theory gives a BD algebra for each parametrix. These
BD algebras are all canonically equivalent. Thus, at first glance, one
might think that the data of a QFT is entirely encoded in the BD alge-
bra for a single parametrix. However, this does not take account of a
key part of our definition of a field theory, that of locality.

The BD algebra associated to a parametrix Φ has underlying commu-
tative algebra O(E )[[h̄]], equipped with a differential which we tem-
porarily denote

dΦ = Q + h̄4Φ + {I[Φ],−}Φ.

If K ⊂ M is a closed subset, we have a restriction map

E = E (M)→ E (K),
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where E (K) denotes germs of smooth sections of the bundle E on K.
There is a dual map on functionals O(E (K)) → O(E ). We say a func-
tional f ∈ O(E )[[h̄]] is supported on K if it is in the image of this map.

As Φ → 0, the effective interaction I[Φ] and the BV Laplacian 4Φ
become more and more local (i.e., their support gets closer to the small
diagonal). This tells us that, for very small Φ, the operator dΦ only in-
creases the support of a functional in O(E )[[h̄]] by a small amount. Fur-
ther, by choosing Φ to be small enough, we can increase the support by
an arbitrarily small amount.

Thus, a quantum field theory is

(i) A family of BD algebra structures on O(E )[[h̄]], one for each parametrix,
which are all homotopic (and which all have the same underlying
graded commutative algebra).

(ii) The differential dΦ defining the BD structure for a parametrix Φ in-
creases support by a small amount if Φ is small.

This property of dΦ for small Φ is what will allow us to construct
a factorization algebra of quantum observables. If dΦ did not increase
the support of a functional f ∈ O(E )[[h̄]] at all, the factorization algebra
would be easy to define: we would just set Obsq(U) = O(E (U))[[h̄]],
with differential dΦ. However, because dΦ does increase support by
some amount (which we can take to be arbitrarily small), it takes a little
work to push this idea through.

Remark: The precise meaning of the statement that dΦ increases support
by an arbitrarily small amount is a little delicate. Let us explain what
we mean. A functional f ∈ O(E )[[h̄]] has an infinite Taylor expansion of
the form f = ∑ h̄i fi,k, where fi,k : E ⊗̂πk → C is a symmetric linear map.
We let Supp≤(i,k) f be the unions of the supports of fr,s where (r, s) ≤
(i, k) in the lexicographical ordering. If K ⊂ M is a subset, let Φn(K)
denote the subset obtained by convolving n times with Supp Φ ⊂ M2.
The differential dΦ has the following property: there are constants ci,k ∈
Z>0 of a purely combinatorial nature (independent of the theory we are
considering) such that, for all f ∈ O(E )[[h̄]],

Supp≤(i,k) dΦ f ⊂ Φci,k (Supp≤(i,k) f ).
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Thus, we could say that dΦ increase support by an amount linear in
Supp Φ. We will use this concept in the main theorem of this chapter. ♦

8.2.2

Let us now turn to the construction of the equivalences between Obsq
Φ(M)

for varying parametrices Φ. The first step is to construct the simplicial
set P of parametrices; we will then construct a BD algebra Obsq

P (M)
over the base dg ring Ω∗(P), which we define below.

Let

V ⊂ C∞(M×M, E� E) = E ⊗̂πE

denote the subspace of those elements which are cohomologically closed
and of degree 1, symmetric, and have proper support.

Note that the set of parametrices has the structure of an affine space
for V: if Φ, Ψ are parametrices, then

Φ−Ψ ∈ V

and, conversely, if Φ is a parametrix and A ∈ V, then Φ + A is a new
parametrix.

Let P denote the simplicial set whose n-simplices are affine-linear
maps from 4n to the affine space of parametrices. It is clear that P is
contractible.

For any vector space V, let V4 denote the simplicial set whose k-
simplices are affine linear maps4k → V. For any convex subset U ⊂ V,
there is a sub-simplicial set U4 ⊂ V4 whose k-simplices are affine lin-

ear maps 4k → U. Note that P is a sub-simplicial set of E
⊗̂π2
4 , corre-

sponding to the convex subset of parametrices inside E
⊗̂π2.

Let C P [0] ⊂ E
⊗̂π2 denote the cone on the affine subspace of para-

metrices, with vertex the origin 0. An element of C P [0] is an element

of E
⊗̂π2 of the form tΦ, where Φ is a parametrix and t ∈ [0, 1]. Let

C P denote the simplicial set whose k-simplices are affine linear maps
to C P [0].
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Recall that the simplicial de Rham algebra Ω∗4(S) of a simplicial set
S is defined as follows. Any element ω ∈ Ωi

4(S) consists of an i-form

ω(φ) ∈ Ωi(4k)

for each k-simplex φ : 4k → S. If f : 4k → 4l is a face or degeneracy
map, then we require that

f ∗ω(φ) = ω(φ ◦ f ).

The main results of this section are as follows.

8.2.2.1 Theorem. There is a BD algebra Obsq
P (M) over Ω∗(P) which, at

each 0-simplex Φ, is the BD algebra Obsq
Φ(M) discussed above.

The underlying graded commutative algebra of Obsq
P (M) is O(E )⊗Ω∗(P)[[h̄]].

For every open subset U ⊂ M×M, let PU denote the parametrices whose
support is in U. Let Obsq

PU
(M) denote the restriction of Obsq

P (M) to U.

The differential on Obsq
PU

(M) increases support by an amount linear in U
(in the sense explained precisely in the remark above).

The bracket {−,−}PU on Obsq
PU

(M) is also approximately local, in the

following sense. If O1, O2 ∈ Obsq
PU

(M) have the property that

Supp O1 × Supp O2 ∩U = ∅ ∈ M×M,

then {O1, O2}PU = 0.

Further, there is a P0 algebra Õbs
cl
C P (M) over Ω∗(C P) equipped with a

quasi-isomorphism of P0 algebras over Ω∗(P),

Õbs
cl
C P (M)

∣∣∣
P
' Obsq

P (M) modulo h̄,

and with an isomorphism of P0 algebras,

Õbs
cl
C P (M)

∣∣∣
0
� Õbs

cl
(M),

where Õbs
cl
(M) is the P0 algebra constructed in Chapter 5.

The underlying commutative algebra of Õbs
cl
C P (M) is Õbs

cl
(M)⊗Ω∗(C P),

the differential on Õbs
cl
C P (M) increases support by an arbitrarily small amount,

and the Poisson bracket on Õbs
cl
C P (M) is approximately local in the same

sense as above.
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Proof We need to construct, for each k-simplex φ : 4k → P , a BD
algebra Obsq

φ(M) over Ω∗(4k). We view the k-simplex as a subset of

Rk+1 by

4k :=

{
(λ0, . . . , λk) ⊂ [0, 1]k+1 : ∑

i
λi = 1

}
.

Since simplices in P are affine linear maps to the space of parametrices,
the simplex φ is determined by k + 1 parametrices Φ0, . . . , Φk, with

φ(λ0, . . . , λk) = ∑
i

λiΦi

for λi ∈ [0, 1] and ∑ λi = 1.

The graded vector space underlying our BD algebra is

Obsq
φ(M) = O(E )[[h̄]]⊗Ω∗(4k).

The structure as a BD algebra will be encoded by an order two, Ω∗(4k)-
linear differential operator

4φ : Obsq
φ(M)→ Obsq

φ(M).

We need to recall some notation in order to define this operator. Each
parametrix Φ provides an order two differential operator4Φ on O(E ),
the BV Laplacian corresponding to Φ. Further, if Φ, Ψ are two paramet-
rices, then the difference between the propagators P(Φ) − P(Ψ) is an
element of E ⊗ E , so that contracting with P(Φ)− P(Ψ) defines an or-
der two differential operator ∂P(Φ) − ∂P(Ψ) on O(E ). (This operator de-
fines the infinitesimal version of the renormalization group flow from
Ψ to Φ.) We have the equation

[Q, ∂P(Φ) − ∂P(Ψ)] = −4Φ +4Ψ.

Note that although the operator ∂P(Φ) is only defined on the smaller
subspace O(E ), because P(Φ) ∈ E ⊗ E , the difference ∂P(Φ) and ∂P(Ψ)

is nonetheless well-defined on O(E ) because P(Φ)− P(Ψ) ∈ E ⊗ E .

The BV Laplacian 4φ associated to the k-simplex φ : 4k → P is
defined by the formula

4φ =
k

∑
i=0

λi4Φi −
k

∑
i=0

dλi∂P(Φi)
,
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where the λi ∈ [0, 1] are the coordinates on the simplex 4k and, as
above, the Φi are the parametrices associated to the vertices of the sim-
plex φ.

It is not entirely obvious that this operator makes sense as a linear
map O(E ) → O(E ) ⊗ Ω∗(4k), because the operators ∂P(Φ) are only
defined on the smaller subspace O(E ). However, since ∑ dλi = 0, we
have

∑ dλi∂P(Φi)
= ∑ dλi(∂P(Φi)

− ∂P(Φ0)
),

and the right hand side is well defined.

It is immediate that 42
φ = 0. If we denote the differential on the

classical observables O(E )⊗Ω∗(4n) by Q + ddR, we have

[Q + ddR,4φ] = 0.

To see this, note that

[Q + ddR,4φ] = ∑ dλi4Φi + ∑ dλi[Q, ∂Φi − ∂Φ0 ]

= ∑ dλi4Φi −∑ dλi(4Φi −4Φ0)

= ∑ dλi4Φ0

= 0,

where we use various identities from earlier.

The operator4φ defines, in the usual way, an Ω∗(4k)-linear Poisson
bracket {−,−}φ on O(E )⊗Ω∗(4k).

We have effective action functionals I[Ψ] ∈ O+
sm,P(E )[[h̄]] for each

parametrix Ψ. Let

I[φ] = I[∑ λiΦi] ∈ O+
sm,P(E )[[h̄]]⊗ C∞(4k).

The renormalization group equation tells us that I[∑ λiΦi] is smooth
(actually polynomial) in the λi.

We define the structure of BD algebra on the graded vector space

Obsq
φ(M) = O(E )[[h̄]]⊗Ω∗(4k)

as follows. The product is the usual one; the bracket is {−,−}φ, as
above; and the differential is

Q + ddR + h̄4φ + {I[φ],−}φ.
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We need to check that this differential squares to zero. This is equivalent
to the quantum master equation

(Q + ddR + h̄4φ)eI[φ]/h̄ = 0.

This holds as a consequence of the quantum master equation and renor-
malization group equation satisfied by I[φ]. Indeed, the renormaliza-
tion group equation tells us that

eI[φ]/h̄ = exp
(

h̄ ∑ λi

(
∂PΦi)

− ∂P(Φ0)

))
eI[Φ0]/h̄.

Thus,

ddReI[φ]/h̄ = h̄ ∑ dλi∂P(Φi)
eI[φ]/h̄

The QME for each I[∑ λiΦi] tells us that

(Q + h̄ ∑ λi4Φi )e
I[φ]/h̄ = 0.

Putting these equations together with the definition of 4φ shows that
I[φ] satisfies the QME.

Thus, we have constructed a BD algebra Obsq
φ(M) over Ω∗(4k) for

every simplex φ : 4k → P . It is evident that these BD algebras are
compatible with face and degeneracy maps, and so glue together to
define a BD algebra over the simplicial de Rham complex Ω∗4(P) of P .

Let φ be a k-simplex of P , and let

Supp(φ) = ∪λ∈4k Supp(∑ λiΦi).

We need to check that the bracket {O1, O2}φ vanishes for observables
O1, O2 such that (Supp O1× Supp)O2 ∩ Supp φ = ∅. This is immediate,
because the bracket is defined by contracting with tensors in E ⊗ E

whose supports sit inside Supp φ.

Next, we need to verify that, on a k-simplex φ of P , the differen-
tial Q + {I[φ],−}φ increases support by an amount linear in Supp(φ).
This follows from the support properties satisfied by I[Φ] (which are
detailed in the definition of a quantum field theory, definition 7.2.9.1).

It remains to construct the P0 algebra over Ω∗(C P). The construc-
tion is almost identical, so we will not give all details. A zero-simplex
of C P is an element of E ⊗ E of the form Ψ = tΦ, where Φ is a
parametrix. We can use the same formulae we used for parametrices
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to construct a propagator P(Ψ) and Poisson bracket {−,−}Ψ for each
Ψ ∈ C P . The kernel defining the Poisson bracket {−,−}Ψ need not
be smooth. This means that the bracket {−,−}Ψ is only defined on the
subspace Osm(E ) of functionals with smooth first derivative. In partic-
ular, if Ψ = 0 is the vertex of the cone C P , then {−,−}0 is the Poisson

bracket defined in Chapter 5 on Õbs
cl
(M) = Osm(E ).

For each Ψ ∈ C P , we can form a tree-level effective interaction

I0[Ψ] = W0 (P(Ψ), I) ∈ Osm,P(E ),

where I ∈ Oloc(E ) is the classical action functional we start with. There
are no difficulties defining this expression because we are working at
tree-level and using functionals with smooth first derivative. If Ψ = 0,
then I0[0] = I.

The P0 algebra over Ω∗(C P) is defined in almost exactly the same
way as we defined the BD algebra over Ω∗P . The underlying commu-
tative algebra is Osm(E ) ⊗ Ω∗(C P). On a k-simplex ψ with vertices
Ψ0, . . . , Ψk, the Poisson bracket is

{−,−}ψ = ∑ λi{−,−}Ψi + ∑ dλi{−,−}P(Ψi)
,

where {−,−}P(Ψi)
is the Poisson bracket of cohomological degree 0

defined using the propagator P(Ψi) ∈ E ⊗̂πE as a kernel. If we let
I0[ψ] = I0[∑ λiΨi], then the differential is

dψ = Q + {I0[ψ],−}ψ.

The renormalization group equation and classical master equation sat-
isfied by the I0[Ψ] imply that d2

ψ = 0. If Ψ = 0, this P0 algebra is clearly

the P0 algebra Õbs
cl
(M) constructed in Chapter 5. When restricted to

P ⊂ C P , this P0 algebra is the sub P0 algebra of Obsq
P (M)/h̄ obtained

by restricting to functionals with smooth first derivative; the inclusion

Õbs
cl
C P (M) |P ↪→ Obsq

P (M)/h̄

is thus a quasi-isomorphism, using proposition 5.4.2.4 of Chapter 5. �
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8.3 Global observables

In the next few sections, we will prove our quantization theorem. Our
proof is by construction, associating a factorization algebra on M to a
quantum field theory on M, in the sense of Costello (2011b). This con-
struction is a quantization of the P0 factorization algebra associated to
the corresponding classical field theory.

More precisely, we will show the following.

8.3.0.1 Theorem. For any quantum field theory on a manifold M over a
nilpotent dg manifold (X, A ), there is a factorization algebra Obsq on M,
valued in the multicategory of differentiable pro-cochain complexes flat over
A [[h̄]].

There is an isomorphism of factorization algebras

Obsq⊗A [[h̄]]A � Obscl

between Obsq modulo h̄ and the commutative factorization algebra Obscl .

8.3.1

So far we have constructed a BD algebra Obsq
Φ(M) for each parametrix

Φ; these BD algebras are all weakly equivalent to each other. In this
section we will define a cochain complex Obsq(M) of global observ-
ables which is independent of the choice of parametrix. For every open
subset U ⊂ M, we will construct a subcomplex Obsq(U) ⊂ Obsq(M)
of observables supported on U. The complexes Obsq(U) will form our
factorization algebra.

Thus, suppose we have a quantum field theory on M, with space of
fields E and effective action functionals {I[Φ]}, one for each parametrix
(as explained in section 7.2).

An observable for a quantum field theory (that is, an element of the
cochain complex Obsq(M)) is simply a first-order deformation {I[Φ] +
δO[Φ]} of the family of effective action functionals I[Φ], which satis-
fies a renormalization group equation but does not necessarily satisfy
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the locality axiom in the definition of a quantum field theory. Defini-
tion 8.3.1.3 makes this idea precise.

Remark: This definition is motivated by a formal argument with the
path integral. Let S(φ) be the action functional for a field φ, and let
O(φ) be another function of the field, describing a measurement that
one could make. Heuristically, the expectation value of the observable
is

〈O〉 = 1
ZS

∫
O(φ)e−S(φ)/h̄ Dφ,

where ZS denotes the partition function, simply the integral without O.
A formal manipulation shows that

〈O〉 = d
dδ

1
ZS

∫
e(−S(φ)+h̄δO(φ))/h̄ Dφ.

In other words, we can view O as a first-order deformation of the ac-
tion functional S and compute the expectation value as the change in
the partition function. Because the book Costello (2011b) gives an ap-
proach to the path integral that incorporates the BV formalism, we can
define and compute expectation values of observables by exploiting the
second description of 〈O〉 given above. ♦

Earlier we defined cochain complexes Obsq
Φ(M) for each parametrix.

The underlying graded vector space of Obsq
Φ(M) is O(E )[[h̄]]; the dif-

ferential on Obsq
Φ(M) is

Q̂Φ = Q + {I[Φ],−}Φ + h̄4Φ.

8.3.1.1 Definition. Define a linear map

WΦ
Ψ : O(E )[[h̄]]→ O(E )[[h̄]]

by requiring that, for an element f ∈ O(E )[[h̄]] of cohomological degree i,

I[Φ] + δWΦ
Ψ ( f ) = W (P(Φ)− P(Ψ), I[Ψ] + δ f )

where δ is a square-zero parameter of cohomological degree −i.

8.3.1.2 Lemma. The linear map

WΦ
Ψ : Obsq

Ψ(M)→ Obsq
Φ(M)

is an isomorphism of differentiable pro-cochain complexes.
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Proof The fact that WΦ
Ψ intertwines the differentials Q̂Φ and Q̂Ψ fol-

lows from the compatibility between the quantum master equation and
the renormalization group equation described in Costello (2011b), Chap-
ter 5 and summarized in section 7.2. It is not hard to verify that WΦ

Ψ
is a map of differentiable pro-cochain complexes. The inverse to WΦ

Ψ
is WΨ

Φ . �

8.3.1.3 Definition. A global observable O of cohomological degree i is an
assignment to every parametrix Φ of an element

O[Φ] ∈ Obsq
Φ(M) = O(E)[[h̄]]

of cohomological degree i such that

WΦ
Ψ O[Ψ] = O[Φ].

If O is an observable of cohomological degree i, we let Q̂O be defined by

Q̂(O)[Φ] = Q̂Φ(O[Φ]) = QO[Φ] + {I[Φ], O[Φ]}Φ + h̄4ΦO[Φ].

This makes the space of observables into a differentiable pro-cochain complex,
which we call Obsq(M).

Thus, if O ∈ Obsq(M) is an observable of cohomological degree i,
and if δ is a square-zero parameter of cohomological degree −i, then
the collection of effective interactions {I[Φ] + δO[Φ]} satisfy most of
the axioms needed to define a family of quantum field theories over the
base ring C[δ]/δ2. The only axiom which is not satisfied is the locality
axiom: we have not imposed any constraints on the behavior of the
O[Φ] as Φ→ 0.

8.4 Local observables

So far, we have defined a cochain complex Obsq(M) of global observ-
ables on the whole manifold M. If U ⊂ M is an open subset of M, we
would like to isolate those observables which are “supported on U”.

The idea is to say that an observable O ∈ Obsq(M) is supported on
U if, for sufficiently small parametrices, O[Φ] is supported on U. The
precise definition is as follows.
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8.4.0.1 Definition. An observable O ∈ Obsq(M) is supported on U if, for
each (i, k) ∈ Z≥0 × Z≥0, there exists a compact subset K ⊂ Uk and a
parametrix Φ, such that

Supp Oi,k[Ψ] ⊂ K

for all parametrices Ψ ≤ Φ.

Remark: Recall that Oi,k[Φ] : E ⊗k → C is the kth term in the Taylor
expansion of the coefficient of h̄i of the functional O[Φ] ∈ O(E )[[h̄]]. ♦

Remark: As always, the definition works over an arbitrary nilpotent dg
manifold (X, A ), even though we suppress this from the notation. In
this generality, instead of a compact subset K ⊂ Uk we require K ⊂
Uk × X to be a set such that the map K → X is proper. ♦

We let Obsq(U) ⊂ Obsq(M) be the sub-graded vector space of ob-
servables supported on U.

8.4.0.2 Lemma. Obsq(U) is a sub-cochain complex of Obsq(M). In other
words, if O ∈ Obsq(U), then so is Q̂O.

Proof The only thing that needs to be checked is the support condition.
We need to check that, for each (i, k), there exists a compact subset K of
Uk such that, for all sufficiently small Φ, Q̂Oi,k[Φ] is supported on K.

Note that we can write

Q̂Oi,k[Φ] = QOi,k[Φ] + ∑
a+b=i

r+s=k+2

{Ia,r[Φ], Ob,s[Φ]}Φ + ∆ΦOi−1,k+2[Φ].

We now find a compact subset K for Q̂Oi,k[Φ]. We know that, for each
(i, k) and for all sufficiently small Φ, Oi,k[Φ] is supported on K̃, where
K̃ is some compact subset of Uk. It follows that QOi,k[Φ] is supported
on K̃.

By making K̃ bigger, we can assume that for sufficiently small Φ,
Oi−1,k+2[Φ] is supported on L, where L is a compact subset of Uk+2

whose image in Uk, under every projection map, is in K̃. This implies
that ∆ΦOi−1,k+2[Φ] is supported on K̃.

The locality condition for the effective actions I[Φ] implies that, by
choosing Φ to be sufficiently small, we can make Ii,k[Φ] supported as
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close as we like to the small diagonal in Mk. It follows that, by choos-
ing Φ to be sufficiently small, the support of {Ia,r[Φ], Ob,s[Φ]}Φ can be
taken to be a compact subset of Uk. Since there are only a finite num-
ber of terms like {Ia,r[Φ], Ob,s[Φ]}Φ in the expression for (Q̂O)i,k[Φ], we
see that for Φ sufficiently small, (Q̂O)i,k[Φ] is supported on a compact
subset K of Uk, as desired. �

8.4.0.3 Lemma. Obsq(U) has a natural structure of differentiable pro-cochain
complex space.

Proof Our general strategy for showing that something is a differen-
tiable vector space is to ensure that everything works in families over an
arbitrary nilpotent dg manifold (X, A ). Thus, suppose that the theory
we are working with is defined over (X, A ). If Y is a smooth manifold,
we say a smooth map Y → Obsq(U) is an observable for the family of
theories over (X × Y, A ⊗̂πC∞(Y)) obtained by base-change along the
map X×Y → X (so this family of theories is constant over Y).

The filtration on Obsq(U) (giving it the structure of pro-differentiable
vector space) is inherited from that on Obsq(M). Precisely, an observ-
able O ∈ Obsq(U) is in Fk Obsq(U) if, for all parametrices Φ,

O[Φ] ∈∏ h̄i Sym≥(2k−i) E ∨.

The renormalization group flow WΨ
Φ preserves this filtration.

So far we have verified that Obsq(U) is a pro-object in the category of
pre-differentiable cochain complexes. The remaining structure we need
is a flat connection

∇ : C∞(Y, Obsq(U))→ Ω1(Y, Obsq(U))

for each manifold Y, where C∞(Y, Obsq(U)) is the space of smooth
maps Y → Obsq(U).

This flat connection is equivalent to giving a differential on

Ω∗(Y, Obsq(U)) = C∞(Y, Obsq(U))⊗C∞(Y) Ω∗(Y)

making it into a dg module for the dg algebra Ω∗(Y). Such a differen-
tial is provided by considering observables for the family of theories
over the nilpotent dg manifold (X × Y, A ⊗̂πΩ∗(Y)), pulled back via
the projection map X×Y → Y. �
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8.5 Local observables form a prefactorization algebra

At this point, we have constructed the cochain complex Obsq(M) of
global observables of our factorization algebra. We have also constructed,
for every open subset U ⊂ M, a sub-cochain complex Obsq(U) of ob-
servables supported on U.

In this section we will see that the local quantum observables Obsq(U)
of a quantum field on a manifold M form a prefactorization algebra.

The definition of local observables makes it clear that they form a
pre-cosheaf: there are natural injective maps of cochain complexes

Obsq(U)→ Obsq(U′)

if U ⊂ U′ is an open subset.

Let U, V be disjoint open subsets of M. The structure of prefactor-
ization algebra on the local observables is specified by the pre-cosheaf
structure mentioned above, and a bilinear cochain map

Obsq(U)×Obsq(V)→ Obsq(U qV).

These product maps need to be maps of cochain complexes which are
compatible with the pre-cosheaf structure and with reordering of the
disjoint opens. Further, they need to satisfy a certain associativity con-
dition which we will verify.

8.5.1 Defining the product map

Suppose that O ∈ Obsq(U) and O′ ∈ Obsq(V) are observables on U and
V respectively. Note that O[Φ] and O′[Φ] are elements of the cochain
complex

Obsq
Φ(M) =

(
O(E )[[h̄]], Q̂Φ

)
which is a BD algebra and so a commutative algebra (ignoring the
differential, of course). (The commutative product is simply the usual
product of functions on E .) In the definition of the prefactorization
product, we will use the product of O[Φ] and O′[Φ] taken in the com-
mutative algebra O(E). This product will be denoted O[Φ] ∗O′[Φ] ∈
O(E).
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Recall (see definition 8.3.1.1) that we defined a linear renormalization
group flow operator WΨ

Φ , which is an isomorphism between the cochain
complexes Obsq

Φ(M) and Obsq
Ψ(M).

The main result of this section is the following.

8.5.1.1 Theorem. For all observables O ∈ Obsq(U), O′ ∈ Obsq(V), where
U and V are disjoint, the limit

lim
Ψ→0

WΦ
Ψ
(
O[Ψ] ∗O′[Ψ]

)
∈ O(E )[[h̄]]

exists. Further, this limit satisfies the renormalization group equation, so that
we can define an observable m(O, O′) by

m(O, O′)[Φ] = lim
Ψ→0

WΦ
Ψ
(
O[Ψ] ∗O′[Ψ]

)
.

The map

Obsq(U)×Obsq(V) 7→ Obsq(U qV)

O×O′ 7→ m(O, O′)

is a smooth bilinear cochain map, and it makes Obsq into a prefactorization
algebra in the multicategory of differentiable pro-cochain complexes.

Proof We will show that, for each i, k, the Taylor term

WΨ
Φ (O[Φ] ∗O′[Φ])i,k : E ⊗k → C

is independent of Φ for Φ sufficiently small. This will show that the
limit exists.

Note that

WΨ
Γ

(
WΓ

Φ
(
O[Φ] ∗O′[Φ]

))
= WΨ

Φ
(
O[Φ] ∗O′[Φ]

)
.

Thus, to show that the limit limΦ→0 WΨ
Φ (O[Φ] ∗O′[Φ]) is eventually

constant, it suffices to show that, for all sufficiently small Φ, Γ satisfying
Φ < Γ,

WΓ
Φ(O[Φ] ∗O′[Φ])i,k = (O[Γ] ∗O′[Γ])i,k.

This turns out to be an exercise in the manipulation of Feynman dia-
grams. In order to prove this, we need to recall a little about the Feyn-
man diagram expansion of WΓ

Φ(O[Φ]). (Feynman diagram expansions
of the renormalization group flow are discussed extensively in Costello
(2011b).)
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We have a sum of the form

WΓ
Φ(O[Φ])i,k = ∑

G

1
|Aut(G)|wG (O[Φ]; I[Φ]; P(Γ)− P(Φ)) .

The sum is over all connected graphs G with the following decorations
and properties.

(i) The vertices v of G are labelled by an integer g(v) ∈ Z≥0, which we
call the genus of the vertex.

(ii) The first Betti number of G, plus the sum of over all vertices of the
genus g(v), must be i (the “total genus”).

(iii) G has one special vertex.
(iv) G has k tails (or external edges).

The weight wG (O[Φ]; I[Φ]; P(Γ)− P(Φ)) is computed by the contrac-
tion of a collection of symmetric tensors. One places O[Φ]r,s at the spe-
cial vertex, when that vertex has genus r and valency s; places I[Φ]g,v
at every other vertex of genus g and valency v; and puts the propagator
P(Γ)− P(Φ) on each edge.

Let us now consider WΓ
Φ(O[Φ] ∗O′[Φ]). Here, we a sum over graphs

with one special vertex, labelled by O[Φ] ∗O′[Φ]. This is the same as
having two special vertices, one of which is labelled by O[Φ] and the
other by O′[Φ]. Diagrammatically, it looks like we have split the spe-
cial vertex into two pieces. When we make this maneuver, we intro-
duce possibly disconnected graphs; however, each connected compo-
nent must contain at least one of the two special vertices.

Let us now compare this to the graphical expansion of

O[Γ] ∗O′[Γ] = WΓ
Φ(O[Φ]) ∗WΓ

Φ(O
′[Φ]).

The Feynman diagram expansion of the right hand side of this expres-
sion consists of graphs with two special vertices, labelled by O[Φ] and
O′[Φ] respectively (and, of course, any number of other vertices, la-
belled by I[Φ], and the propagator P(Γ) − P(Φ) labelling each edge).
Further, the relevant graphs have precisely two connected components,
each of which contains one of the special vertices.

Thus, we see that

WΓ
Φ(O[Φ] ∗O′[Φ])−WΓ

Φ(O[Φ]) ∗WΓ
Φ(O

′[Φ]).



8.5 Local observables form a prefactorization algebra 151

is a sum over connected graphs, with two special vertices, one labelled
by O[Φ] and the other by O′[Φ]. We need to show that the weight of
such graphs vanish for Φ, Γ sufficiently small, with Φ < Γ.

Graphs with one connected component must have a chain of edges
connecting the two special vertices. (A chain is a path in the graph with
no repeated vertices or edges.) For a graph G with “total genus” i and
k tails, the length of any such chain is bounded by 2i + k.

It is important to note here that we require a non-special vertex of
genus zero to have valence at least three and a vertex of genus one
to have valence at least one. See Costello (2011b) for more discussion.
If we are considering a family of theories over some dg ring, we do
allow bivalent vertices to be accompanied by nilpotent parameters in
the base ring; nilpotence of the parameter forces there to be a global
upper bound on the number of bivalent vertices that can appear. The
argument we are presenting works with minor modifications in this
case too.

Each step along a chain of edges involves a tensor with some support
that depends on the choice of parametrices Phi and Γ. As we move from
the special vertex O toward the other O′, we extend the support, and
our aim is to show that we can choose Φ and Γ to be small enough
so that the support of the chain, excluding O′[Φ], is disjoint from the
support of O′[Φ]. The contraction of a distribution and function with
disjoint supports is zero, so that the weight will vanish. We now make
this idea precise.

Let us choose arbitrarily a metric on M. By taking Φ and Γ to be
sufficiently small, we can assume that the support of the propagator on
each edge is within ε of the diagonal in this metric, and ε can be taken
to be as small as we like. Similarly, the support of the Ir,s[Γ] labelling
a vertex of genus r and valency s can be taken to be within cr,sε of the
diagonal, where cr,s is a combinatorial constant depending only on r
and s. In addition, by choosing Φ to be small enough we can ensure
that the supports of O[Φ] and O′[Φ] are disjoint.

Now let G′ denote the graph G with the special vertex for O′ re-
moved. This graph corresponds to a symmetric tensor whose support
is within some distance CGε of the small diagonal, where CG is a com-
binatorial constant depending on the graph G′. As the supports K and
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K′ (of O and O′, respectively) have a finite distance d between them, we
can choose ε small enough that CGε < d. It follows that, by choosing Φ
and Γ to be sufficiently small, the weight of any connected graph is ob-
tained by contracting a distribution and a function which have disjoint
support. The graph hence has weight zero.

As there are finitely many such graphs with total genus i and k tails,
we see that we can choose Γ small enough that for any Φ < Γ, the
weight of all such graphs vanishes.

Thus we have proved the first part of the theorem and have produced
a bilinear map

Obsq(U)×Obsq(V)→ Obsq(U qV).

It is a straightforward to show that this is a cochain map and satis-
fies the associativity and commutativity properties necessary to define
a prefactorization algebra. The fact that this is a smooth map of dif-
ferentiable pro-vector spaces follows from the fact that this construc-
tion works for families of theories over an arbitrary nilpotent dg mani-
fold (X, A ). �

8.6 Local observables form a factorization algebra

We have seen how to define a prefactorization algebra Obsq of observ-
ables for our quantum field theory. In this section we will show that this
prefactorization algebra is in fact a factorization algebra. In the course
of the proof, we show that modulo h̄, this factorization algebra is iso-
morphic to Obscl .

8.6.0.1 Theorem. The prefactorization algebra Obsq of quantum observables
has the following properties.

(i) It is, in fact, a factorization algebra.
(ii) There is an isomorphism

Obsq⊗C[[h̄]]C � Obscl

between the reduction of the factorization algebra of quantum observables
modulo h̄, and the factorization algebra of classical observables.
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8.6.1 Proof of the theorem

This theorem will be a corollary of a more technical proposition.

8.6.1.1 Proposition. For any open subset U ⊂ M, filter Obsq(U) by saying
that the k-th filtered piece Gk Obsq(U) is the sub C[[h̄]]-module consisting of
those observables that are zero modulo h̄k. Note that this is a filtration by sub
prefactorization algebras over the ring C[[h̄]].

Then, there is an isomorphism of prefactorization algebras (in differentiable
pro-cochain complexes)

Gr Obsq ' Obscl ⊗CC[[h̄]].

This isomorphism makes Gr Obsq into a factorization algebra.

Remark: We can give Gk Obsq(U) the structure of a pro-differentiable
cochain complex, as follows. The filtration on Gk Obsq(U) that defines
the pro-structure is obtained by intersecting Gk Obsq(U) with the filtra-
tion on Obsq(U) defining the pro-structure. Then the inclusion Gk Obsq(U) ↪→
Obsq(U) is a cofibration of differentiable pro-vector spaces (see ap-
pendix I.C.4). ♦

Proof of the theorem, assuming the proposition We need to show that for
every open U and for every Weiss cover U, the natural map

Č(U, Obsq)→ Obsq(U) (†)

is a quasi-isomorphism of differentiable pro-cochain complexes.

The basic idea is that the filtration induces a spectral sequence for
both Č(U, Obsq) and Obsq(U), and we will show that the induced map
of spectral sequences is an isomorphism on the first page. Because we
are working with differentiable pro-cochain complexes, this is a little
subtle. The relevant statements about spectral sequences in this context
are developed in this context in Appendix I.C.4.

Note that Č(U, Obsq) is filtered by Č(U, Gk Obsq). The map (†) pre-
serves the filtrations. Thus, we have a maps of inverse systems

Č(U, Obsq /Gk Obsq)→ Obsq(U)/Gk Obsq(U).

These inverse systems satisfy the properties of lemma I.C.4.4. Further,
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it is clear that

Obsq(U) = lim←−Obsq(U)/Gk Obsq(U).

We also have

Č(U, Obsq) = lim←− Č(U, Obsq /Gk Obsq).

This equality is less obvious, and uses the fact that the Čech complex is
defined using the completed direct sum as described in Appendix I.C.4.

Using lemma I.C.4.4, we need to verify that the map

Č(U, Gr Obsq)→ Gr Obsq(U)

is an equivalence. This follows from the proposition because Gr Obsq is
a factorization algebra. �

Proof of the proposition The first step in the proof of the proposition is
the following lemma.

8.6.1.2 Lemma. Let Obsq
(0) denote the prefactorization algebra of observables

that are only defined modulo h̄. Then there is an isomorphism

Obsq
(0) ' Obscl

of differential graded prefactorization algebras.

Proof of lemma Let O ∈ Obscl(U) be a classical observable. Thus, O
is an element of the cochain complex O(E (U)) of functionals on the
space of fields on U. We need to produce an element of Obsq

(0) from O.

An element of Obsq
(0) is a collection of functionals O[Φ] ∈ O(E ), one for

every parametrix Φ, satisfying a classical version of the renormalization
group equation and an axiom saying that O[Φ] is supported on U for
sufficiently small Φ.

Given an element

O ∈ Obscl(U) = O(E (U)),

we define an element

{O[Φ]} ∈ Obsq
(0)
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by the formula

O[Φ] = lim
Γ→0

WΦ
Γ (O) modulo h̄.

The Feynman diagram expansion of the right hand side only involves
trees, since we are working modulo h̄. As we are only using trees, the
limit exists. The limit is defined by a sum over trees with one special
vertex, where each edge is labelled by the propagator P(Φ), the special
vertex is labelled by O, and every other vertex is labelled by the classical
interaction I0 ∈ Oloc(E ) of our theory.

The map

Obscl(U)→ Obsq
(0)(U)

we have constructed is easily seen to be a map of cochain complexes,
compatible with the structure of prefactorization algebra present on
both sides. (The proof is a variation on the argument in section 11, chap-
ter 5 of Costello (2011b), about the scale 0 limit of a deformation of the
effective interaction I modulo h̄.)

A simple inductive argument on the degree shows this map is an
isomorphism.

Because the construction works over an arbitrary nilpotent dg mani-
fold, it is clear that these maps are maps of differentiable cochain com-
plexes. �

The next (and most difficult) step in the proof of the proposition is
the following lemma. We use it to work inductively with the filtration
of quantum observables.

Let Obsq
(k) denote the prefactorization algebra of observables defined

modulo h̄k+1.

8.6.1.3 Lemma. For all open subsets U ⊂ M, the natural quotient map of
differentiable pro-cochain complexes

Obsq
(k+1)(U)→ Obsq

(k)(U)

is a fibration of differentiable pro-cochain complexes (see appendix I.C.5.6 for
the definition of a fibration). The fiber is isomorphic to Obscl(U).
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Proof of lemma We give the set (i, k) ∈ Z≥0 ×Z≥0 the lexicographical
ordering, so that (i, k) > (r, s) if i > r or if i = r and k > s.

We will let Obsq
≤(i,k)(U) be the quotient of Obsq

(i) consisting of func-
tionals

O[Φ] = ∑
(r,s)≤(i,k)

h̄rO(r,s)[Φ]

satisfying the renormalization group equation and locality axiom as be-
fore, but where O(r,s)[Φ] is only defined for (r, s) ≤ (i, k). Similarly, we
will let Obsq

<(i,k)(U) be the quotient where the O(r,s)[Φ] are only defined
for (r, s) < (i, k).

We will show that the quotient map

q : Obsq
≤(i,k)(U)→ Obsq

<(i,k)(U)

is a fibration. The result will follow.

Recall what it means for a map f : V → W of differentiable cochain
complexes to be a fibration. For X a manifold, let C∞

X (V) denote the
sheaf of cochain complexes on X of smooth maps to V. We say f is a
fibration if for every manifold X, the induced map of sheaves C∞

X (V)→
C∞

X (W) is surjective in each degree. Equivalently, we require that for all
smooth manifolds X, every smooth map X → W lifts locally on X to a
map to V.

Now, by definition, a smooth map from X to Obsq(U) is an observ-
able for the constant family of theories over the nilpotent dg manifold
(X, C∞(X)). Thus, in order to show q is a fibration, it suffices to show
the following. For any family of theories over a nilpotent dg manifold
(X, A ), any open subset U ⊂ M, and any observable α in the A -
module Obsq

<(i,k)(U), we can lift α to an element of Obsq
≤(i,k)(U) locally

on X.

To prove this, we will first define, for every parametrix Φ, a map

LΦ : Obsq
<(i,k)(U)→ Obsq

≤(i,k)(M)

with the property that the composed map

Obsq
<(i,k)(U)

LΦ−→ Obsq
≤(i,k)(M)→ Obsq

<(i,k)(M)
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is the natural inclusion map. Then, for every observable O ∈ Obsq
<(i,k)(U),

we will show that LΦ(O) is supported on U, for sufficiently small para-
metrices Φ, so that LΦ(O) provides the desired lift.

For

O ∈ Obsq
<(i,k)(U),

we define

LΦ(O) ∈ Obsq
≤(i,k)(M)

by

LΦ(O)r,s[Φ] =

{
Or,s[Φ] if (r, s) < (i, k)

0 if (r, s) = (i, k)
.

For Ψ , Φ, we obtain LΦ(O)r,s[Ψ] by the renormalization group flow
from LΦ(O)r,s[Φ]. The RG flow equation tells us that if (r, s) < (i, k),
then

LΦ(O)r,s[Ψ] = Or,s[Ψ].

However, the RG equation for LΦ(O)r,s is non-trivial and tells us that

Ii,k[Ψ] + δ (LΦ(O)i,k[Ψ]) = Wi,k (P(Ψ)− P(Φ), I[Φ] + δO[Φ])

for δ a square-zero parameter of cohomological degree opposite to that
of O.

To complete the proof of this lemma, we prove the required local
lifting property in the sublemma below. �

8.6.1.4 Sub-lemma. For each O ∈ Obsq
<(i,k)(U), we can find a parametrix

Φ — locally over the parametrizing manifold X — so that LΦO lies in Obsq
≤(i,k)(U) ⊂

Obsq
≤(i,k)(M).

Proof Although the observables Obsq form a factorization algebra on
the manifold M, they also form a sheaf on the parametrizing base man-
ifold X. That is, for every open subset V ⊂ X, let Obsq(U) |V denote the
observables for our family of theories restricted to V. In other words,
Obsq(U) |V denotes the sections of this sheaf Obsq(U) on V.

The map LΦ constructed above is then a map of sheaves on X.
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For every observable O ∈ Obsq
<(i,k)(U), we need to find an open

cover

X =
⋃
α

Yα

of X, and on each Yα a parametrix Φα (for the restriction of the family
of theories to Yα) such that

LΦα(O |Yα
) ∈ Obsq

≤(i,k)(U) |Yα
.

More informally, we need to show that locally in X, we can find a
parametrix Φ such that for all sufficiently small Ψ, the support of LΦ(O)(i,k)[Ψ]

is in a subset of Uk × X which maps properly to X.

This argument resembles previous support arguments (e.g., the prod-
uct lemma from section 8.5). The proof involves an analysis of the Feyn-
man diagrams appearing in the expression

LΦ(O)i,k[Ψ] = ∑
γ

1
|Aut(γ)|wγ (O[Φ]; I[Φ]; P(Ψ)− P(Φ)) . (?)

The sum is over all connected Feynman diagrams of genus i with k tails.
The edges are labelled by P(Ψ)− P(Φ). Each graph has one special ver-
tex, where O[Φ] appears. More explicitly, if this vertex is of genus r and
valency s, it is labelled by Or,s[Φ]. Each non-special vertex is labelled by
Ia,b[Φ], where a is the genus and b the valency of the vertex. Note that
only a finite number of graphs appear in this sum.

By assumption, O is supported on U. This means that there exists
some parametrix Φ0 and a subset K ⊂ U × X mapping properly to X
such that for all Φ < Φ0, Or,s[Φ] is supported on Ks. (Here by Ks ⊂
Us × X we mean the fibre product over X.)

Further, each Ia,b[Φ] is supported as close as we like to the small di-
agonal M × X in Mk × X. We can find precise bounds on the support
of Ia,b[Φ], as explained in section 7.2. To describe these bounds, let us
choose metrics for X and M. For a parametrix Φ supported within ε of
the diagonal M × X in M × M × X, the effective interaction Ia,b[Φ] is
supported within (2a + b)ε of the diagonal.

(In general, if A ⊂ Mn × X, the ball of radius ε around A is defined
to be the union of the balls of radius ε around each fibre Ax of A → X.
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It is in this sense that we mean that Ia,b[Φ] is supported within (2a+ b)ε
of the diagonal.)

Similarly, for every parametrix Ψ with Ψ < Φ, the propagator P(Ψ)−
P(Φ) is supported within ε of the diagonal.

In sum, there exists a set K ⊂ U × X, mapping properly to X, such
that for all ε > 0, there exists a parametrix Φε, such that

(i) O[Φε]r,s is supported on Ks for all (r, s) < (i, k).
(ii) Ia,b[Φε] is supported within (2a + b)ε of the small diagonal.

(iii) For all Ψ < Φε, P(Ψ) − P(Φε) is supported within ε of the small
diagonal.

The weight wγ of a graph in the graphical expansion of the expression
(?) above (using the parametrices Φε and any Ψ < Φε) is thus sup-
ported in the ball of radius cε around Kk (where c is some combinatorial
constant, depending on the number of edges and vertices in γ). There
are a finite number of such graphs in the sum, so we can choose the
combinatorial constant c uniformly over the graphs.

Since K ⊂ U × X maps properly to X, locally on X, we can find an ε

so that the closed ball of radius cε is still inside Uk × X. This completes
the proof. �

�

8.7 The map from theories to factorization algebras is a
map of presheaves

In Costello (2011b), it is shown how to restrict a quantum field theory
on a manifold M to any open subset U of M. Factorization algebras
also form a presheaf in an obvious way. In this section, we will prove
the following result.

8.7.0.1 Theorem. The map from the simplicial set of theories on a manifold M
to the ∞-groupoid of factorization algebras on M extends to a map of simplicial
presheaves.
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The proof of this will rely on the results we have already proved, and
in particular on thefact that observables form a factorization algebra.

As a corollary, we have the following very useful result.

8.7.0.2 Corollary. For every open subset U ⊂ M, there is an isomorphism of
graded differentiable vector spaces

Obsq(U) � Obscl(U)[[h̄]].

Note that what we have proved already is that there is a filtration on
Obsq(U) whose associated graded is Obscl(U)[[h̄]]. This result shows
that this filtration is split as a filtration of differentiable vector spaces.

Proof By the theorem, Obsq(U) can be viewed as global observables
for the field theory obtained by restricting our field theory on M to one
on U. Choosing a parametrix on U allows one to identify global observ-
ables with Obscl(U)[[h̄]], with differential d + {I[Φ],−}Φ + h̄4Φ. This
is an isomorphism of differentiable vector spaces. �

The proof of this theorem is a little technical, and uses the same tech-
niques we have discussed so far. Before we explain the proof of the
theorem, we need to explain how to restrict theories to open subsets.

Let E (M) denote the space of fields for a field theory on M. In order
to relate field theories on U and on M, we need to relate parametrices
on U and on M. If

Φ ∈ E (M)⊗̂βE (M)

is a parametrix on M (with proper support as always), then the restric-
tion

Φ |U∈ E (U)⊗̂βE (U)

of Φ to U may no longer be a parametrix. It will satisfy all the conditions
required to be a parametrix except that it will typically not have proper
support.

We can modify Φ |U so that it has proper support, as follows. Let
K ⊂ U be a compact set, and let f be a smooth function on U ×U with
the following properties:
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(i) f is 1 on K× K.
(ii) f is 1 on a neighbourhood of the diagonal.

(iii) f has proper support.

Then, f Φ |U does have proper support, and further, f Φ |U is equal to
Φ on K× K.

Conversely, given any parametrix Φ on U, there exists a parametrix
Φ̃ on M such that Φ and Φ̃ agree on K. One can construct Φ̃ by taking
any parametrix Ψ on M, and observing that, when restricted to U, Ψ
and Φ differ by a smooth section of the bundle E� E on U ×U.

We can then choose a smooth section σ of this bundle on U×U such
that f has compact support and σ = Ψ − Φ on K × K. Then, we let
Φ̃ = Ψ− f .

Let us now explain what it means to restrict a theory on M to one
on U. Then we will state the theorem that there exists a unique such
restriction.

Fix a parametrix Φ on U. Let K ⊂ U be a compact set, and consider
the compact set

Ln = (Supp Φ∗)nK ⊂ U.

Here we are using the convolution construction discussed earlier, whereby
the collection of proper subsets of U ×U acts on that of compact sets
in U by convolution. Thus, Ln is the set of those x ∈ U such that there
exists a sequence (y0, . . . , yn) where (yi, yi+1) is in Supp Φ, yn ∈ K and
y0 = x.

8.7.0.3 Definition. Fix a theory on M, specified by a collection {I[Ψ]} of
effective interactions. Then a restriction of {I[Ψ]} to U consists of a collec-
tion of effective interactions {IU [Φ]} with the following propery. For every
parametrix Φ on U, and for all compact sets K ⊂ U, let Ln ⊂ U be as above.

Let Φ̃n be a parametrix on M with the property that

Φ̃n = Φ on Ln × Ln.

Then we require that

IU
i,k[Φ](e1, . . . , ek) = Ii,k[Φ̃n](e1, . . . , ek)
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where ei ∈ Ec(U) have support on K, and where n ≥ 2i + k.

This definition makes sense in families with obvious modifications.

8.7.0.4 Theorem. Any theory {I[Ψ]} on M has a unique restriction on U.

This restriction map works in families, and so defines a map of simplicial
sets from the simplicial set of theories on M to that on U.

In this way, we have a simplicial presheaf T on M whose value on U is
the simplicial set of theories on U (quantizing a given classical theory). This
simplicial presheaf is a homotopy sheaf, meaning that it satisfies Čech descent.

Proof It is obvious that the restriction, it if exists, is unique. Indeed,
we have specified each IU

i,k[Φ] for every Φ and for every compact sub-
set K ⊂ U. Since each IU

i,k[Φ] must have compact support on Uk, it is
determined by its behaviour on compact sets of the form Kk.

In Costello (2011b), a different definition of restriction was given, de-
fined not in terms of general parametrices but in terms of those defined
by the heat kernel. One therefore needs to check that the notion of re-
striction defined in Costello (2011b) coincides with the one discussed
in this theorem. This is easy to see by a Feynman diagram argument
similar to the ones we discussed earlier. The statement that the sim-
plicial presheaf of theories satisfies Čech descent is proved in Costello
(2011b). �

Now here is the main theorem in this section.

8.7.0.5 Theorem. The map which assigns to a field theory the corresponding
factorization algebra is a map of presheaves. Further, the map which assigns
to an n-simplex in the simplicial set of theories, a factorization algebra over
Ω∗(4n), is also a map of presheaves.

Let us explain what this means concretely. Consider a theory on M
and let Obsq

M denote the corresponding factorization algebra. Let Obsq
U

denote the factorization algebra for the theory restricted to U, and let
Obsq

M |U denote the factorization algebra Obsq
M restricted to U (that is,

we only consider open subsets contained in M). Then there is a canon-
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ical isomorphism of factorization algebras on U,

Obsq
U � Obsq

M |U .

In addition, this construction works in families, and in particular in
families over Ω∗(4n).

Proof Let V ⊂ U be an open set whose closure in U is compact. We
will first construct an isomorphism of differentiable cochain complexes

Obsq
M(V) � Obsq

U(V).

Later we will check that this isomorphism is compatible with the prod-
uct structures. Finally, we will use the codescent properties for factor-
ization algebras to extend to an isomorphism of factorization algebras
defined on all open subsets V ⊂ U, and not just those whose closure is
compact.

Thus, let V ⊂ U have compact closure, and let O ∈ Obsq
M(V). Thus,

O is something which assigns to every parametrix Φ on M a collection
of functionals Oi,k[Φ] satisfying the renormalization group equation
and a locality axiom stating that for each i, k, there exists a parametrix
Φ0 such that Oi,k[Φ] is supported on V for Φ ≤ Φ0.

We want to construct from such an observable a collection of func-
tionals ρ(O)i,k[Ψ], one for each parametrix Ψ on U, satisfying the RG
flow on U and the same locality axiom. It suffices to do this for a collec-
tion of parametrices which include parametrices which are arbitrarily
small (that is, with support contained in an arbitrarily small neighbour-
hood of the diagonal in U ×U).

Let L ⊂ U be a compact subset with the property that V ⊂ Int L.
Choose a function f on U × U which is 1 on a neighbourhood of the
diagonal, 1 on L× L, and has proper support. If Ψ is a parametrix on
M, we let Ψ f be the parametrix on U obtained by multiplying the re-
striction of Ψ to U ×U by f . Note that the support of Ψ f is a subset of
that of Ψ.

The construction is as follows. Choose (i, k). We define

ρ(O)r,s[Ψ f ] = Or,s[Ψ]

for all (r, s) ≤ (i, k) and all Ψ sufficiently small. We will not spell out
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what we mean by sufficiently small, except that it in particular means
it is small enough so that Or,s[Ψ] is supported on V for all (r, s) ≤ (i, k).
The value of ρ(O)r,s for other parametrices is determined by the RG
flow.

To check that this construction is well-defined, we need to check that
if we take some parametrix Ψ̃ on M which is also sufficiently small,
then the ρ(O)r,s[Ψ f ] and ρ(O)r,s[Ψ̃ f ] are related by the RG flow for ob-
servables for the theory on U. This RG flow equation relating these two
quantities is a sum over connected graphs, with one vertex labelled by
ρ(O)[Ψ f ], all other vertices labelled by IU [Ψ f ], and all internal edges
labelled by P(Ψ̃ f )− P(Ψ f ). Since we are only considering (r, s) ≤ (i, k)
only finitely many graphs can appear, and the number of internal edges
of these graphs is bounded by 2i + k. We are assuming that both Ψ and
Ψ̃ are sufficiently small so that Or,s[Ψ] and Or,s[Ψ̃] have compact sup-
port on V. Also, by taking Ψ sufficiently small, we can assume that
IU [Ψ] has support arbitrarily close to the diagonal. It follows that, if
we choose both Ψ and Ψ̃ to be sufficiently small, there is a compact set
L′ ⊂ U containing V such that the weight of each graph appearing in
the RG flow is zero if one of the inputs (attached to the tails) has sup-
port on the complement of L′. Further, by taking Ψ and Ψ̃ sufficiently
small, we can arrange so that L′ is as small as we like, and in particu-
lar, we can assume that L′ ⊂ Int L (where L is the compact set chosen
above).

Recall that the weight of a Feynman diagram involves pairing quanti-
ties attached to edges with multilinear functionals attached to vertices.
A similar combinatorial analysis tells us that, for each vertex in each
graph appearing in this sum, the inputs to the multilinear functional
attached to the vertex are all supported in L′.

Now, for Ψ sufficiently small, we have

IU
r,s[Ψ

f ](e1, . . . , es) = Ir,s[Ψ](e1, . . . , es)

if all of the ei are supported in L′. (This follows from the definition of
the restriction of a theory. Recall that IU indicates the theory on U and
I indicates the theory on M).

It follows that, in the sum over diagrams computing the RG flow, we
get the same answer if we label the vertices by I[Ψ] instead of IU [Ψ f ].
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The RG flow equation now follows from that for the original observable
O[Ψ] on M.

The same kind of argument tells us that if we change the choice of
compact set L ⊂ U with V ⊂ Int L, and if we change the bumb function
f we chose, the map

ρ : Obsq
M(V)→ Obsq

U(V)

does not change.

A very similar argument also tells us that this map is a cochain map.
It is immediate that ρ is an isomorphism, and that it commutes with the
maps arising from inclusions V ⊂ V′.

We next need to verify that this map respects the product structure.
Recall that the product of two observables O, O′ in V, V′ is defined by
saying that ([Ψ]O′[Ψ])r,s is simply the naive product in the symmetric
algebra Sym∗ E !

c (V q V′) for (r, s) ≤ (i, k) (some fixed (i, k)) and for Ψ
sufficiently small.

Since, for (r, s) ≤ (i, k) and for Ψ sufficiently small, we defined

ρ(O)r,s[Ψ f ] = Or,s[Ψ],

we see immediately that ρ respects products.

Thus, we have constructed an isomorphism

Obsq
M |U� Obsq

U

of prefactorization algebras on U, where we consider open subsets in
U with compact closure. We need to extend this to an isomorphism of
factorization algebras. To do this, we use the following property: for
any open subset W ⊂ U,

Obsq
U(W) = colim

V⊂W
Obsq

U(V)

where the colimit is over all open subsets with compact closure. (The
colimit is taken, of course, in the category of filtered differentiable cochain
complexes, and is simply the naive and not homotopy colimit). The
same holds if we replace Obsq

U by Obsq
M. Thus we have constructed an

isomorphism

Obsq
U(W) � Obsq

M(W)
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for all open subsets W. The associativity axioms of prefactorization al-
gebras, combined with the fact that Obsq(W) is a colimit of Obsq(V)
for V with compact closure and the fact that the isomorphisms we have
constructed respect the product structure for such open subsets V, im-
plies that we have constructed an isomorphism of factorization alge-
bras on U. �



9
Further aspects of quantum observables

In this chapter we examine how factorization algebras and BV quanti-
zation interact with notions like translation invariance, renormalizabil-
ity, and correlation functions.

9.1 Translation invariance for field theories and
observables

In this section, we will show that a translation-invariant quantum field
theory on Rn gives rise to a smoothly translation-invariant factorization
algebra on Rn (see section I.4.8). We will also show that a holomorphi-
cally translation-invariant field theory on Cn gives rise to a holomor-
phically translation-invariant factorization algebra.

9.1.1

First, we need to define what it means for a field theory to be translation-
invariant. Let us consider a classical field theory on Rn. Recall that such
a theory is given by

(i) A graded vector bundle E whose sections are E ;
(ii) An antisymmetric pairing E⊗ E→ DensRn ;

167
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(iii) A differential operator Q : E → E making E into an elliptic complex,
which is skew-self adjoint;

(iv) A local action functional I ∈ Oloc(E ) satisfying the classical master
equation.

A classical field theory is translation-invariant if

(i) The graded bundle E is translation-invariant, so that we are given
an isomorphism between E and the trivial bundle with fibre E0.

(ii) The pairing, differential Q, and local functional I are all translation-
invariant.

It takes a little more work to say what it means for a quantum field
theory to be translation-invariant. Suppose we have a translation-invariant
classical field theory, equipped with a translation-invariant gauge fix-
ing operator QGF. As before, a quantization of such a field theory is
given by a family of interactions I[Φ] ∈ Osm,P(E ), one for each parametrix Φ.

9.1.1.1 Definition. A translation-invariant quantization of a translation-
invariant classical field theory is a quantization with the property that, for ev-
ery translation-invariant parametrix Φ, the effective interaction I[Φ] is translation-
invariant.

Remark: In general, in order to give a quantum field theory on a mani-
fold M, we do not need to give an effective interaction I[Φ] for all para-
metrices. We only need to specify I[Φ] for a collection of parametrices
such that the intersection of the supports of Φ is the small diagonal
M ⊂ M2. The functional I[Ψ] for all other parametrices Ψ is defined
by the renormalization group flow. It is easy to construct a collection of
translation-invariant parametrices satisfying this condition. ♦

9.1.1.2 Proposition. The factorization algebra associated to a translation-
invariant quantum field theory is smoothly translation-invariant.

See section I.4.8 for the definition of smoothly translation-invariant.

Proof Let Obsq denote the factorization algebra of quantum observ-
ables for our translation-invariant theory. An observable supported on
U ⊂ Rn is defined by a family O[Φ] ∈ O(E )[[h̄]], one for each translation-
invariant parametrix, which satisfies the RG flow and (in the sense we
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explained in section 8.4) is supported on U for sufficiently small para-
metrices. The renormalization group flow

WΦ
Ψ : O(E )[[h̄]]→ O(E )[[h̄]]

for translation-invariant parametrices Ψ, Φ commutes with the action
of Rn on O(E ) by translation, and therefore acts on Obsq(Rn). For x ∈
Rn and U ⊂ Rn, let TxU denote the x-translate of U. It is immediate
that the action of x ∈ Rn on Obsq(Rn) takes Obsq(U) ⊂ Obsq(Rn) to
Obsq(TxU). It is not difficult to verify that the resulting map

Obsq(U)→ Obsq(TxU)

is an isomorphism of differentiable pro-cochain complexes and that it
is compatible with the structure of a factorization algebra.

We need to verify the smoothness hypothesis of a smoothly translation-
invariant factorization algebra. This is the following. Suppose that U1, . . . , Uk
are disjoint open subsets of Rn, all contained in an open subset V. Let
A′ ⊂ Rnk be the subset consisting of those x1, . . . , xk such that the clo-
sures of Txi Ui remain disjoint and in V. Let A be the connected compo-
nent of 0 in A′. We need only examine the case where A is non-empty.

We need to show that the composed map

mx1,...,xk : Obsq(U1)× · · · ×Obsq(Uk)→
Obsq(Tx1U1)× · · · ×Obsq(Txk Uk)→ Obsq(V)

varies smoothly with (x1, . . . , xk) ∈ A. In this diagram, the first map is
the product of the translation isomorphisms Obsq(Ui) → Obsq(Txi Ui),
and the second map is the product map of the factorization algebra.

The smoothness property we need to check says that the map mx1,...,xk

lifts to a multilinear map of differentiable pro-cochain complexes

Obsq(U1)× · · · ×Obsq(Uk)→ C∞(A, Obsq(V)),

where on the right hand side the notation C∞(A, Obsq(V)) refers to the
smooth maps from A to Obsq(V).

This property is local on A, so we can replace A by a smaller open
subset if necessary.

Let us assume (replacing A by a smaller subset if necessary) that there
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exist open subsets U′i containing Ui, which are disjoint and contained in
V and which have the property that for each (x1, . . . , xk) ∈ A, Txi Ui ⊂
U′i .

Then, we can factor the map mx1,...,xk as a composition

Obsq(U1)×· · ·×Obsq(Uk)
ix1×···×ixk−−−−−−→ Obsq(U′1)×· · ·×Obsq(U′k)→ Obsq(V).

(†)

Here, the map ixi : Obsq(Ui)→ Obsq(U′i ) is the composition

Obsq(Ui)→ Obsq(Txi Ui)→ Obsq(U′i )

of the translation isomorphism with the natural inclusion map Obsq(Txi Ui)→
Obsq(U′i ). The second map in equation (†) is the product map associ-
ated to the disjoint subsets U′1, . . . , U′k ⊂ V.

By possibly replacing A by a smaller open subset, let us assume that
A = A1 × · · · × Ak, where the Ai are open subsets of Rn containing the
origin. It remains to show that the map

ixi : Obsq(Ui)→ Obsq(U′i )

is smooth in xi, that is, extends to a smooth map

Obsq(Ui)→ C∞(Ai, Obsq(U′i )).

Indeed, the fact that the product map

m : Obsq(U′1)× · · · ×Obsq(U′k)→ Obsq(V)

is a smooth multilinear map implies that, for every collection of smooth
maps αi : Yi → Obsq(U′i ) from smooth manifolds Yi, the resulting map

Y1 × · · · ×Yk → Obsq(V)

(y1, . . . yk) 7→ m(α1(y), . . . , αk(y))

is smooth.

Thus, we have reduced the result to the following statement: for all
open subsets A ⊂ Rn and for all U ⊂ U′ such that TxU ⊂ U′ for all
x ∈ A, the map ix : Obsq(U)→ Obsq(U′) is smooth in x ∈ A.

But this statement is tractable. Let

O ∈ Obsq(U) ⊂ Obsq(U′) ⊂ Obsq(Rn)
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be an observable. It is obvious that the family of observables TxO, when
viewed as elements of Obsq(Rn), depends smoothly on x. We need
to verify that it depends smoothly on x when viewed as an element
of Obsq(U′).

This amounts to showing that the support conditions which ensure
an observable is in Obsq(U′) hold uniformly for x in compact sets in A.

The fact that O is in Obsq(U) means the following. For each (i, k),
there exists a compact subset K ⊂ U and ε > 0 such that for all translation-
invariant parametrices Φ supported within ε of the diagonal and for
all (r, s) ≤ (i, k) in the lexicographical ordering, the Taylor coefficient
Or,s[Φ] is supported on Ks.

We need to enlarge K to a subset L ⊂ U′× A, mapping properly to A,
such that TxO is supported on L in this sense (again, for (r, s) ≤ (i, k)).
Taking L = K× A, embedded in U′ × A by

(k, x) 7→ (Txk, x)

suffices. �

Remark: Essentially the same proof will give us the somewhat stronger
result that for any manifold M with a smooth action of a Lie group G,
the factorization algebra corresponding to a G-equivariant field theory
on M is smoothly G-equivariant. ♦

9.2 Holomorphically translation-invariant theories and
observables

We can similarly talk about holomorphically translation-invariant clas-
sical and quantum field theories on Cn. In this context, we will take our
space of fields to be Ω0,∗(Cn, V), where V is some translation-invariant
holomorphic vector bundle on Cn. The pairing must arise from a translation-
invariant map of holomorphic vector bundles

V ⊗V → KCn
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of cohomological degree n− 1, where KCn denotes the canonical bun-
dle. This means that the composed map

Ω0,∗
c (Cn, V)⊗2 → Ω0,∗

c (Cn, KCn)

∫
−→ C

is of cohomological degree −1.

Let

ηi =
∂

∂zi
∨− : Ω0,k(Cn, V)→ Ω0,k−1(Cn, V)

be the contraction operator. The cohomological differential operator Q
on Ω0,∗(V) must be of the form

Q = ∂ + Q0

where Q0 is translation-invariant and satisfies the following conditions:

(i) Q0 (and hence Q) must be skew self-adjoint with respect to the pair-
ing on Ω0,∗

c (Cn, V).
(ii) We assume that Q0 is a purely holomorphic differential operator, so

that we can write Q0 as a finite sum

Q0 = ∑
∂

∂zI µI

where µI : V → V are linear maps of cohomological degree 1. (Here
we are using multi-index notation). Note that this implies that

[Q0, ηi] = 0,

for i = 1, . . . , n. In terms of the µI , the adjointness condition says that
µI is skew-symmetric if |I| is even and symmetric if |I| is odd.

The other piece of data of a classical field theory is the local action func-
tional I ∈ Oloc(Ω0,∗(Cn, V)). We assume that I is translation-invariant,
of course, but also that

ηi I = 0

for i = 1 . . . n, where the linear map ηi on Ω0,∗(Cn, V) is extended in the
natural way to a derivation of the algebra O(Ω0,∗

c (Cn, V)) preserving
the subspace of local functionals.
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Any local functional I on Ω0,∗(Cn, V) can be written as a sum of func-
tionals of the form

φ 7→
∫

Cn
dz1 . . . dzn A(D1φ . . . Dkφ)

where A : V⊗k → C is a linear map, and each Di is in the space

C

[
dzi, ηi,

∂

∂zi
,

∂

∂zi

]
.

(Recall that ηi indicates ∂
∂dzi

). The condition that ηi I = 0 for each i
means that we only consider those Di which are in the subspace

C

[
ηi,

∂

∂zi
,

∂

∂zi

]
.

In other words, as a differential operator on the graded algebra Ω0,∗(Cn),
each Di has constant coefficients.

It turns out that, under some mild hypothesis, any such action func-
tional I is equivalent (in the sense of the BV formalism) to one which
has only zi derivatives, and no zi or dzi derivatives.

9.2.0.1 Lemma. Suppose that Q = ∂, so that Q0 = 0. Then, any interaction
I satisfying the classical master equation and the condition that ηi I = 0 for
i = 1, . . . , n is equivalent to one only involving derivatives in the zi.

Proof Let E = Ω0,∗(Cn, V) denote the space of fields of our theory, and
let Oloc(E ) denote the space of local functionals on E . Let Oloc(E )hol

denote those functions which are translation-invariant and are in the
kernel of the operators ηi, and let Oloc(E )hol′ denote those which in ad-
dition have only zi derivatives. We will show that the inclusion map

Oloc(E )hol′ → Oloc(E )hol

is a quasi-isomorphism, where both are equipped with just the ∂ dif-
ferential. Both sides are graded by polynomial degree of the local func-
tional, so it suffices to show this for local functionals of a fixed degree.

Note that the space V is filtered, by saying that Fi consists of those
elements of degrees ≥ i. This induces a filtration on E by the subspaces
Ω0,∗(Cn, FiV). After passing to the associated graded, the operator Q
becomes ∂. By considering a spectral sequence with respect to this fil-
tration, we see that it suffices to show we have a quasi-isomorphism in
the case Q = ∂.
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But this follows immediately from the fact that the inclusion

C

[
∂

∂zi

]
↪→ C

[
∂

∂zi
,

∂

∂zi
, ηi

]
is a quasi-isomorphism, where the right hand side is equipped with the
differential [∂,−]. To see that this map is a quasi-isomorphism, note that
the ∂ operator sends ηi to ∂

∂zi
. �

Recall that the action functional I induces the structure of L∞ algebra
on Ω0,∗(Cn, V)[−1] whose differential is Q, and whose L∞ structure
maps are encoded by the Taylor components of I. Under the hypothesis
of the previous lemma, this L∞ algebra is L∞ equivalent to one which is
the Dolbeault complex with coefficients in a translation-invariant local
L∞ algebra whose structure maps only involve zi derivatives.

There are many natural examples of holomorphically translation-invariant
classical field theories. Geometrically, they arise from holomorphic mod-
uli problems. For instance, one could take the cotangent theory to the
derived moduli of holomorphic G bundles on Cn, or the cotangent the-
ory to the derived moduli space of such bundles equipped with holo-
morphic sections of some associated bundles, or the cotangent theory to
the moduli of holomorphic maps from Cn to some complex manifold.

As is explained in great detail in , holomorphically translation-invariant
field theories arise very naturally in physics as holomorphic (or mini-
mal) twists of supersymmetric field theories in even dimensions.

9.2.1

A holomorphically translation invariant classical theory on Cn has a
natural gauge fixing operator, namely

∂
∗
= −∑ ηi

∂

∂zi
.

Since [ηi, Q0] = 0, we see that [Q, ∂
∗
] = [∂, ∂

∗
] is the Laplacian. (More

generally, we can consider a family of gauge fixing operators coming
from the ∂

∗
operator for a family of flat Hermitian metrics on Cn. Since

the space of such metrics is GL(n, C)/U(n) and thus contractible, we
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see that everything is independent up to homotopy of the choice of
gauge fixing operator.)

We say a translation-invariant parametrix

Φ ∈ Ω0,∗
(Cn, V)⊗2

is holomorphically translation-invariant if

(ηi ⊗ 1 + 1⊗ ηi)Φ = 0

for i = 1, . . . , n. For example, if Φ0 is a parametrix for the scalar Lapla-
cian

4 = −∑
∂

∂zi

∂

∂zi

then

Φ0

n

∏
i=1

d(zi − wi)c

defines such a parametrix. Here zi and wi indicate the coordinates on
the two copies of Cn, and c ∈ V ⊗ V is the inverse of the pairing on
v. Clearly, we can find holomorphically translation-invariant paramet-
rices which are supported arbitrarily close to the diagonal. This means
that we can define a field theory by only considering I[Φ] for holomor-
phically translation-invariant parametrices Φ.

9.2.1.1 Definition. A holomorphically translation-invariant quantiza-
tion of a holomorphically translation-invariant classical field theory as above is
a translation-invariant quantization such that for each holomorphically translation-
invariant parametrix Φ, the effective interaction I[Φ] satisfies

ηi I[Φ] = 0

for i = 1, . . . , n. Here ηi abusively denotes the natural extension of the con-
traction ηi to a derivation on O(Ω0,∗

c (Cn, V)).

The usual obstruction theory arguments hold for constructing holomorphically-
translation invariant quantizations. At each order in h̄, the obstruction-
deformation complex is the subcomplex of the complex Oloc(E )Cn

of
translation-invariant local functionals which are also in the kernel of
the operators ηi.

9.2.1.2 Proposition. A holomorphically translation-invariant quantum field
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theory on Cn leads to a holomorphically translation-invariant factorization
algebra.

Proof This follows immediately from proposition 9.1.1.2. Indeed, quan-
tum observables form a smoothly translation-invariant factorization al-
gebra. Such an observable O on U is specified by a family O[Φ] ∈
O(Ω0,∗(Cn, V)) of functionals defined for each holomorphically translation-
invariant parametrix Φ, which are supported on U for Φ sufficiently
small. The operators ∂

∂zi
, ∂

∂zi
, ηi act in a natural way on O(Ω0,∗(Cn, V))

by derivations, and each commutes with the renormalization group
flow WΦ

Ψ for holomorphically translation-invariant parametrices Ψ, Φ.
Thus, ∂

∂zi
, ∂

∂zi
and ηi define derivations of the factorization algebra Obsq.

Explicitly, if O ∈ Obsq(U) is an observable, then for each holomorphi-
cally translation-invariant parametrix Φ,(

∂

∂zi
O
)
[Φ] =

∂

∂zi
(O[Φ]),

and similarly for ∂
∂zi

and ηi.

By Definition I.5.2.1, a holomorphically translation-invariant factor-
ization algebra is a translation-invariant factorization algebra where the
derivation operator ∂

∂zi
on observables is homotopically trivialized.

Note that, for a holomorphically translation-invariant parametrix Φ,
[ηi,4Φ] = 0 and ηi is a derivation for the Poisson bracket {−,−}Φ. It
follows that

[Q + {I[Φ],−}Φ + h̄4Φ, ηi] = [Q, ηi]

as operators on O(Ω0,∗(Cn, V)). Since we wrote Q = ∂ + Q0 and re-
quired that [Q0, ηi] = 0, we have

[Q, ηi] = [∂, ηi] =
∂

∂zi
.

Since the differential on Obsq(U) is defined by

(Q̂O)[Φ] = QO[Φ] + {I[Φ], O[Φ]}Φ + h̄4ΦO[Φ],

we see that [Q̂, ηi] =
∂

∂zi
, as desired. �

As we showed in Chapter I.5, a holomorphically translation invariant
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factorization algebra in one complex dimension, with some mild addi-
tional conditions, gives rise to a vertex algebra. Let us verify that these
conditions hold in the examples of interest. We first need a definition.

9.2.1.3 Definition. A holomorphically translation-invariant field theory on
C is S1-invariant if the following holds. First, we have an S1 action on the vec-
tor space V, inducing an action of S1 on the space of fields E = Ω0,∗(C, V) of
fields, by combining the S1 action on V with the natural one on Ω0,∗(C) com-
ing from rotation on C. We suppose that all the structures of the field theory
are S1-invariant. More precisely, the symplectic pairing on E and the differen-
tial Q on E must be S1-invariant. Further, for every S1-invariant parametrix
Φ, the effective interaction I[Φ] is S1-invariant.

9.2.1.4 Lemma. Suppose we have a holomorphically translation invariant
field theory on C that is also S1-invariant. The corresponding factorization
algebra then satisfies the conditions stated in theorem I.5.3.3 of Chapter I.5,
allowing us to construct a vertex algebra structure on the cohomology.

Proof Let F denote the factorization algebra of observables of our the-
ory. Note that if U ⊂ C is an S1-invariant subset, then S1 acts on F (U).

Recall that F is equipped with a complete decreasing filtration, and
is viewed as a factorization algebra valued in pro-differentiable cochain
complexes. Recall that we need to check the following properties.

(i) The S1 action onF (D(0, r)) extends to a smooth action of the algebra
D(S1) of distributions on S1.

(ii) Let Grm F (D(0, r)) denote the associated graded with respect to the
filtration onF (D(0, r)). Let Grm

k F (D(0, r)) refer to the kth S1-eigenspace
in Grm F (D(0, r)). Then, we require that the map

Grm
k F (D(0, r))→ Grm

k F (D(0, r′))

is a quasi-isomorphism of differentiable vector spaces.

(iii) The differentiable vector space H∗(Grm
k F (D(0, r))) is finite-dimensional

for all k and is zero for k� 0.

Let us first check that the S1 action extends to a D(S1)-action. If λ ∈
S1 let ρ∗λ denote this action. We need to check that for any observable
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{O[Φ]} and for every distribution D(λ) on S1 the expression∫
λ∈S1

D(λ)ρ∗λO[Φ]

makes sense and defines another observable. Further, this construction
must be smooth in both D(λ) and the observable O[Φ], meaning that it
must work families.

For fixed Φ, each Oi,k[Φ] is simply a distribution on Ck with some
coefficients. For any distribution α on Ck, the expression

∫
λ D(λ)ρ∗λα

makes sense and is continuous in both α and the distributionD. Indeed,∫
λ D(λ)ρ∗λα is simply the push-forward map in distributions applied to

the action map S1 ×Ck → Ck.

It follows that, for each distribution D on S1, we can define

D ∗Oi,k[Φ] :=
∫

λ∈S1
D(λ)ρ∗λOi,k[Φ].

As a function of D and Oi,k[Φ], this construction is smooth. Further,
sending an observable O[Φ] to D ∗O[Φ] commutes with the renormal-
ization group flow (between S1-equivariant parametrices). It follows
that we can define a new observable D ∗O by

(D ∗O)i,k[Φ] = D ∗ (Oi,k[Φ]).

Now, a family of observables Ox (parametrized by x ∈ M, a smooth
manifold) is smooth if and only if the family of functionals Ox

i,k[Φ] are
smooth for all i, k and all Φ. In fact one need not check this for all Φ, but
for any collection of parametrices which includes arbitrarily small para-
metrices. If follows that the map sending D and O to D ∗O is smooth,
that is, takes smooth families to smooth families.

Let us now check the remaining assumptions of theorem I.5.3.3. Let
F denote the factorization algebra of quantum observables of the the-
ory and let Fk denote the kth eigenspace of the S1 action. We first need
to check that the inclusion

Grm
k F (D(0, r))→ Grm

k F (D(0, r′))

is a quasi-isomorphism for r < r′. We need it to be a quasi-isomorphism
of completed filtered differentiable vector spaces. The space Grm F (D(0, r))
is a finite direct sum of spaces of the form

Ω0,∗
c (D(0, r)l , V�l)Sl .



9.3 Renormalizability and factorization algebras 179

It thus suffices to check that for the map

Ω0,∗
c (D(0, r)m)→ Ω0,∗

c (D(0, r′)m)

is a quasi-isomorphism on each S1-eigenspace. This claim is immediate.

The same holds to check that the cohomology of Grm
k F (D(0, r)) is

zero for k� 0 and that it is finite-dimensional as a differentiable vector
space. �

We have seen that any S1-equivariant and holmorphically translation-
invariant factorization algebra on C gives rise to a vertex algebra. We
have also seen that the obstruction-theory method applies in this sit-
uation to construct holomorphically translation invariant factorization
algebras from appropriate Lagrangians. In this way, we have a very
general method for constructing vertex algebras.

9.3 Renormalizability and factorization algebras

A central concept in field theory is that of renormalizability. This notion
is discussed in detail in Chapter 4 of Costello (2011b). The basic idea is
the following.

The group R>0 acts on the collection of field theories on Rn, where
the action is induced from the scaling action of R>0 on Rn. This ac-
tion is implemented differently in different models for field theories. In
the language if factorization algebras it is very simple, because any fac-
torization algebra on Rn can be pushed forward under any diffeomor-
phism of Rn to yield a new factorization algebra on Rn. Push-forward
of factorization algebras under the map x 7→ λ−1x (for λ ∈ R>0) de-
fines the renormalization group flow on factorization algebra.

We will discuss how to implement this rescaling in the definition of
field theory given in Costello (2011b) shortly. The main result of this
section is the statement that the map which assigns to a field theory
the corresponding factorization algebra of observables intertwines the
action of R>0.

Acting by elements λ ∈ R>0 on a fixed quantum field theory pro-
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duces a one-parameter family of theories, depending on λ. Let F denote
a fixed theory, either in the language of factorization algebras, the lan-
guage of Costello (2011b), or any other approach to quantum field the-
ory. We will call this family of theories ρλ(F). We will view the theory
ρλ(F) as being obtained from F by “zooming in” on Rn by an amount
dicated by λ, if λ < 1, or by zooming out if λ > 1.

We should imagine the theory F as having some number of contin-
uous parameters, called coupling constants. Classically, the coupling
constants are simply constants appearing next to various terms in the
Lagrangian. At the quantum level, we could think of the structure con-
stants of the factorization algebra as being functions of the coupling
constants (we will discuss this more precisely below).

Roughly speaking, a theory is renormalizable if, as λ → 0, the family
of theories ρλ(F) converges to a limit. While this definition is a good
one non-pertubatively, in perturbation theory it is not ideal. The rea-
son is that often the coupling constants depend on the scale through
quantities like λh̄. If h̄ was an actual real number, we could analyze
the behaviour of λh̄ for λ small. In perturbation theory, however, h̄ is
a formal parameter, and we must expand λh̄ in a series of the form
1 + h̄ log λ + . . . . The coefficients of this series always grow as λ→ 0.

In other words, from a perturbative point of view, one can’t tell the
difference between a theory that has a limit as λ → 0 and a theory
whose coupling constants have logarithmic growth in λ.

This motivates us to define a theory to be perturbatively renormalizable
if it has logarithmic growth as λ→ 0. We will introduce a formal defini-
tion of perturbative renormalizability shortly. Let us first indicate why
this definition is important.

It is commonly stated (especially in older books) that perturbative
renormalizability is a necessary condition for a theory to exist (in per-
turbation theory) at the quantum level. This is not the case. Instead,
renormalizability is a criterion which allows one to select a finite-dimensional
space of well-behaved quantizations of a given classical field theory,
from a possibly infinite dimensional space of all possible quantizations.

There are other criteria which one wants to impose on a quantum
theory and which also help select a small space of quantizations: for in-
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stance, symmetry criteria. (In addition, one also requires that the quan-
tum master equation holds, which is a strong constraint. This, how-
ever, is part of the definition of a field theory that we use). There are
examples of non-renormalizable field theories for which nevertheless a
unique quantization can be selected by other criteria. (An example of
this nature is the Kodaira-Spencer theory of gravity, often called BCOV
theory.)

9.3.1 The renormalization group action on factorization
algebras

Let us now discuss the concept of renormalizability more formally. We
will define the action of the group R>0 on the set of theories in the def-
inition used in Costello (2011b), and on the set of factorization algebras
on Rn. We will see that the map which assigns a factorization algebra
to a theory is R>0-equivariant.

Let us first define the action of R>0 on the set of factorization algebras
on Rn.

9.3.1.1 Definition. If F is a factorization algebra on Rn, and λ ∈ R>0, let
ρλ(F ) denote the factorization algebra on Rn that is the pushforward of F
under the diffeomorphism λ−1 : Rn → Rn given by multiplying by λ−1.
Thus,

ρλ(F )(U) = F (λ(U))

and the product maps in ρλ(F ) arise from those in F . We call this action of
R>0 on the collection of factorization algebras on Rn the local renormaliza-
tion group action.

Thus, the action of R>0 on factorization algebras on Rn is simply
the obvious action of diffeomorphisms on Rn on factorization algebras
on Rn.
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9.3.2 The renormalization group flow on classical theories

The action on field theories as defined in Costello (2011b) is more sub-
tle. Let us start by describing the action of R>0 on classical field theo-
ries. Suppose we have a translation-invariant classical field on Rn, with
space of fields E . The space E is the space of sections of a trivial vector
bundle on Rn with fibre E0. The vector space E0 is equipped with a de-
gree−1 symplectic pairing valued in the line ω0, the fibre of the bundle
of top forms on Rn at 0. We also, of course, have a translation-invariant
local functional I ∈ Oloc(E ) satisfying the classical master equation.

Let us choose an action ρ0
λ of the group R>0 on the vector space E0

with the property that the symplectic pairing on E0 is R>0-equivariant,
where the action of R>0 acts on the line ω0 with weight −n. Let us
further assume that this action is diagonalizable, and that the eigenval-
ues of ρ0

λ are rational integer powers of λ. (In practise, only integer or
half-integer powers appear).

The choice of such an action, together with the action of R>0 on Rn

by rescaling, induces an action of R>0 on

E = C∞(Rn)⊗ E0

which sends

φ⊗ e0 7→ φ(λ−1x)ρ0
λ(e0),

where φ ∈ C∞(Rn) and e0 ∈ E0. The convention that x 7→ λ−1x means
that for small λ, we are looking at small scales (for instance, as λ → 0
the metric becomes large).

This action therefore induces an action on spaces associated to E ,
such as the spaces O(E ) of functionals and Oloc(E ) of local function-
als. The compatibility between the action of R>0 and the symplectic
pairing on E0 implies that the Poisson bracket on the space Oloc(E ) of
local functionals on E is preserved by the R>0 action. Let us denote the
action of R>0 on Oloc(E ) by ρλ.

9.3.2.1 Definition. The local renormalization group flow on the space of
translation-invariant classical field theories sends a classical action functional
I ∈ Oloc(E ) to ρλ(I).
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This definition makes sense because ρλ preserves the Poisson bracket
on Oloc(E ). Note also that, if the action of ρ0

λ on E0 has eigenvalues
in 1

n Z, then the action of ρλ on the space Oloc(E ) is diagonal and has
eigenvalues again in 1

n Z.

The action of R>0 on the space of classical field theories up to isomor-
phism is independent of the choice of action of R>0 on E0. If we choose
a different action, inducing a different action ρ′λ of R>0 on everything,
then ρλ I and ρ′λ I are related by a linear and symplectic change of co-
ordinates on the space of fields which covers the identity on Rn. Field
theories related by such a change of coordinates are equivalent.

It is often convenient to choose the action of R>0 on the space E0 so
that the quadratic part of the action is invariant. When we can do this,
the local renormalization group flow acts only on the interactions (and
on any small deformations of the quadratic part that one considers).
Let us give some examples of the local renormalization group flow on
classical field theories. Many more details are given in Costello (2011b).

Consider the free massless scalar field theory on Rn. The complex of
fields is

C∞(Rn)
D−→ C∞(Rn).

We would like to choose an action of R>0 so that both the symplec-
tic pairing and the action functional

∫
φ D φ are invariant. This action

must, of course, cover the action of R>0 on Rn by rescaling. If φ, ψ de-
note fields in the copies of C∞(Rn) in degrees 0 and 1 respectively, the
desired action sends

ρλ(φ(x)) = λ
2−n

2 φ(λ−1x)

ρλ(ψ(x)) = λ
−n−2

2 ψ(λ−1x).

Let us then consider how ρλ acts on possible interactions. We find, for
example, that if

Ik(φ) =
∫

φk

then

ρλ(Ik) = λn− k(n−2)
2 Ik.

9.3.2.2 Definition. A classical theory is renormalizable if, as λ → 0, it
flows to a fixed point under the local renormalization group flow.
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For instance, we see that in dimension 4, the most general renormal-
izable classical action for a scalar field theory which is invariant under
the symmetry φ 7→ −φ is∫

φ D φ + m2φ2 + cφ4.

Indeed, the φ4 term is fixed by the local renormalization group flow,
whereas the φ2 term is sent to zero as λ→ 0.

9.3.2.3 Definition. A classical theory is strictly renormalizable if it is a
fixed point under the local renormalization group flow.

A theory that is renormalizable has good small-scale behaviour, in
that the coupling constants (classically) become small at small scales.
(At the quantum level there may also be logarithmic terms which we
will discuss shortly). A renormalizable theory may, however, have bad
large-scale behaviour: for instance, in four dimensions, a mass term∫

φ2 becomes large at large scales. A strictly renormalizable theory is
one that is classically scale-invariant. At the quantum level, we will de-
fine a strictly renormalizable theory to be one which is scale-invariant
up to logarithmic corrections.

Again in four dimensions, the only strictly renormalizable interac-
tion for the scalar field theory which is invariant under φ 7→ −φ is the
φ4 interaction. In six dimensions, the φ3 interaction is strictly renormal-
izable, and in three dimensions the φ6 interaction (together with finitely
many other interactions involving derivatives) are strictly renormaliz-
able.

As another example, recall that the graded vector space of fields of
pure Yang-Mills theory (in the first order formalism) is(

Ω0[1]⊕Ω1 ⊕Ω2
+ ⊕Ω2

+[−1]⊕Ω3[−1]⊕Ω4[−2]
)
⊗ g.

(Here Ωi indicates forms on R4). The action of R>0 is the natural one,
coming from pull-back of forms under the map x 7→ λ−1x. The Yang-
Mills action functional

S(A, B) =
∫

F(A) ∧ B + B ∧ B

is obviously invariant under the action of R>0, since it only involves
wedge product and integration, as well as projection to Ω2

+. (Here A ∈
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Ω1 ⊗ g) and B ∈ Ω2
+ ⊗ g). The other terms in the full BV action func-

tional are also invariant, because the symplectic pairing on the space of
fields and the action of the gauge group are both scale-invariant.

Something similar holds for Chern-Simons theory on R3, where the
space of fields is Ω∗(R3)⊗ g[1]. The action of R> 0 is by pull-back by
the map x 7→ λ−1x, and the Chern-Simons functional is obviously in-
variant.

9.3.2.4 Lemma. The map assigning to a translation-invariant classical field
theory on Rn, its associated P0 factorization algebra, commutes with the action
of the local renormalization group flow.

Proof The action of R>0 on the space of fields of the theory induces an
action on the space Obscl(Rn) of classical observables on Rn, by send-
ing an observable O (which is a functon on the space E (Rn) of fields)
to the observable

ρλO : φ 7→ O(ρλ(φ)).

This preserves the Poisson bracket on the subspace Õbs
cl
(Rn) of func-

tionals with smooth first derivative, because by assumption the sym-
plectic pairing on the space of fields is scale invariant. Further, it is im-
mediate from the definition of the local renormalization group flow on
classical field theories that

ρλ{S, O} = {ρλ(I), ρλ(O)}

where S ∈ Oloc(E ) is a translation-invariant solution of the classical
master equation (whose quadratic part is elliptic).

Let Obscl
λ denote the factorization algebra on Rn coming from the

theory ρλ(S) (where S is some fixed classical action). Then, we see that
we have an isomorphism of cochain complexes

ρλ : Obscl(Rn) � Obscl
λ (R

n).

We next need to check what this isomorphism does to the support con-
ditions. Let U ⊂ Rn and let O ∈ Obscl(U) be an observable supported
on U. Then, one can check easily that ρλ(O) is supported on λ−1(U).
Thus, ρλ gives an isomorphism

Obscl(U) � Obscl
λ (λ

−1(U)).
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and so,

Obscl(λU) � Obscl
λ (U).

The factorization algebra

ρλ Obscl = λ∗Obscl

assigns to an open set U ⊂ Rn the value of Obscl on λ(U). Thus, we
have constructed an isomorphism of precosheaves on Rn,

ρλ Obscl � Obscl
λ .

This isomorphism compatible with the commutative product and the
(homotopy) Poisson bracket on both side, as well as the factorization
product maps. �

9.3.3 The renormalization group flow on quantum field
theories.

The most interesting version of the renormalization group flow is, of
course, that on quantum field theories. Let us fix a classical field the-
ory on Rn, with space of fields as above E = C∞(Rn) ⊗ E0 where
E0 is a graded vector space. In this section we will define an action
of the group R>0 on the simplicial set of quantum field theories with
space of fields E , quantizing the action on classical field theories that
we constructed above. We will show that the map which assigns to
a quantum field theory the corresponding factorization algebra com-
mutes with this action.

Let us assume, for simplicity, that we have chosen the linear action
of R>0 on E0 so that it leaves invariant a quadratic action functional
on E defining a free theory. Let Q : E → E be the corresponding co-
homological differential, which, by assumption, is invariant under the
R>0 action. (This step is not necessary, but will make the exposition
simpler).

Let us also assume (again for simplicity) that there exists a gauge
fixing operator QGF : E → E with the property that

ρλQGFρ−λ = λkQGF

for some k ∈ Q. For example, for a massless scalar field theory on Rn,
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we have seen that the action of R>0 on the space C∞(Rn)⊕C∞(Rn)[−1]

of fields sends φ to λ
2−n

2 φ(λ−1x) and ψ to λ
−2−n

2 ψ(λ−1x) (where φ is
the field of cohomological degree 0 and ψ is the field of cohomologi-
cal degree 1). The gauge fixing operator is the identity operator from
C∞(Rn)[−1] to C∞(Rn)[0]. In this case, we have ρλQGFρ−λ = λ2QGF.

As another example, consider pure Yang-Mills theory on R4. The
fields, as we have described above, are built from forms on R4, equipped
with the natural action of R>0. The gauge fixing operator is d∗. It is easy
to see that ρλd∗ρ−λ = λ2d∗. The same holds for Chern-Simons theory,
which also has a gauge fixing operator defined by d∗ on forms.

A translation-invariant quantum field theory is defined by a family

{I[Φ] ∈ O+
P,sm(E )Rn

[[h̄]] | Φ a translation-invariant parametrix}

that satisfies the renormalization group equation, quantum master equa-
tion, and the locality condition. We need to explain how scaling of Rn

by R>0 acts on the (simplicial) set of quantum field theories. To do this,
we first need to explain how this scaling action acts on the set of para-
metrices.

9.3.3.1 Lemma. If Φ is a translation-invariant parametrix, then λkρλ(Φ) is
also a parametrix, where as above k measures the failure of QGF to commute
with ρλ.

Proof All of the axioms characterizing a parametrix are scale invariant,
except the statement that

([Q, QGF]⊗ 1)Φ = Kid − something smooth.

We need to check that λkρλΦ also satisfies this. Note that

ρλ([Q, QGF]⊗ 1)Φ = λk([Q, QGF]⊗ 1)ρλ(Φ)

since ρλ commutes with Q but not with QGF. Also, ρλ preserves Kid and
smooth kernels, so the desired identity holds. �

This lemma suggests a way to define the action of the group R>0 on
the set of quantum field theories.

9.3.3.2 Lemma. If {I[Φ]} is a theory, define Iλ[Φ] by

Iλ[Φ] = ρλ(I[λ−kρ−λ(Φ)]).
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Then, the collection of functionals {Iλ[Φ]} defines a new theory.

On the right hand side of the equation in the lemma, we are using
the natural action of ρλ on all spaces associated to E , such as the space
E ⊗̂πE (to define ρ−λ(Φ)) and the space of functions on E (to define
how ρλ acts on the function I[λ−kρ−λ(Φ)]).

Note that this lemma is discussed in more detail in Costello (2011b),
except that there the language of heat kernels is used. We will prove the
lemma here anyway, because the proof is quite simple.

Proof We need to check that Iλ[Φ] satisfies the renormalization group
equation, locality action, and quantum master equation. Let us first
check the renormalization group flow. As a shorthand notation, let us
write Φλ for the parametrix λkρλ(Φ). Then, note that the propagator
P(Φλ) is

P(Φλ) = ρλP(Φ).

Indeed,

ρλ
1
2 (Q

GF ⊗ 1 + 1⊗QGF)Φ = λk 1
2 (Q

GF ⊗ 1 + 1⊗QGF)ρλ(Φ)

= P(Φλ).

It follows from this that, for all functionals I ∈ O+
P (E )[[h̄]],

ρλ(W (P(Φ)− P(Ψ), I) = W (P(Φλ)− P(Ψλ), ρλ(I).)

We need to verify the renormalization group equation, which states that

W (P(Φ)− P(Ψ), Iλ[Ψ]) = Iλ[Φ].

Because Iλ[Φ] = ρλ I[Φ−λ], this is equivalent to

ρ−λW (P(Φ)− P(Ψ), ρλ(I[Ψ−λ]) = I[Φ−λ].

Bringing ρ−λ inside the W reduces us to proving the identity

W (P(Φ−λ − P(Ψ−λ, I[Ψ−λ]) = I[Φ−λ]

which is the renormalization group identity for the functionals I[Φ].

The fact that Iλ[Φ] satisfies the quantum master equation is proved
in a similar way, using the fact that

ρλ(4Φ I) = 4Φλ
ρλ(I)
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where4Φ denotes the BV Laplacian associated to Φ and I is any func-
tional.

Finally, the locality axiom is an immediate consequence of that for
the original functionals I[Φ]. �

9.3.3.3 Definition. The local renormalization group flow is the action of
R>0 on the set of theories that sends, as in the previous lemma, a theory {I[Φ]}
to the theory

{Iλ[Φ]} = ρλ(I[λ−kρ−λΦ]).

Note that this works in families, and so defines an action of R>0 on the sim-
plicial set of theories.

Note that this definition simply means that we act by R>0 on every-
thing involved in the definition of a theory, including the parametrices.

Let us now quote some results from Costello (2011b), concerning the
behaviour of this action. Let us recall that to begin with, we chose an
action of R>0 on the space E = C∞(R4) ⊗ E0 of fields, which arose
from the natural rescaling action on C∞(R4) and an action on the finite-
dimensional vector space E0. We assumed that the action on E0 is diag-
onalizable, where on each eigenspace ρλ acts by λa for some a ∈ Q. Let
m ∈ Z be such that the exponents of each eigenvalue are in 1

m Z.

9.3.3.4 Theorem. For any theory {I[Φ]} and any parametrix Φ, the family
of functionals Iλ[Φ] depending on λ live in

O+
sm,P(E )

[
log λ, λ

1
m , λ−

1
m

]
[[h̄]].

In other words, the functionals Iλ[Φ] depend on λ only through poly-

nomials in log λ and λ±
1
m . (More precisely, each functional Iλ,i,k[Φ] in

the Taylor expansion of Iλ[Φ] has such polynomial dependence, but as
we quantify over all i and k the degree of the polynomials may be arbi-
trarily large).

In Costello (2011b), this result is only stated under the hypothesis that
m = 2, which is the case that arises in most examples, but the proof in
Costello (2011b) works in general.
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9.3.3.5 Lemma. The action of R>0 on quantum field theories lifts that on
classical field theories described earlier.

This basic point is also discussed in Costello (2011b); it follows from
the fact that at the classical level, the limit of I[Φ] as Φ → 0 exists and
is the original classical interaction.

9.3.3.6 Definition. A quantum theory is renormalizable if the functionals

Iλ[Φ] depend on λ only by polynomials in log λ and λ
1
m (where we assume

that m > 0). A quantum theory is strictly renormalizable if it only depends
on λ through polynomials in log λ.

Note that at the classical level, a strictly renormalizable theory must
be scale-invariant, because logarithmic contributions to the dependence
on λ only arise at the quantum level.

9.3.4 Quantization of renormalizable and strictly
renormalizable theories

Let us decompose Oloc(E )R4
, the space of translation-invariant local

functionals on E , into eigenspaces for the action of R>0. For k ∈ 1
m Z, we

let O
(k)
loc (E )R4

be the subspace on which ρλ acts by λk. Let O
(≥0)
loc (E )R4

denote the direct sum of all the non-negative eigenspaces.

Let us suppose that we are interested in quantizing a classical the-
ory, given by an interaction I, which is either strictly renormalizable or
renormalizable. In the first case, I is in O

(0)
loc (E )R4

, and in the second, it

is in O
(≥0)
loc (E )R4

.

By our initial assumptions, the Lie bracket on Oloc(E )R4
commutes

with the action of R>0. Thus, if we have a strictly renormalizable clas-
sical theory, then O

(0)
loc (E )R4

is a cochain complex with differential Q +
{I−, }. This is the cochain complex controlling first-order deformations
of our classical theory as a strictly renormalizable theory. In physics ter-
minology, this is the cochain complex of marginal deformations.

If we start with a classical theory which is simply renormalizable,
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then the space O
(≥0)
loc (E )R4

is a cochain complex under the differen-
tial Q + {I−, }. This is the cochain complex of renormalizable defor-
mations.

Typically, the cochain complexes of marginal and renormalizable de-
formations are finite-dimensional. (This happens, for instance, for scalar
field theories in dimensions greater than 2.)

Here is the quantization theorem for renormalizable and strictly renor-
malizable quantizations.

9.3.4.1 Theorem. Fix a classical theory on Rn which is renormalizable with
classical interaction I. LetR(n) denote the set of renormalizable quantizations
defined modulo h̄n+1. Then, given any element inR(n), there is an obstruction
to quantizing to the next order, which is an element

On+1 ∈ H1
(
O

(≥0)
loc (E )R4

, Q + {I,−}
)

.

If this obstruction vanishes, then the set of quantizations to the next order is a
torsor for H0

(
O

(≥0)
loc (E )R4

)
.

This statement holds in the simplicial sense too: if R(n)
4 denotes the simpli-

cial set of renormalizable theories defined modulo h̄n+1 and quantizing a given
classical theory, then there is a homotopy fibre diagram of simplicial sets

R(n+1)
4

//

��

R(n)
4

��

0 // DK
(
O

(≥0)
loc (E )R4

[1], Q + {I,−}
)

On the bottom right DK indicates the Dold-Kan functor from cochain com-
plexes to simplicial sets.

All of these statements hold for the (simplicial) sets of strictly renormalizable
theories quantizing a given strictly renormalizable classical theory, except that
we should replace O

(≥0)
loc by O

(0)
loc everywhere. Further, all these results hold in

families iwth evident modifications.

Finally, if G F denotes the simplicial set of translation-invariant gauge fix-
ing conditions for our fixed classical theory (where we only consider gauge-
fixing conditions which scale well with respect to ρλ as discussed earlier), then
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the simplicial sets of (strictly) renormalizable theories with a fixed gauge fix-
ing condition are fibres of a simplicial set fibred over GF . As before, this means
that the simplicial set of theories is independent up to homotopy of the choice
of gauge fixing condition.

This theorem is proved in Chapter 4 of Costello (2011b), and is the
analog of the quantization theorem for theories without the renormal-
izability criterion.

Let us give some examples of how this theorem allows us to construct
small-dimensional families of quantizations of theories where without
the renormalizability criterion there would be an infinite dimensional
space of quantizations.

Consider, as above, the massless φ4 theory on R4, with interaction∫
φ D φ + φ4. At the classical level this theory is scale-invariant, and so

strictly renormalizable. We have the following.

9.3.4.2 Lemma. The space of strictly-renormalizable quantizations of the mass-
less φ4 theory in 4 dimensions which are also invariant under the Z/2 action
φ 7→ −φ is isomorphic to h̄R[[h̄]]. That is, there is a single h̄-dependent cou-
pling constant.

Proof We need to check that the obstruction group for this problem is
zero, and the deformation group is one-dimensional. The obstruction
group is zero for degree reasons, because for a theory without gauge
symmetry the complex of local functionals is concentrated in degrees
≤ 0. To compute the deformation group, note that the space of local
functionals which are scale invariant and invariant under φ 7→ −φ is
two-dimensional, spanned by

∫
φ4 and

∫
φ D φ. The quotient of this

space by the image of the differential Q + {I,−} is one dimensional,
because we can eliminate one of the two possible terms by a change of
coordinates in φ. �

Let us give another, and more difficult, example.

9.3.4.3 Theorem. The space of renormalizable (or strictly renormalizable)
quantizations of pure Yang-Mills theory on R4 with simple gauge Lie alge-
bra g is isomorphic to h̄R[[h̄]]. That is, there is a single h̄-dependent coupling
constant.
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Proof The relevant cohomology groups were computed in Chapter 6
of Costello (2011b), where it was shown that the deformation group is
one dimensional and that the obstruction group is H5(g). The obstruc-
tion group is zero unless g = sln and n ≥ 3. By considering the outer
automorphisms of sln, it was argued in Costello (2011b) that the ob-
struction must always vanish. �

This theorem then tells us that we have an essentially canonical quan-
tization of pure Yang-Mills theory on R4, and hence a corresonding fac-
torization algebra.

The following is the main new result of this section.

9.3.4.4 Theorem. The map from translation-invariant quantum theories on
Rn to factorization algebras on Rn commutes with the local renormalization
group flow.

Proof Suppose we have a translation-invariant quantum theory on Rn

with space of fields E and family of effective actions {I[Φ]}. Recall that
the RG flow on theories sends this theory to the theory defined by

Iλ[Φ] = ρλ(I[λ−kρ−λ(Φ)]).

We let Φλ = λkρλΦ. As we have seen in the proof of lemma 9.3.3.2, we
have

P(Φλ) = ρλ(P(Φ))

4Φλ
= ρλ(4Φ).

Suppose that {O[Φ]} is an observable for the theory {I[Φ]}. First, we
need to show that

Oλ[Φ] = ρλ(O[Φ−λ])

is an observable for the theory Oλ[Φ]. The fact that Oλ[Φ] satisfies the
renormalization group flow equation is proved along the same lines as
the proof that Iλ[Φ] satisfies the renormalization group flow equation
in lemma 9.3.3.2.

If Obsq
λ denotes the factorization algebra for the theory Iλ, then we
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have constructed a map

Obsq(Rn)→ Obsq
λ(R

n)

{O[Φ]} 7→ {Oλ[Φ]}.

The fact that 4Φλ
= ρλ(4Φ) implies that this is a cochain map. Fur-

ther, it is clear that this is a smooth map, and so a map of differentiable
cochain complexes.

Next we need to check is the support condition. We need to show
that if {O[Φ]} is in Obsq(U), where U ⊂ Rn is open, then {Oλ[Φ]} is in
Obsq(λ−1(U)). Recall that the support condition states that, for all i, k,
there is some parametrix Φ0 and a compact set K ⊂ U such that Oi,k[Φ]
is supported in K for all Φ ≤ Φ0.

By making Φ0 smaller if necessary, we can assume that Oi,k[Φλ] is
supported on K for Φ ≤ Φ0. (If Φ is supported within ε of the diagonal,
then Φλ is supported within λ−1ε.) Then, ρλOi,k[Φλ] will be supported
on λ−1K for all Φ ≤ Φ0. This says that Oλ is supported on λ−1K as
desired.

Thus, we have constructed an isomorphism

Obsq(U) � Obsq
λ(λ

−1(U)).

This isomorphism is compatible with inclusion maps and with the fac-
torization product. Therefore, we have an isomorphism of factorization
algebras

(λ−1)∗Obsq � Obsq
λ

where (λ−1)∗ indicates pushforward under the map given by multipli-
cation by λ−1. Since the action of the local renormalization group flow
on factorization algebras on Rn sends F to (λ−1)∗F , this proves the
result. �

The advantage of the factorization algebra formulation of the local
renormalization group flow is that it is very easy to define; it captures
precisely the intuition that the renormalization group flow arises the
action of R>0 on Rn. This theorem shows that the less-obvious def-
inition of the renormalization group flow on theories, as defined in
Costello (2011b), coincides with the very clear definition in the lan-
guage of factorization algebras. The advantage of the definition pre-
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sented in Costello (2011b) is that it is possible to compute with this defi-
nition, and that the relationship between this definition and how physi-
cists define the β-function is more or less clear. For example, the one-
loop β-function (one-loop contribution to the renormalization group
flow) is calculated explicitly for the φ4 theory in Costello (2011b).

9.4 Cotangent theories and volume forms

In this section we will examine the case of a cotangent theory, in which
our definition of a quantization of a classical field theory acquires a
particularly nice interpretation. Suppose that L is an elliptic L∞ alge-
bra on a manifold M describing an elliptic moduli problem, which we
denote by BL. As we explained in section 4.6, we can construct a classi-
cal field theory from L, whose space of fields is E = L[1]⊕L![−2]. The
main observation of this section is that a quantization of this classical
field theory can be interpreted as a kind of “volume form” on the ellip-
tic moduli problem BL. This point of view was developed in Costello
(2013a), and used in Costello (2011a) to provide a geometric interpreta-
tion of the Witten genus.

The relationship between quantization of field theories and volume
forms was discussed already at the very beginning of this book, in
Chapter I.2. There, we explained how to interpret (heuristically) the BV
operator for a free field theory as the divergence operator for a volume
form.

While this heuristic interpretation holds for many field theories, cotan-
gent theories are a class of theories where this relationship becomes
very clean. If we have a cotangent theory to an elliptic moduli prob-
lem L on a compact manifold, then the L∞ algebra L(M) has finite-
dimensional cohomology. Therefore, the formal moduli problem BL(M)
is an honest finite-dimensional formal derived stack. We will find that
a quantization of a cotangent theory leads to a volume form on BL(M)
that is of a “local” nature.

Morally speaking, the partition function of a cotangent theory should
be the volume of BL(M) with respect to this volume form. If, as we’ve
been doing, we work in perturbation theory, then the integral giving
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this volume often does not converge. One has to replace BL(M) by a
global derived moduli space of solutions to the equations of motion
to have a chance at defining the volume. The volume form on a global
moduli space is obtained by doing perturbation theory near every point
and then gluing together the formal volume forms so obtained near
each point.

This program has been successfully carried out in a number of ex-
amples, such as Costello (2011a); Gwilliam and Grady (2014); Li and
Li (2016). For example, Costello (2011a) studied the cotangent theory
to the space of holomorphic maps from an elliptic curve to a complex
manifold, and it was shown that the partition function (defined in the
way we sketched above) is the Witten elliptic genus.

9.4.1 A finite dimensional model

We first need to explain an algebraic interpretation of a volume form in
finite dimensions. Let X be a manifold (or complex manifold or smooth
algebraic variety; nothing we will say will depend on which geometric
category we work in). Let O(X) denote the smooth functions on X, and
let Vect(X) denote the vector fields on X.

If ω is a volume form on X, then it gives a divergence map

Divω : Vect(X)→ O(X)

defined via the Lie derivative:

Divω(V)ω = LVω

for V ∈ Vect(X). Note that the divergence operator Divω satisfies the
equations

Divω( f V) = f Divω V + V( f ).

Divω([V, W]) = V Divω W −W Divω V.
(†)

The volume form ω is determined up to a constant by the divergence
operator Divω.

Conversely, to give an operator Div : Vect(X) → O(X) satisfying
equations (†) is the same as to give a flat connection on the canonical
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bundle KX of X, or, equivalently, to give a right D-module structure on
the structure sheaf O(X).

9.4.1.1 Definition. A projective volume form on a space X is an operator
Div : Vect(X)→ O(X) satisfying equations (†).

The advantage of this definition is that it makes sense in many con-
texts where more standard definitions of a volume form are hard to de-
fine. For example, if A is a quasi-free differential graded commutative
algebra, then we can define a projective volume form on the dg scheme
Spec A to be a cochain map Der(A) → A satisfying equations (†). Sim-
ilarly, if g is a dg Lie or L∞ algebra, then a projective volume form on
the formal moduli problem Bg is a cochain map C∗(g, g[1]) → C∗(g)
satisfying equations (†).

9.4.2

There is a generalization of this notion that we will use where, instead
of vector fields, we take any Lie algebroid.

9.4.2.1 Definition. Let A be a commutative differential graded algebra over
a base ring k. A Lie algebroid L over A is a dg A-module with the following
extra data.

(i) A Lie bracket on L making it into a dg Lie algebra over k. This Lie bracket
will be typically not A-linear.

(ii) A homomorphism of dg Lie algebras α : L → Der∗(A), called the anchor
map.

(iii) These structures are related by the Leibniz rule

[l1, f l2] = (α(l1)( f )) l2 + (−1)|l1|| f | f [l1, l2]

for f ∈ A, li ∈ L.

In general, we should think of L as providing the derived version
of a foliation. In ordinary as opposed to derived algebraic geometry, a
foliation on a smooth affine scheme with algebra of functions A consists
of a Lie algebroid L on A which is projective as an A-module and whose
anchor map is fibrewise injective.
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9.4.2.2 Definition. If A is a commutative dg algebra and L is a Lie algebroid
over A, then an L-projective volume form on A is a cochain map

Div : L→ A

satisfying

Div(al) = a Div l + (−1)|l||a|α(l)a.

Div([l1, l2]) = l1 Div l2 − (−1)|l1||l2|l2 Div l1.

Of course, if the anchor map is an isomorphism, then this structure
is the same as a projective volume form on A. In the more general case,
we should think of an L-projective volume form as giving a projective
volume form on the leaves of the derived foliation.

9.4.3

Let us explain how this definition relates to the notion of quantization
of P0 algebras.

9.4.3.1 Definition. Give the operad P0 a C× action where the product has
weight 0 and the Poisson bracket has weight 1. A graded P0 algebra is a C×-
equivariant differential graded algebra over this dg operad.

Note that, if X is a manifold, O(T∗[−1]X) has the structure of graded
P0 algebra, where the C× action on O(T∗[−1]X) is given by rescaling
the cotangent fibers.

Similarly, if L is a Lie algebroid over a commutative dg algebra A,
then Sym∗A L[1] is a C×-equivariant P0 algebra. The P0 bracket is defined
by the bracket on L and the L-action on A; the C× action gives Symk L[1]
weight −k.

9.4.3.2 Definition. Give the operad BD over C[[h̄]] a C× action, covering
the C× action on C[[h̄]], where h̄ has weight −1, the product has weight 0,
and the Poisson bracket has weight 1.

Note that this C× action respects the differential on the operad BD,
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which is defined on generators by

d(− ∗−) = h̄{−,−}.

Note also that by describing the operad BD as a C×-equivariant family
of operads over A1, we have presented BD as a filtered operad whose
associated graded operad is P0.

9.4.3.3 Definition. A filtered BD algebra is a BD algebra A with a C×

action compatible with the C× action on the ground ring C[[h̄]], where h̄ has
weight −1, and compatible with the C× action on the operad BD.

9.4.3.4 Lemma. If L is Lie algebroid over a dg commutative algebra A, then
every L-projective volume form yields a filtered BD algebra structure on Sym∗A(L[1])[[h̄]],
quantizing the graded P0 algebra Sym∗A(L[1]).

Proof If Div : L → A is an L-projective volume form, then it extends
uniquely to an order two differential operator4 on Sym∗A(L[1]) which
maps

Symi
A(L[1])→ Symi−1

A (L[1]).

Then Sym∗A L[1][[h̄]], with differential d+ h̄4, gives the desired filtered
BD algebra. �

9.4.4

Let BL be an elliptic moduli problem on a compact manifold M. The
main result of this section is that there exists a special kind of quantiza-
tion of the cotangent field theory for BL that gives a projective volume
on this formal moduli problem BL. Projective volume forms arising in
this way have a special “locality” property, reflecting the locality ap-
pearing in our definition of a field theory.

Thus, letL be an elliptic L∞ algebra on M. This gives rise to a classical
field theory whose space of fields is E = L[1]⊕L![−2], as described in
section 4.6. Let us give the space E a C×-action where L[1] has weight
0 and L![−1] has weight 1. This induces a C× action on all associated
spaces, such as O(E ) and Oloc(E ).

This C× action preserves the differential Q + {I,−} on O(E ), as well
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as the commutative product. Recall from section 5.2 that the subspace

Õbs
cl
(M) = Osm(E ) ⊂ O(E )

of functionals with smooth first derivative has a Poisson bracket of co-
homological degree 1, making it into a P0 algebra. This Poisson bracket

is of weight 1 with respect to the C× action on Õbs
cl
(M), so Õbs

cl
(M)

is a graded P0 algebra.

We are interested in quantizations of our field theory where the BD
algebra Obsq

Φ(M) of (global) quantum observables (defined using a
parametrix Φ) is a filtered BD algebra.

9.4.4.1 Definition. A cotangent quantization of a cotangent theory is a
quantization, given by effective interaction functionals I[Φ] ∈ O+

sm,P(E )[[h̄]]
for each parametrix Φ, such that I[Φ] is of weight −1 under the C× action on
the space O+

sm,P(E )[[h̄]] of functionals.

This C× action gives h̄ weight −1. Thus, this condition means that if we
expand

I[Φ] = ∑ h̄i Ii[Φ],

then the functionals Ii[Φ] are of weight i− 1.

Since the fields E = L[1]⊕L![−2] decompose into spaces of weights 0 and
1 under the C× action, we see that I0[Φ] is linear as a function of L![−2], that
I1[Φ] is a function only of L[1], and that Ii[Φ] = 0 for i > 1.

Remark: (i) The quantization {I[Φ]} is a cotangent quantization if and
only if the differential Q + {I[Φ],−}Φ + h̄4Φ preserves the C× ac-
tion on the space O(E )[[h̄]] of functionals. Thus, {I[Φ]} is a cotan-
gent quantization if and only if the BD algebra Obsq

Φ(M) is a filtered
BD algebra for each parametrix Φ.

(ii) The condition that I0[Φ] is of weight −1 is automatic.

(iii) It is easy to see that the renormalization group flow

W (P(Φ)− P(Ψ),−)

commutes with the C× action on the space O+
sm,P(E )[[h̄]].

♦



9.4 Cotangent theories and volume forms 201

9.4.5

Let us now explain the volume-form interpretation of cotangent quanti-
zation. Let L be an elliptic L∞ algebra on M, and let O(BL) = C∗(L) be
the Chevalley-Eilenberg cochain complex of M. The cochain complexes
O(BL(U)) for open subsets U ⊂ M define a commutative factorization
algebra on M.

As we have seen in section 3.1.3, we should interpret modules for
an L∞ algebra g as sheaves on the formal moduli problem Bg. The g-
module g[1] corresponds to the tangent bundle of Bg, and so vector
fields on g correspond to the O(Bg)-module C∗(g, g[1]).

Thus, we use the notation

Vect(BL) = C∗(L,L[1]);

this is a dg Lie algebra and acts on C∗(L) by derivations (see Appendix B.2,
for details).

For any open subset U ⊂ M, the L(U)-module L(U)[1] has a sub-
module Lc(U)[1] given by compactly supported elements of L(U)[1].
Thus, we have a sub-O(BL(U))-module

Vectc(BL(U)) = C∗(L(U),Lc(U)[1]) ⊂ Vect(BL(U)).

This is in fact a sub-dg Lie algebra, and hence a Lie algebroid over the
dg commutative algebra O(BL(U)). Thus, we should view the sub-
space Lc(U)[1] ⊂ Lc(U)[1] as providing a foliation of the formal mod-
uli problem BL(U), where two points of BL(U) are in the same leaf if
they coincide outside a compact subset of U.

If U ⊂ V are open subsets of M, there is a restriction map of L∞ alge-
bras L(V) → L(U). The natural extension map Lc(U)[1] → Lc(V)[1]
is a map of L(V)-modules. Thus, by taking cochains, we find a map

Vectc(BL(U))→ Vectc(BL(V)).

Geometrically, we should think of this map as follows. If we have an
R-point α of BL(V) for some dg Artinian ring R, then any compactly-
supported deformation of the restriction α |U of α to U extends to a
compactly supported deformation of α.

We want to say that a cotangent quantization of L leads to a “lo-
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cal” projective volume form on the formal moduli problem BL(M)
if M is compact. If M is compact, then Vectc(BL(M)) coincides with
Vect(BL(M)). A local projective volume form on BL(M) should be
something like a divergence operator

Div : Vect(BL(M))→ O(BL(M))

satisfying the equations (†), with the locality property that Div maps
the subspace

Vectc(BL(U)) ⊂ Vect(BL(M))

to the subspace O(BL(U)) ⊂ O(BL(M)).

Note that a projective volume form for the Lie algebroid Vectc(BL(U))
over O(BL(U)) is a projective volume form on the leaves of the folia-
tion of BL(U) given by Vectc(BL(U)). The leaf space for this foliation
is described by the L∞ algebra

L∞(U) = L(U)/Lc(U) = colim
K⊂U

L(U \ K).

(Here the colimit is taken over all compact subsets of U.) Consider the
one-point compactification U∞ of U. Then the formal moduli problem
L∞(U) describes the germs at ∞ on U∞ of sections of the sheaf on U of
formal moduli problems given by L.

Thus, the structure we’re looking for is a projective volume form on
the fibers of the maps BL(U) → BL∞(U) for every open subset U ⊂
M, where the divergence operators describing these projective volume
forms are all compatible in the sense described above.

What we actually find is something a little weaker. To state the result,
recall (section 8.2) that we use the notation P for the contractible sim-
plicial set of parametrices, and C P for the cone on P . The vertex of
the cone C P will denoted 0̄.

9.4.5.1 Theorem. A cotangent quantization of the cotangent theory associ-
ated to the elliptic L∞ algebra L leads to the following data.

(i) A commutative dg algebra OC P (BL) over Ω∗(C P). The underlying
graded algebra of this commutative dg algebra is O(BL)⊗Ω∗(C P). The
restriction of this commutative dg algebra to the vertex 0 of C P is the
commutative dg algebra O(BL).
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(ii) A dg Lie algebroid VectC P
c (BL) over OC P (BL), whose underlying graded

OC P (BL)-module is Vectc(BL)⊗Ω∗(C P). At the vertex 0 of C P , the
dg Lie algebroid VectC P

c (BL) coincides with the dg Lie algebroid Vectc(BL).
(iii) We let OP (BL) and VectPc (BL) be the restrictions of OC P (BL) and

VectC P
c (BL) to P ⊂ C P . Then we have a divergence operator

DivP : VectPc (BL)→ OP (BL)

defining the structure of a VectPc (BL) projective volume form on OP (BL)
and VectPc (BL).

Further, when restricted to the sub-simplicial set PU ⊂ P of parametrices
with support in a small neighborhood of the diagonal U ⊂ M×M, all struc-
tures increase support by an arbitrarily small amount (more precisely, by an
amount linear in U, in the sense explained in section 8.2).

Proof This follows almost immediately from theorem 8.2.2.1. Indeed,
because we have a cotangent theory, we have a filtered BD algebra

Obsq
P (M) =

(
O(E )[[h̄]]⊗Ω∗(P), Q̂P , {−,−}P

)
.

Let us consider the sub-BD algebra Õbs
q
P (M), which, as a graded vec-

tor space, is Osm(E )[[h̄]]⊗Ω∗(P) (as usual, Osm(E ) indicates the space
of functionals with smooth first derivative).

Because we have a filtered BD algebra, there is a C×-action on this
complex Õbs

q
P (M). We let

OP (BL) = Õbs
q
P (M)0

be the weight 0 subspace. This is a commutative differential graded
algebra over Ω∗(P), whose underlying graded algebra is O(BL); fur-
ther, it extends (using again the results of 8.2.2.1) to a commutative dg
algebra OC P (BL) over Ω∗(C P), which when restricted to the vertex
is O(BL).

Next, consider the weight −1 subspace. As a graded vector space,
this is

Õbs
q
P (M)−1 = Vectc(BL)⊗Ω∗(P)⊕ h̄OP (BL).

We thus let

VectPc (BL) = Õbs
q
P (M)−1/h̄OP (BL).
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The Poisson bracket on Õbs
q
P (M) is of weight 1, and it makes the space

Õbs
q
P (M)−1 into a sub Lie algebra.

We have a natural decomposition of graded vector spaces

Õbs
q
P (M)−1 = VectPc (BL)⊕ h̄OP (BL).

The dg Lie algebra structure on Õbs
q
P (M)−1 gives us

(i) The structure of a dg Lie algebra on VectPc (BL) (as the quotient of
Õbs

q
P (M)−1 by the differential Lie algebra ideal h̄OP (BL)).

(ii) An action of VectPc (BL) on OP (BL) by derivations; this defines the
anchor map for the Lie algebroid structure on VectPc (BL).

(iii) A cochain map

VectPc (BL)→ h̄OP (BL).

This defines the divergence operator.

It is easy to verify from the construction of theorem 8.2.2.1 that all the
desired properties hold. �

9.4.6

The general results about quantization of Costello (2011b) thus apply
in this situation to show the following.

9.4.6.1 Theorem. Consider the cotangent theory E = L[1]⊕ L![−2] to an
elliptic moduli problem described by an elliptic L∞ algebra L on a manifold
M.

The obstruction to constructing a cotangent quantization is an element in

H1(Oloc(E )C×) = H1(Oloc(BL)).

If this obstruction vanishes, then the simplicial set of cotangent quantizations
is a torsor for the simplicial Abelian group arising from the cochain complex
Oloc(BL) by the Dold-Kan correspondence.

As in section 3.5, we are using the notation Oloc(BL) to refer to a “lo-
cal” Chevalley-Eilenberg cochain for the elliptic L∞ algebraL. If L is the
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vector bundle whose sections are L, then as we explained in Costello
(2011b), the jet bundle J(L) is a DM L∞ algebra and

Oloc(BL) = DensM⊗DM C∗red(J(L)).

There is a de Rham differential (see section 4.3) mapping Oloc(BL) to
the complex of local 1-forms,

Ω1
loc(BL) = C∗loc(L,L![−1]).

The de Rham differential maps Oloc(BL) isomorphically to the subcom-
plex of Ω1

locBL) of closed local one-forms. Thus, the obstruction is a
local closed 1-form on BL of cohomology degree 1: it is in

H1(Ω1
loc(BL).

Since the obstruction to quantizing the theory is the obstruction to find-
ing a locally-defined volume form on BL, we should view this obstruc-
tion as being the local first Chern class of BL.

9.5 Correlation functions

So far in this chapter, we have proved the quantization theorem show-
ing that from a field theory we can construct a factorization algebra.
We like to think that this factorization algebra encodes most things one
would want to with a quantum field theory in perturbation theory. To
illustrate this, in this section, we will explain how to construct correla-
tion frunctions form the factorization algebra, under certain additional
hypothesis.

Suppose we have a field theory on a compact manifold M, with space
of fields E and linearized differential Q on the space of fields. Further-
more, suppose that

H∗(E (M), Q) = 0.

The complex (E (M), Q) is the tangent complex for the formal moduli
space of solutions to the equation of motion to our field theory, at the
base point around which we are doing perturbation theory. The state-
ment that this tangent complex has no cohomology means that the triv-
ial solution of the equation of motion has no deformations (up to what-
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ever gauge symmetry we have). In other words, we are working with
an isolated point in the moduli of solutions to the equations of motion.

As an example, consider a massive interacting scalar field theory on
a compact manifold M, with action functional for example∫

M
φ(D+m2)φ + φ4

where φ ∈ C∞(M) and m > 0. Then, the complex E (M) of fields is the
complex

C∞(M)
D+m2
−−−→ C∞(M).

Hodge theory tells us that this complex has no cohomology.

Let Obsq denote the factorization algebra of quantum observables of
a quantum field theory that satisfies this (classical) condition.

9.5.0.1 Lemma. In this situation, there is a canonical isomorphism

H∗(Obsq(M)) = C[[h̄]].

Note that we usually work, for simplicity, with complex vector spaces;
this result holds where everything is real too, in which case we find
R[[h̄]] on the right hand side.

Proof There is a spectral sequence

H∗(Obscl(M))[[h̄]]� H∗(Obsq(M)).

Further, Obscl(M) has a complete decreasing filtration whose associ-
ated graded is the complex

Gr Obscl(M) = ∏
n

Symn(E (M)∨)

with differential arising from the linear differential Q on E (M). The
condition that H∗(E (M), Q) = 0 implies that the cohomology of Symn(E (M)∨)
is also zero, so that H∗(Obscl(M)) = C. This shows that there is an
isomorphism of C[[h̄]]-modules from H∗(Obsq(M)) to C[[h̄]]. To make
this isomorphism canonical, we declare that the vacuum observable
|0〉 ∈ H0(Obsq(M)) (that is, the unit in the factorization algebra) gets
sent to 1 ∈ C[[h̄]]. �
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9.5.0.2 Definition. As above, let Obsq denote the factorization algebra of ob-
servables of a quantum field theory on M that satisfies H∗(E (M), Q) = 0.

Let U1, . . . , Un ⊂ M be disjoint open sets, and let Oi ∈ Obsq(Ui). Define
the expectation value (or correlation function) of the observables Oi, denoted
by

〈O1, . . . , On〉 ∈ C[[h̄]],

to be the image of the product observable

O1 ∗ · · · ∗On ∈ H∗(Obsq(M))

under the canonical isomorphism between H∗(Obsq(M)) and C[[h̄]].

We have already encountered this definition when we discussed free
theories (see section I.4.7). There we saw that this definition reproduced
the usual physics definitions of correlation functions for free field theo-
ries.



10
Operator product expansions, with

examples

We have constructed the factorization algebra of observables of an in-
teracting quantum field theory, which encodes a huge amount of in-
formation about the theory. A priori it is not obvious what parts of this
structure are fruitful to compute. In this section we will focus on a class
of computations that have a clear meaning in mathematics and physics,
and which are rather easy to implement in practice.

For readers already familiar with quantum field theory, we expect
this chapter may be quite helpful in connecting established approaches
to ours. In particular, we revisit here notions such as local operators and
operator product expansion and identify them within the factorization al-
gebra of quantum observables.

10.1 Point observables

Let Obs be a factorization algebra of observables on Rn for some translation-
invariant quantum field theory. For every point p ∈ Rn, we can con-
sider point observables at p, which are the observables that live in the in-
tersection of the observables Obs(V) as V ranges over neighbourhoods
of p.

At the classical level, a point observable is a function on the fields of
the theory that only depends on the value of the field and the value of
its derivatives at p. At the quantum level, we define an observable O

208
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on V to be a family of functionals O[Ψ], one for every parametrix, such
that the functionals Oi,k[Ψ] are supported on V for sufficiently small
Ψ. A point observable is the same, except we strengthen the support
condition to say that Oi,k[Ψ] is supported in an arbitrarily small neigh-
borhood of p for sufficiently small Ψ.

Physicists often use the term “local operators” for point observables.
(We use the term point observable to avoid any confusion with what
we call local observables, which are integrals of point observables over
the manifold.) Hence, point observables are the observables that are
usually first studied in a quantum field theory.

We now formulate a precise definition.

10.1.0.1 Definition. The classical point observables Obscl(p) are the limit
of Obscl(V) as V runs over the open sets containing p. Likewise, the quan-
tum point observables Obsq(p) are the limit of Obsq(V) as V runs over the
open sets containing p.

Remark: Here we mean the strict limit, in the sense that we take the limit
as differentiable vector spaces in each cohomological degree. This def-
inition is not particularly appealing mathematically, as the homotopy
limit in Ch(DVS) is the only homotopically meaningful definition. As
this chapter shows, however, this definition does capture and refine
important notions in physics. In section 10.1.2 below, we discuss these
issues and alternative approaches. ♦

Given the key role of local operators in conventional treatments of
QFT, one can ask: why do we not try to formulate everything in terms
of point observables, leading to a version of factorization algebras for-
mulated in terms of points rather than open subsets? In such an ap-
proach, the factorization product would be replaced by the operator
product expansion (OPE), which describes the factorization product of
two point observables when they are very close to each other. We dis-
cuss OPE in detail below.

There are a number of reasons for our choice to emphasize observ-
ables living on open subsets rather than points. One reason is that it
appears to be difficult to formulate an associativity axiom for point ob-
servables that is satisfied by an arbitrary interacting (non-conformal)
quantum field theory. The associativity axiom would involve the ex-
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pansion of the factorization product of three point observables when
they are all close to each other. In an interacting QFT, it is not at all clear
that this factorization product admits a well-behaved expansion.

Ultimately, we chose to work with our formulation based on open
subsets because we found it to be a more flexible language, rich enough
to capture both point observables and other classes of observables like
Wilson lines.

10.1.1 Quantizing classical point observables

Given a classical point observable, we can ask if it lifts to a quantum
one. Our main results tell us that a classical point observable at p must
lift to a quantum observable defined in some neighborhood V of p. Af-
ter all, the complex Obsq(V) is flat over C[[h̄]]. There is no guarantee
that the support is preserved, though, so the our main results do not im-
ply automatically that classical point observables lift to quantum point
observables. This statement does follow, however, from a result proven
in Costello (2011b).

10.1.1.1 Proposition. For any translation-invariant field theory on Rn, the
cochain complex Obsq(p) of point observables is flat over C[[h̄]], and it reduces
modulo h̄ to the complex of Obscl(p) of classical point observables.

The proof below is a little technical, and it is not essential to under-
stand it in order to follow the rest of this chapter. Some of the notation
and key ideas are, however, useful, so we discuss them first.

First, notice that due to translation invariance, the point observables
at p are all translates of point observables at the origin of Rn.

10.1.1.2 Definition. Given a point observable O ∈ Obscl(0), let O(p) de-
note the translate of O to p ∈ Rn.

Note that because we can differentiate observables using the infinites-
imal action of translation, Obscl(0) is a module for the algebra R[∂x1 , . . . , ∂xn ]
of constant-coefficient differential operators. (If we use complex coeffi-
cients, it is a module for C[∂x1 , . . . , ∂xn ].) A similar remark applies to the
quantum point observables.
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Second, we introduce a different description of classical point observ-
ables, useful in quantizing. Let E denote the space of fields, which is
C∞(Rn)⊗ E for some graded vector space E, let S ∈ Oloc(E ) denote the
classical action functional.

Consider now action functionals

S̃ ∈ Oloc(E ⊕Ωd(Rn))

that depend on background fields in Ωn(Rn). Restrict attention to such
functionals that are at most linear in the field ω ∈ Ωd(Rn) and that
become the original action functional S when restricted to E (i.e., when
ω = 0). Furthermore, assume that S̃ is translation invariant.

Any S̃ is then of the form

S̃ = S +
∫

x∈Rn
ωO(x),

where in the second term, we have a point observable O ∈ Obscl(0)
and we integrate its translates O(x) again the background field ω ∈
Ωd(Rn). This construction establishes a correspondence between point
observables and this class of translation-invariant local functionals, which
is in fact an isomorphism. (To recover O from S̃, take the functional
derivative of S̃ along the background field ω.) We thus know the fol-
lowing.

10.1.1.3 Lemma. The point observables Obscl(0) are canonically identified
with translation-invariant local functionals of both E and Ωn(Rn) that de-
pend linearly on the background field in Ωn(Rn).

This description will let us construct point operators at the quantum
level. The methods developed in Costello (2011b) allow one to consider
quantum field theories that depend on background fields, which we
now use in our proof.

Proof of proposition The essential idea is that to produce a quantum
point observable lifting a given classical one, we simply write a clas-
sical point observable as an action functional that depends on a back-
ground field, lift it to a quantum theory depending on the background
field, and then extract the corresponding quantum point observable.
We now make that idea precise.
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Section 13 of chapter 2 of Costello (2011b) considers theories where
the space of fields is decomposed as a direct sum into “propagating”
fields (which will be quantized) and “background” fields (which re-
main classical). In our situation of interest, we have E as the prop-
agating fields and Ωd(Rn) as the background fields. A quantization
amounts to producing a collection of functionals Ib.g.[Ψ], one for every
parametrix Ψ, which are functions of the appropriate class of the fields
in E ⊕Ωd(Rn). Theorems 13.4.3 of chapter 2 and 3.1.2 of chapter 3 of
Costello (2011b) imply that any classical theory with background fields
lifts to a quantum theory with background fields. Here we do not ask
that the quantum master equation hold; we only require that the other
axioms of a field theory hold.

Based on our lemma above, we view a classical point observable O
as encoded in an action functional S̃. We thus focus on quantizations of
the form

Ib.g.[Ψ] = I[Ψ] + I′[Ψ],

where I[Ψ] is the quantization of the field theory with which we started
(and hence does not depend on the field ω ∈ Ωd(Rn)) and where I′[Ψ]
is linear in the background field ω ∈ Ωd(Rn).

Such action functionals are required to have smooth first derivative.
This condition means that the functional

O[Ψ] =
∂

∂δ0
I′[Ψ]

is well-defined, where we differentiate I′[Ψ] along the background field
given by the δ-function at the origin in Rn. (A priori we can only differ-
entiate against smooth ω, so this extension is a condition.)

The renormalization group flow satisfied by I′[Ψ] implies that O[Ψ]
is a quantum observable on some neighbourhood of 0. The locality con-
dition satisfied by I′[Ψ] implies that O[Ψ] becomes supported on an
arbitrarily small neighborhood of 0, as Ψ → 0. In other words, the col-
lection {O[Ψ]} is a point observable. �
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10.1.2 An extended remark on defining point observables

Our book’s central theme is that perturbative field theory is encoded
cleanly and effectively in factorization algebras, and so we want to
show how important ideas from physics translate into the language of
factorization algebras. At times, however, there is a tension between
these two domains, especially when relating concrete field-theoretic
computations with the rigors of higher abstract nonsense. (Such ten-
sions are familiar in the history of math: think of the adoption and in-
ternalization of sheaf theory into algebraic geometry or of homological
algebra into topology.) In this chapter, this tension appears in the defi-
nition of point observables.

On the one hand, there are the usual examples from physics, built
from the delta function, its derivatives, and polynomials built from
such linear functionals on the fields. It is a standard fact that the dis-
tributions — continuous linear functionals on smooth functions — that
are supported at a point p are spanned by δp and its derivatives ∂µδp. In
more sophisticated language, if C∞(V)′ denotes the continuous linear
dual space to C∞(V) for some open set V ⊂ Rn, then

C∞(p)′ = lim
opens V 3 p

C∞(V)′ � C{δp, ∂1δp, . . . , ∂µδp, . . .}µ∈Nn .

These are the linear local operators on a scalar field theory. One takes
polynomials in these operators to produce the nonlinear local opera-
tors.

Our definition of Obscl(p) recapitulates this approach but using the
graded space of fields, as we work with BV formalism for field theories.

On the other hand, from the perspective of factorization algebras, the
observables Obs, whether classical or quantum, take values in the ∞-
category Ch(DVS). Hence, when we ask for the observables supported
at a point p, it seems natural to take limV3p Obs(V) in that ∞-category.
To distinguish it from the strict limit in the 1-category of cochain com-
plexes, the term homotopy limit is often used. For a sequence of cochain
complexes, the limit and homotopy limit are typically different; they
only coincide under strong hypotheses. A classic manifestation is lim1,
first popularized by Milnor; the Mittag-Leffler condition guarantees a
class of examples where the limit and homotopy limit coincide.
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Hence we should not expect that the point observables from this fac-
torization perspective agree with the point observables from the field
theory perspective. It would be interesting to compute the homotopy
limits of the observables for field theories, such as the ones examined
in this chapter. Undoubtedly there are interesting extensions and gener-
alizations of notions from physics in the realm of factorization algebras.

Before returning to the general situation, let us point out a concrete
example of the issue just raised: how the limit vs. homotopy limit dis-
tinction plays out for free topological field theories.

Consider the difference between Ω∗c and Ω∗c on Rn. On any disk
D(0, r), the compactly supported smooth de Rham forms must have
support with radius less than r, so the strict limit limr→0 Ω∗c (D(0, r)) is
0. There are no smooth forms with support at the origin. On the other
hand, there are compactly supported distributional forms with support
at the origin, built from the delta function and its derivatives, as well as
the k-form versions thereof. Hence the strictlimit limr→0 Ω∗c (D(0, r)) is
nonzero.

If we want our answer for the local operators to be meaningful from
the perspective of homological algebra, we must make arguments up to
quasi-isomorphism. The inclusion Ω∗c ↪→ Ω∗c is a quasi-isomorphism,
so the “correct” answer should be the same for both complexes. The
notion of homotopy limit captures this requirement in a precise way.

In this case, the situation can be seen concretely. If we evaluate on
any disk D(0, r), the compactly supported smooth de Rham forms are
quasi-isomorphic to R[−n] by the Poincaré lemma. In other words, the
complex does not care about the size of the disk, which makes sense
in that de Rham complexes measure topological information. The ho-
motopy limit as r → 0 is thus simply R[−n], or any complex quasi-
isomorphic to it. A direct computation shows that there is a quasi-
isomorphism

lim
r→0

Ω∗c (D(0, r))→ R[−n]

from the strict limit to R[−n], as required.

This discussion scales up quickly to the observables of a free topolog-
ical theory. Recall that we have two models for classical observables, us-
ing the distributional or smooth forms. The above argument scales up
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to show that the strict limit of the distributional model does compute
the homotopy limit, but the strict limit of the smeared observables is
zero. One can piggyback off these observations to discuss the quantum
observables and also interacting topological theories: the strict limit of
the distributional observables does encode the homotopy limit.

Already, even for holomorphic field theories, the situation becomes
notably more complicated. We suspect that nontrivial features of ellip-
tic complexes are necessary for analogs of the topological result.

We want to conclude by recasting the field-theoretic definition in a
more positive light. Lemma 10.1.1.3 tells us that point observables ad-
mit an alternative definition that evades the use of strict limits: they
are a class of translation-invariant local functionals, namely linear cou-
plings between the field theory of interest and a background scalar
field. In the language of symmetries developed in the next Part, the
background scalar fields can be seen as defining a Lie algebra that acts
on the field theory of interest, with each point observable encoding the
action of one element of the Lie algebra.

10.2 The operator product expansion

Now consider two point observables O1 and O2. Place O1 at the origin
0 and O2 at x ∈ Rn \ {0}. Pick a radius r bigger than the length ‖x‖ of
x. Choose a radius ε > 0 small enough so that O1 lives on a small disc
D(0, ε) around the origin, O2 lives on a small disc D(x, ε), and there is
an inclusion

D(0, ε) t D(x, ε) ↪→ D(0, r)

of disjoint discs. Hence there is the factorization product

O1(0) · O2(x) ∈ Obs(D(0, r)),

which is independent of ε. (Our focus will ultimately be on the quan-
tum observables but our current discussion applies to classical observ-
ables too, so we use Obs for the moment and avoid a superscript.)

As x varies within D(0, r) — but avoids the origin — this product
varies smoothly as an element of Obs(D(0, r)). Thus the product is an
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element

O1(0) · O2(x) ∈ C∞(D(0, r) \ {0}, Obs(D(0, r))).

Clearly, if ‖x‖ < r′ for some r′ < r, then this family of observables lies
in the subcomplex Obs(D(0, r′)) of Obs(D(0, r)).

We are interested in computingO1(0) ·O2(x) modulo those observable-
valued functions of x that are non-singular at x = 0. This quantity will
be called the operator product expansion (OPE) or, more precisely, the sin-
gular part of the operator product expansion.

Remark: For classical observables, there is a canonical smooth exten-
sion of products to the origin because classical point observables form
a commutative algebra. Hence the OPE of classical observables is de-
fined and there is no singular part. From here on, we discuss quantum
observables. ♦

The precise way to define “up to non-singular functions of x” is a
bit technical. In this book, the space of observables on any disc D is
a differentiable vector space. This setting makes it easy to talk about
smooth families of observables depending on x ∈ D(0, r) \ {0} that
extend to a smooth family of observables on the whole disc D(0, r).
Such observables are certainly non-singular at x = 0, but we would like
to consider a larger class of non-singular observables. For instance, we
want to view quantities like the norm ‖x‖ or ‖x‖ log ‖x‖ as being non-
singular at x = 0. These functions are continuous but not differentiable
at the origin.

To make our approach work, we need to define what it means for a
family of observables to depend continuously on x ∈ D(0, r). Recall that
for a theory on Rn, a quantum observable is a collection O[Φ] of func-
tionals on the space of fields on Rn, satisfying some additional proper-
ties. It admits an expansion

O[Φ] = ∑ h̄iOi,k[Φ]

where each Oi,k[Φ] is a polynomial of degree k on the space of fields
E = C∞(Rn)⊗ E, with E a finite-dimensional graded vector space. We
will view Oi,k[Φ] as an element

Oi,k[Φ] ∈ Dc(R
nk)⊗ (E∗)⊗k

where Dc refers to the space of compactly supported distributions. We
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will now treat Dc(Rnk) as a topological vector space, rather than a dif-
ferentiable vector space.

Suppose we have a family O(x) of observables parametrized by a
topological space X. We say that this family is continuous if for all in-
dices i and k and for all parametrices Φ, the map

X → Dc(Rnk)⊗ (E∗)⊗k

x 7→ Oi,k(x)[Φ]

is continuous.

We now formulate a precise definition of the singular part of the OPE.
As we will work repeatedly with a punctured disk, we introduce a con-
venient notation.

10.2.0.1 Definition. If D denotes the open disk D(x, r) centered at x ∈ Rn

and of radius r, let D̊ denote the punctured open disk D \ {x} where the center
is removed. Likewise R̊n denotes Rn \ {0}.

Fix a translation-invariant field theory on Rn and consider the prod-
uct of two point observables as a function of position.

10.2.0.2 Definition. Let

α, β ∈ C∞(D̊, Obsq(D))

denote two smooth families of quantum observables on a ball D, depending
smoothly on x ∈ D̊. If their difference α− β extends to a continuous map from
D → Obsq(D), we say they differ by non-singular functions of x ∈ D and
write

α ' β

to denote that α and β have the same singular part.

This notion allows us define the operator product expansion.

10.2.0.3 Definition. LetO,O′ ∈ Obsq(0) be point observables in a translation-
invariant field theory on Rn, and let O(x), O′(x) denote their translates to
x ∈ Rn. An operator product expansion (or OPE, for short) is an expres-
sion of the form

∞

∑
i=1

h̄i ∑
r

Fir(x)Oir(0)
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where Oir(0) ∈ Obs(0) and Fir(x) ∈ C∞(R̊n) such that

(i) at each order in h̄, the sum over r is finite, and
(ii) the product satisfies

O(0) · O(x) '
∞

∑
i=1

h̄i ∑
r

Fir(x)Oir(0)

as observable-valued functions in C∞(R̊n, Obsq(Rn)).

Our usage of the term OPE means that we take the expansion only
up non-singular functions of x.

Note that the existence of an operator product expansion is a property
of a factorization algebra, and not extra data. The factorization algebra
encodes the factorization product, which is an observable-valued func-
tion of x, while the existence of the OPE means that this product admits
a well-behaved asymptotic expansion.

There is a simple criterion that guarantees the existence of OPE for
theories.

Claim. Fix a free theory on Rn, invariant under the action of R>0 by scal-
ing on Rn, such that that the R>0 action on the space of point observables is
diagonalizable with discrete spectrum (e.g., with integer eigenvalues).

For any field theory obtained by adding a translation-invariant interaction
term to this free theory, each pair of point observables has a unique operator
product expansion.

This kind of claim appears throughout the physics literature, often
somewhat implicitly. Scale-invariant free theories are quite common —
and so the claim assures the existence of operator product expansion
in many situations. (Under the stronger condition of being a conformal
field theory, such OPE play a crucial role.) Note that the eigenvalues
here are the scaling dimensions of point observables (aka local opera-
tors). When the fields are built from sections of tensor or spinor bun-
dles, these scaling dimensions satisfy the condition above.

We will not give a detailed proof of this claim in this book, as it is
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a bit technical and also somewhat off-topic. We will prove it explicitly,
however, to leading order in h̄.

Before jumping into detailed computations, let us see heuristically
why we should expect this claim to be true. Choose a smooth function
f (x) that is zero when ‖x‖ < ε and one when ‖x‖ > 2ε. Then for any
two point observables O1,O2, we have

O1(0) · O2(x) f (x) ' 0.

Thus the singular part in O1(0)O2(x) only depends on the product for
‖x‖ arbitrarily small. This singular part can be taken to arise in

O1(0) · O2(x) ∈ C∞(D̊ε, Obsq(Dε)),

where Dε is the disc of radius ε around 0 and ε is arbitrarily small.

This observation suggests why we should expect the singular part of
O1(0) · O2(x) to be a point observable: it can be realized as an observ-
able on an arbitrarily small disc around a point.

The content of the claim is then entirely analytical. It is simply the
statement thatO1(0) · O2(x) admits a reasonable asymptotic expansion
of some form. The singular parts of this expansion will automatically
be given in terms of local functionals.

10.3 The OPE to first order in h̄

In this section we will prove the existence of the OPE at order h̄ in any
translation-invariant theory on Rn. Along the way, we will derive an
explicit formula for the OPE in terms of Feynman diagrams. This OPE
gives a kind of Poisson bracket on the algebra of classical observables,
which we summarize before delving into the construction of the OPE.
(The reader may prefer to read in the other order.)

10.3.1 A Poisson structure modulo h̄2

Below we verify the first order OPE exists and that singular part of
O1(0) · O2(x) modulo h̄2 is encoded by a family of point observables.
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As suggestive notation, let

{O1(0),O2(x)}OPE

denote the x-dependent observable given by the singular part ofO1(0) ·
O2(x) modulo h̄2. We use a bracket here because this operation behaves
like a Poisson bracket in following precise sense, and we call it the semi-
classical OPE.

10.3.1.1 Lemma. For any classical point observablesO1,O2,O3 in a translation-
invariant theory on Rn, there is an equivalence

{O1(0)O2(0),O3(x)}OPE

' O1(0){O2(0),O3(x)}OPE ±O2(0){O1(0),O3(x)}OPE

where juxtaposition indicates the product of classical observables. Similarly,
the bracket is a derivation in the second factor.

In words, {−,−}OPE behaves like an x-dependent Poisson bracket
on Obscl(0). This bracket is a broad generalization, to arbitrary Rn, of
notions that have appeared before: compare with vertex Poisson alge-
bras that arise in the setting of chiral CFT on R2 (see, for example, chap-
ter 16 of Frenkel and Ben-Zvi (2004)). The proof of this lemma and the
proposition below come after we show existence of the OPE in the next
subsection.

For convenience of reference, we now summarize the structure we
have unveiled on the point observables due to quantization to first or-
der in h̄. Recall that Cω(U) denotes the real-analytic functions on an
open subset U ⊂ Rn, and note that the equivalence relation ' of Defi-
nition 10.2.0.2 makes sense with the analytic functions Cω(R̊n).

10.3.1.2 Proposition. For a translation-invariant theory on Rn, the classical
point observables Obscl(0) form a differential graded commutative algebra.

Moreover, Obscl(0) has a canonically defined bi-derivation

{−,−}OPE : Obscl(0)⊗Obscl(0)→ Obscl(0)⊗
(
Cω(R̊n)/ '

)
,

where the dependence on x is real-analytic. This bracket is compatible with the
differential d on classical observables:

d{O1(0),O2(x)} = {dO1(0),O2(x)} ± {O1(0), dO2(x)}.
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Translation along Rn acts in a highly controlled way on this bracket,
and we discuss these properties in detail in Lemma 10.3.3.1. These dras-
tically simplify the computation of the bracket {−,−}OPE: it is entirely
determined by its value on those linear point functionals of the fields
that do not involve any derivatives (cf. with descendants in CFT).

10.3.2 The explicit construction of the OPE modulo h̄2

The first thing we show is that the OPE at first order in h̄ only depends
on classical observables, and not their lift to quantum observables de-
fined modulo h̄2.

10.3.2.1 Lemma. Let O1 and O2 be any two classical point observables in
a translation-invariant theory on Rn. Let Õ1 and Õ2 be any lifts of these to
quantum observables defined modulo h̄2. Then the OPE between Õ1 and Õ2 at
order h̄ is independent of the choice of quantum lifts of the classical observables
O1 and O2.

Proof Recall that OPE is defined straightforwardly for classical point
observables, with no singular part. If we change Õ1 by h̄O′, then the
OPE between Õ1 and Õ2 changes by the OPE between h̄O′ and Õ2.
But h̄O′(0) · Õ2(x) is non-singular at order h̄, as it is the same as the
classical OPE between O′ and Õ2. �

This result tells us that the order h̄ term in the OPE is canonically as-
sociated to classical point observables. Now, we need to find a formula
for the order h̄ term in the OPE. We will derive it from a formula for the
factorization product of quantum point observables.

For any two quantum point observables, the product O1(0) · O2(x)
is a quantum observable. Unpacking that definition, we have a family
(O1(0) · O2(x)) [Φ] over the space of parametrices. According to our
formula for this product, it is defined by the limit

(O1(0) · O2(x)) [Φ] = lim
Ψ→0

WΦ
Ψ (I[Ψ], Õ1(0)[Ψ]Õ2(x)[Ψ]) (10.3.2.1)

where Õi[Ψ] are arbitrary lifts of our classical observables to quantum
observables with parametrix Ψ.
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Using the diagrammatic expression for WΦ
Ψ , we see that the order h̄

term in equation (10.3.2.1), before we take the Ψ → 0 limit, is given by
a sum of diagrams of the following types:

(i) Disconnected diagrams with two connected components. Each con-
nected component must contain a special vertex labelled byO1(0)[Ψ]
or O2(x)[Ψ].

(ii) Connected trees with two special vertices, labelled by O1(0)[Ψ] and
O1(x)[Ψ]. All other vertices are labelled by the interaction terms
I[Ψ]. The edges are labelled by P(Φ) − P(Ψ). There are external
edges labelled by the field φ of the theory; the amplitude of the dia-
gram is a functional of this field.

To clarify this description, note that when one initially constructs a dia-
gram, one treats O1(0) · O2(x) as a single observable sitting at a single
vertex, but it is naturally to decompose that vertex into the O1(0) and
O2(x) factors, which become distinct vertices. For example, a connected
tree with two special vertices will have precisely one loop if one glues
the special vertices together, which explains why such a diagram has
order h̄.

Disconnected diagrams can not have any singularities as x → 0. They
therefore do not contribute to the singular part of the OPE, so we only
need to consider the connected diagrams.

For a connected diagram to have order exactly h̄, all of its vertices
must be labelled by the coefficient of h̄0 in whatever functional is at the
vertex. That is, the two special vertices are labelled by Oi[Ψ] modulo h̄,
and the internal vertices are labelled by I[Ψ] modulo h̄.

Modulo h̄, the limit as Ψ→ 0 of Oi[Ψ] is simply the original classical
observable Oi. Similarly, the limit as Ψ → 0 of I[Ψ] is the interaction
term in the original classical Lagrangian, which we call I. Therefore,
once we take the Ψ → 0 limit, we are left with a sum over connected
trees with two special vertices, whereO1(0) andO2(0) label the special
vertices, the classical interaction term I labels the other vertices, and the
propagator P(Φ) labels internal edges.

There is one further simplification before we reach the final diagram-
matic expression. The result of our calculation will be an observable
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O1(0) I I I I O2(x)

Figure 10.1 A typical bridge diagram appearing in a theory which has in-
teraction terms of order 3, 4, and 5 in the field. Each internal vertex can
carry any of the interaction terms, leading in this case to a sum over all
diagrams where the internal vertices are of valency 3, 4 or 5. The vertices
at the beginning and end have a valency reflecting the order of the observ-
ables Oi as polynomials in the fundamental fields.

that is defined modulo h̄2 and is zero modulo h̄. It is therefore h̄ times a
classical observable, and therefore has a Φ → 0 limit. We will calculate
this Φ→ 0 limit, which is a classical observable defined as a functional
of the fields.

We will say that a diagram that appears in the sum-over-trees is a
bridge if every time we cut an edge, the vertices labelled by O1(0) and
O2(x) end up on different components. Bridges are all given by a se-
quence of vertices, starting with that labelled byO1(0) and ending with
the one labelled by O2(x), so that consecutive vertices in the sequence
are connected by a propagator. Any connected diagram that appears in
the sum-over-trees is obtained by grafting some trees onto a bridge.

It turns out that only bridges contribute to the Φ → 0 limit of the
product {O(0) · O(x)}[Φ]. A non-bridge diagram contributes zero in
the Φ→ 0 limit.

10.3.2.2 Proposition. Let O1 and O2 be any two classical point observables
in a translation-invariant theory on Rn. Modulo h̄2 and modulo terms that are
non-singular functions of x, the product limΦ→0 (O1(0) · O2(x)) [Φ] has a
diagrammatic expression

lim
Φ→0

(O1(0) · O2(x)) [Φ] ' h̄ ∑
bridges Γ

WΓ

where the sum is over bridges with two special vertices labelled by the function-
alsO1(0) andO2(x). All other vertices of a bridge are labelled by the classical
interaction I, and the internal edges are labelled by the propagator P(Φ) for
any parametrix Φ.
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Up to terms that are non-singular as ‖x‖ → 0, this expression is indepen-
dent of the parametrix Φ.

The result of this diagrammatic calculation is a functional of the fields,
which we view as a classical observable multiplied by h̄.

Proof As we have seen, before we take the Φ → 0 limit, we find an
arbitrary connected tree with special vertices labelled by O1(0), O2(x).
Any such tree is a bridge, with other trees grafted on to it. That is, if we
let WΦ

0 denote the tree-level RG flow on observables from scale 0 to Φ,
we have at order h̄,

(O1(0) · O2(x)) [Φ] = h̄WΦ
0

 ∑
bridges Γ

WΓ


(the point is that WΦ

0 is given by grafting trees with propagator P(Φ)).

In the Φ→ 0 limit, WΦ
0 drops out.

Next, let’s show that the contribution of bridges is independent of
P(Φ). Note that if we change the parametrix Φ, the propagator P(Φ)
changes by a smooth kernel (i.e., with no singularities). An infinitesimal
change of Φ will change the contribution of the bridges so that precisely
one edge is labelled by a smooth kernel, and all the other edges are
labelled by the propagator P(Φ). Because the diagram is a bridge, if
we cut the edge that is labelled by the smooth kernel, then the vertices
labelled by O(0) and O(x) lie on different connected components.

The presence of the smooth kernel on an edge that separates O(0)
fromO(x) guarantees that the amplitude of the diagram is non-singular
as x → 0. Since we are only interested in the product O(0) · O(x) mod-
ulo non-singular terms, we find that the contribution of bridges is in-
dependent of the parametrix. �

This result has a number of corollaries.

10.3.2.3 Corollary. For any translation-invariant theory on Rn, the operator
product expansion in the sense of Definition 10.2.0.3 exists to order h̄: for any
classical point observables O1,O2, the product O1(0)O2(x) is well-defined
modulo h̄2. Furthermore, all the functions of x ∈ R̊n appearing in this expan-
sion are real analytic.
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Proof This claim follows from an explicit analysis of the sum-over-
bridges formula above. Since the question is entirely analytical, we can
assume without loss of generality that our space of fields consists of
one or several scalar fields. We denote the input field — placed at all
external lines in the sum-over-bridges formula — by φ. We examine
each bridge diagram Γ separately. Let the value WΓ,x be the amplitude of
the diagram Γ with O2 inserted at x.

Let m denote the number of internal vertices of Γ, so that this ampli-
tude WΓ,x is written as an integral over Rnm:

WΓ,x(Φ, φ) =
∫

Rnm
FΓ,x(Φ, φ). (10.3.2.2)

Note that the integrand depends not only an input field φ but also on a
choice of parametrix, so we fix throughout a parametrix Φ and suppress
it from the notation below.

We use x1, . . . , xm to denote the points in Rn associated to each ver-
tex, and we set x0 = 0 and xm+1 = x. The external lines attached to
each vertex contribute a polynomial built from φ and finitely many of
its derivatives. (Derivatives may appear because the interaction terms
in the Lagrangian may involve derivatives.) On the edge connecting
vertex i with vertex i + 1, we place the propagator P(Φ)(xi − xi+1). We
include the case that i = 0 and i + 1 = m + 1.

As a function the variables xi and xi+1 attached to the vertices, the
propagator P(Φ) vanishes when

‖xi − xi+1‖ � 0,

by definition. Therefore for some constant C, the integrand vanishes
FΓ whenever ‖xi‖ > C for some point xi. We thus take our domain of
integration to be the region where ‖xi‖ < C for all i.

If we take the insertion point x = xm+1 to be some finite distance
C′ from the origin (i.e., ‖x‖ > C′), then the integral WΓ,x(φ) converges
absolutely, for each fixed φ. The result is therefore a smooth function of
x (for fixed φ) as long as x , 0. The integral may diverge if x → 0 and
thus the amplitude WΓ,x diverges, leading to singular terms in the OPE.

The amplitude WΓ,x is also a continuous function on the space of
fields. Hence we can assume without loss of generality that the input
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field φ is a polynomial, as polynomials are dense in all fields by Weier-
strass approximation.

Assume then that φ is homogeneous of degree k as a function on Rn.
If k � 0, the value of the integral WΓ,x(φ) is a function of x that is
continuous at x = 0, by the following argument.

On the domain of integration, there is some natural number l such
that the propagator is bounded above by ‖xi − xi+1‖−l , because the
propagator is constructed using a parametrix, which manifestly has this
kind of property from standard analytic results about the Laplacian for
the Euclidean metric on Rn. Thus, we find that the absolute value of the
original integral is bounded above by an integral where each propaga-
tor has been replaced by ‖xi − xi+1‖−l and each monomial involving
the rth factor xi,r of a point xi = (xi,1, . . . , xi,n) has been replaced by its
absolute value. This new integrand is homogeneous under rescaling all
the xi and x. In fact, we can arrange that it is homogeneous of positive
weight by taking k � 0. After integrating it over the xi, we get a func-
tion of x that is homogenous of positive weight under rescaling of x.
This function will therefore be bounded above in absolute value by its
supremum on the unit sphere times ‖x‖m for some m. In other words,
for some K � 0 and for any field φ homogeneous of degree k > K,

|WΓ,x(φ)| ≤ ‖x‖m .

Therefore the amplitude WΓ,x(φ) is continuous at x = 0 and does not
contribute to the OPE.

For fields φ that are homogeneous with degree less than some K (such
as a constant field), the amplitude WΓ,x(φ) may diverge as x → 0. For an
arbitrary field φ, we can use its Taylor approximation to deduce that the
singular part of the amplitude WΓ,x(φ) will only depend on the value
of φ and finitely many of its derivatives at 0 (up to order K). Hence it is
a point observable.

The coefficient of the point observables appearing in the OPE will be
encoded in the sum of the amplitudes of bridges with the background
field φ being a polynomial, as above. These coefficients can be inter-
preted as a composition of operators on the space of fields. Each edge
gives an operator that is a convolution with the propagator P(Φ). Each
vertex gives an operator that is some differential operator with polyno-
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mial coefficients, since we assume φ is polynomial. Any convolution of
this form will always lead to a function of x that is real-analytic up to
non-singular terms in x. �

10.3.3 The Poisson bracket, redux

Recall that we use {−,−}OPE as suggestive notation for the order h̄
term in the OPE:

{O1(0),O2(x)}OPE ' lim
h̄→0

h̄−1O1(0) · O2(x).

The first step in justifying the Poisson flavor of this binary operator is
to prove Lemma 10.3.1.1 that it is a derivation in each entry.

Proof of Lemma 10.3.1.1 In the sum-over-bridges formula for {O1(0)O2(0),O3(x)}OPE,
an edge of the bridge connects to the observable O2(0) or to O1(0), but
not to both. Therefore the sum-over-bridges reduces to two sums, one
of which isO1(0) times the sum-over-bridges giving {O2(0),O3(x)}OPE,
and the other isO2(0) times the sum-over-bridges giving {O1(0),O3(x)}OPE.

�

Similarly, the OPE {−,−}OPE satisfies the Leibniz rule for the differ-
ential on classical observables:

d{O1(0),O2(x)} = {dO1(0),O2(x)} ± {O1(0), dO2(x)}.

This equation is an immediate consequence of the fact that the differen-
tial on quantum observables is a derivation for the factorization prod-
uct. In sum, we have shown Proposition 10.3.1.2.

The one-loop OPE also satisfies some compatibility conditions with
the action of differentiation on observables. To state them, we need to
introduce notation for two different notions of derivative (or infinitesi-
mal translation) because there are two places where we can differenti-
ate. Note that in the definition of the OPE, we deal with spaces of the
form C∞(U′, Obs(U)) where U and U′ are open subsets of Rn. Here
the observables themselves can be differentiated: for i = 1, . . . , n we
let Di denote the action of differentiation with respect to xi on observ-
ables. Likewise, functions on U′, with values in any differentiable vector
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space, can be differentiated: we denote this differentiation by ∂
∂xi

. Thus,
elements of C∞(U′, Obs(U)) can be differentiated in two separate ways.

Something special happens for point observables: on an open subset
U ⊂ Rn containing x,

DiO(x) =
∂

∂xi
O(x) ∈ Obsq(U)

for any point observableO. This equality follows from the definition of
Di and ofO(x), because the observableO(x) is obtained by translating
the observable O(0) to x and Di is defined by the infinitesimal action
of translation.

Recall that the operators Di are derivations for the factorization prod-
uct. Hence for any classical point observables O1 and O2, we have

Di{O1(0),O2(x)}OPE = {DiO1(0),O2(x)}OPE + {O1(0), DiO2(x)}OPE,

and so

∂

∂xi
{O1(0),O2(x)}OPE = {O1(0),

∂

∂xi
O2(x)}OPE

= {O1(0), DiO2(x)}OPE.

In sum, we have the following.

10.3.3.1 Lemma. This bi-derivation {−,−}OPE satisfies the following prop-
erties:

(i) It is compatible with differentiation of classical observables:

Di{O1(0),O2(x)}OPE = {DiO1(0),O2(x)}OPE + {O1(0), DiO2(x)}OPE

∂

∂xi
{O1(0),O2(x)}OPE = {O1(0), DiO2(x)}OPE.

(ii) It has the symmetry property:

{O1(0),O2(x)}OPE ' ±e∑ xi Di{O2(0),O1(−x)}OPE.

Proof It remains to show the symmetry property, which follows by
noting that

O1(0)O2(x) = e∑ xi Di (O1(−x)O2(0)) ,

since e∑ xi Di is the operator of translation by the vector x = (x1, . . . , xn).
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Note that because the symmetry identity only holds modulo singular
functions of x, only finitely many terms in the expansion of the expo-
nential e∑ xi Di will appear in the equation. �

10.4 The OPE in the φ4 theory

Let us now explore the computation of the semi-classical OPE in an ex-
plicit example. Consider here φ4 theory on R4, whose action functional
is

S(φ) = −
∫

1
2 φ4φ +

∫
1
4! φ

4.

Let O ∈ Obs(0) be the point observable

O(φ) = φ(0),

which evaluates the field φ at 0. In other words, the translate O(x) is
the delta-function δx.

We will now calculate {O(0),O(x)}OPE. As explained above, this no-
tation indicates the order h̄ term in the OPE, viewed as a classical ob-
servable.

10.4.0.1 Lemma. The semi-classical OPE satisfies

{O(0),O(x)}OPE '
1

4π2

(
‖x‖−2 − (log ‖x‖)φ(0)2

)
.

Remark: There are many other computations of the bracket {−,−}OPE
for scalar field theories, and the interested reader is encouraged to per-
form some of them. For instance, it is interesting to analyze the φ4 the-
ory in dimensions other than 4. As the dimension increases, more and
more diagrams can contribute to the OPE. In dimension 6, for instance,
bridges with three internal vertices can contribute, leading to expres-
sions like

{φ(0), φ(x)}OPE = Cφ(0)6 log ‖x‖+ terms of lower order in φ

for some constant C. (Here, we are abusing notation in a way commonly
done by physicists: we are writing φ(0) for the delta function observ-
able on fields that sends φ to its value φ(0).) The lower order terms are
the contributions from diagrams with two or fewer internal vertices.
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O(0) O(x)

Figure 10.2 The first diagram contributing to the operator product expan-
sion

These expressions can be quite complicated and may involve operators
built from derivatives of φ. It is instructive to compute some of these
terms. In dimensions lower than 4, fewer and fewer diagrams can con-
tribute, until one finds that in dimension 2 the order h̄ OPE coincides
with that for the free theory. (Verifying this claim is also a useful exer-
cise.) ♦

Proof We will prove this claim by applying the sum-over-bridges for-
mula (10.3.2.2) for the order h̄ OPE. It turns out that only two diagrams
can contribute.

The first diagram we need to compute has only two vertices, and it is
illustrated in Figure 10.2. This diagram has a single edge, labelled by the
propagator P(Φ) associated to an arbitrary parametrix. This propagator
satisfies

P(Φ) ' 1
4π2

1

‖x′ − x′′‖2

up to smooth functions on R4 ×R4. One end of the propagator is eval-
uated at zero, and the other at x. Therefore we find that this diagram
contributes the factor

h̄
1

4π2 ‖x‖2

to the OPE of O(0) and O(x).

Next, let us analyze the contribution of the next bridge, illustrated in
Figure 10.3. We will take our parametrix Φ to be of the form

F(‖x− x′‖)
‖x− x′‖2 ,

where F(r) is a non-increasing function of r that is 0 for r � 0 and is 1
4π2

in a neighbourhood of r = 0. (For the scalar theory we are considering,
the parametrix and the propagator associated to the parametrix are the
same thing. For a gauge theory, they are different.)
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O(0) I O(x)

Figure 10.3 The second diagram contributing to the OPE calculation in the
φ4 theory.

The diagram in Figure 10.3 contributes the functional of φ given by

h̄
2

∫
x′∈R2

φ(x′)2 F(‖x′‖)
‖x′‖2

F(‖x− x′‖)
‖x− x′‖2 d4x′ (10.4.0.1)

where x′ labels the interior vertex. More generally, the bridge with 2+ n
vertices contributes the functional

h̄
2n

∫
R4n

φ(x1)
2 · · · φ(xn)

2 F(x1)

‖x1‖2
F(x2 − x1)

‖x2 − x1‖2 . . .
F(x− xn)

‖x− xn‖2 d4x1 · · ·d4xn

(10.4.0.2)
where x1, . . . , xn ∈ R4 label the interior vertices. This functional of φ

is quite complicated. But if we recall that we are only interested in the
result up to non-singular functions of x, we find the answer simplifies.

Let’s calculate the integral when n = 1. Write φ(x) as the sum φ(0) +
φ0(x) where φ0(0) = 0. The integral is then

1
2

∫
x′∈R4

φ(0)2 F(‖x′‖)
‖x′‖2

F(‖x− x′‖)
‖x− x′‖2 d4x′

+
1
2

∫
x′∈R4

(
2φ(0)φ0(x′) + φ0(x′)2

) F(‖x′‖)
‖x′‖2

F(‖x− x′‖)
‖x− x′‖2 d4x′.

(10.4.0.3)

We will first show that the integral on the second line is non-singular
as x → 0. Let C be a constant such that F(‖x‖) = 0 if ‖x‖ ≥ C. Since
φ0(0) = 0, we can find some constant D such that

|φ0(x)| ≤ D ‖x‖ if ‖x‖ ≤ C.

This inequality means that the integrand on the second line of (10.4.0.3)
is bounded above in absolute value by

D′
∥∥x′
∥∥ F(‖x′‖)
‖x′‖2

F(‖x− x′‖)
‖x− x′‖2 d4x′

for some constant D′ that depends on φ(0). This integral is absolutely
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convergent uniformly in x. The result of this integral is therefore a con-
tinuous function of x, which does not contribute to the singular part of
the OPE.

We conclude that the term in the singular part of the OPE associated
to the diagram of Figure 10.3 is given by

φ(0)2 1
2

∫
x′

F(‖x′‖)F(‖x− x′‖)
‖x′‖2 ‖x− x′‖2 d4x′. (10.4.0.4)

This integral can be evaluated explicitly up to terms that are non-singular
as x → 0. The result is

−φ(0)2 1
4π2 log ‖x‖ ,

which is the second term in our putative OPE.

So far, we have found that our operator product expansion is

O(0) · O(x) ' h̄
4π2

(
1

‖x‖2 − log ‖x‖
)
+ · · · .

To complete the calculation, we need to verify that the bridge diagrams
with four and more vertices can not contribute. If we consider the inte-
gral in (10.4.0.2), we note that we can bound φ(xi) above by a constant
on the domain of integration (which is bounded because the functions
F(‖xi − xi+1‖) are zero if ‖xi − xi+1‖ are large). The integrand is there-
fore bounded above in absolute value by

F(x1)

‖x1‖2
F(x2 − x1)

‖x2 − x1‖2 . . .
F(x− xn)

‖x− xn‖2 .

The integral of this integrand over the parameters x1, . . . , xn in R4 is ab-
solutely convergent, uniformly in x. The result of the integral is there-
fore a function of x with no singularities at x = 0, so that these diagrams
do not contribute to the OPE. �

10.4.1 A heat kernel approach

Let us remark on another way to perform this calculation, which can
be applied to many other field theories. The calculation we are per-
forming is independent of the parametrix. Instead of regularizing the
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Green’s function by writing it as F(x) ‖x‖−2, we can instead write it as
an integral of the heat kernel Kt from t = 0 to some L. This choice of
parametrix is the one used extensively in Costello (2011b).

If we use this parametrix, the integral (10.4.0.4) becomes

1
2

∫
x′∈R4

∫ L

t,s=0
Kt(0, x′)Ks(x′, x)dtdsd4x′.

The integral over x′ gives a convolution of the heat kernel Kt with the
heat kernel Ks. The result is Kt+s. Therefore we need to calculate

1
2

∫ L

t,s=0
Kt+s(0, x)dtds.

It is convenient to change the domain of integration in t and s. Instead
of asking that t, s live in the square [0, L]× [0, L], we can integrate over
the triangle where t, s ≥ 0 and t + s ≤ L. The difference between the
two integrals will be an integral over a domain where t + s ≥ L. As a
function of x, the heat kernel Kt+s(0, x) is smooth at x = 0 as long as
we bound t + s below. Therefore, up to a smooth function of x, we will
get the same answer if we integrate over the domain {t + s ≤ L}.

It is straightforward to verify

1
2

∫
t+s≤L

Kt+s(0, x)dt ds = 1
2

∫ L

u=0
uKu(0, x)du.

As

Ku(x) =
1

(4πu)2 e−‖x‖
2/4u,

we find

1
2

∫ L

0
uKu(x)du =

1
8π2

∫ ∞

‖x‖2/4L
t−1e−tdt

= − 1
8π2 Ei(−‖x‖2 /4L)

where Ei is a special function called the exponential integral, which has
an expansion

Ei(t) = γ + log |t|+ {terms continuous at t = 0}.

(Here γ is the Euler-Mascheroni constant.) We conclude that the result
of the integral (10.4.0.4) is − 1

4π2 log ‖x‖, up to non-singular terms in x.
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10.5 The operator product for holomorphic theories

It is often interesting to study translation-invariant theories on Rn for
which the action of certain translations is homotopically trivial. For in-
stance, in a topological theory, all translations act in a homotopically
trivial way. Something similar happens for a holomorphic theory on
R2n. In that case, half of the translations — those given by ∂zi in a set of
complex coordinates — act homotopically trivial.

We will focus on holomorphically translation-invariant theories on
Cn when n ≥ 2. In that case, at first sight, one would expect that the
OPE is trivial at the level of cohomology, by the following argument.

We use C̊n to denote Cn \ {0}, as in the notation D̊ from earlier.

By definition the operators ∂zi act homotopically trivially on the the-
ory, and so the OPE map

{−,−}OPE : H∗(Obscl(0))⊗ H∗(Obscl(0))

→
(

Cω(C̊n)/ '
)
⊗ H∗(Obscl(0))

actually takes values in holomorphic functions on C̊n modulo those func-
tions that extend across the origin. But Hartogs’ theorem tells us that all
holomorphic functions on C̊n extend to holomorphic functions on Cn,
so that the singular part of the OPE appears to be trivial.

We will find, however, that there is a non-trivial secondary operation
of cohomological degree 1− n that is built from the OPE and from the
homotopies that make the action of ∂zi homotopically trivial. This sec-
ondary operation is the analog, in the world of holomorphic theories, of
the degree 1− n Poisson bracket that exists on the cohomology of an En
algebra, and which appears as the bracket {−,−}OPE on the classical
point observables of a topological field theory.

To explain where this secondary structure comes from, we will need
to enhance our discussion of OPE to be compatible with Dolbeault com-
plexes, and so we will begin by recalling the role these complexes play
in holomorphic theories. Our main result in this section then appears
as Proposition 10.5.3.1, which characterizes the secondary operation.
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Finally, we discuss a simple holomorphic field theory on C2 that arises
as the holomorphic twist of the free chiral multiplet.

10.5.1 Recollections on holomorphic factorization algebras

Holomorphically translation-invariant factorization algebras were stud-
ied in Chapter I.5. There, we saw that a holomorphically translation-
invariant factorization algebra on Cn gives rise to a coalgebra over a
colored cooperad PDiscsn of polydiscs in Cn, whose definition we now
review. (Recall that a polydisc is an n-fold product of 1-dimensional
discs. We use polydiscs because they are Stein manifolds, so that their
Dolbeault cohomology is concentrated in degree 0.)

If z ∈ Cn, let

PDr(z) = {w ∈ Cn | |wi − zi| < r for 1 ≤ i ≤ n}

denote the polydisc of radius r around z. Let

PDiscsn(r1, . . . , rk | s) ⊂ (Cn)k

denote any configuration of points z1, . . . , zk ∈ Cn with the property
that the closures of the polydiscs PDri (zi) are disjoint and contained in
the polydisc PDs(0).

Given a holomorphically translation-invariant theory on Cn with fac-
torization algebra Obsq of quantum observables, the factorization prod-
uct extends to a cochain map

Obsq(PDr1)× · · · ×Obsq(PDrk )

→ Ω0,∗(PDiscsn(r1, . . . , rk | s), Obsq(PDs)),

where Obsq(PDr) denotes the value of Obsq on the polydisc of radius r
with any center.

Let us focus on the map when k = 2, the first polydisc PDr1 is cen-
tered at the origin, and the second is centered at some point z. Taking
the limit as the radii ri → 0, we find that there is a cochain map

Obsq(0)⊗Obsq(0)→ Ω0,∗(D̊s, Obsq(PDs))

that sends pairs of point observables to an observable on the punctured
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polydisc. This map is nearly an OPE, so we might hope that, working
up to elements of the Dolbeault complex that extend across the origin,
we will find an OPE operation roughly of the form

Obsq(0)⊗Obsq(0)→
(

Ω0,∗(D̊s)/ '
)
⊗Obsq(0).

There is a technical problem here, however. The relation ' addresses
whether a function f can be extended continuously across the origin.
But even if f is continuous at the origin, its derivative need not be con-
tinuous; in particular, ∂ f may not be continuous at the origin. Hence we
need to be more careful when we try to quotient Ω0,∗(D̊s) by the sub-
space of Dolbeault forms that extend continuously across the origin,
since the subspace may not be a subcomplex.

10.5.2 The equivalence relation ' for the Dolbeault complex

To solve this problem, we note that there was an arbitrary choice in-
volved in what we mean by “non-singular.” We decided that the non-
singular functions which we wanted to discard in the OPE were those
that extend across the origin as continuous functions. One can instead
make a weaker equivalence relation, where the non-singular functions
are those which extend across the origin as k-times differentiable func-
tions for some k > 0, i.e., Ck functions. With this weaker equivalence
relation the OPE expansion will contain more terms. For instance, with
the C1 equivalence relation, the function r log r will appear in the OPE,
as it is continuous but not C1 at r = 0.

Let

f '(k) g

indicate that two functions f , g ∈ Cω(U \ 0) differ by a function in
Ck(U), where U ⊂ Rn is an open subset containing the origin. In our
construction of the OPE, there was nothing special about our choice of
the C0 equivalence relation: we could have used the Ck equivalence re-
lation instead. Therefore, for any translation-invariant classical theory
on Rn, we have a Ck semi-classical OPE

{−,−}(k)OPE : Obscl(0)⊗Obscl(0)→
(

Cω(Rn \ 0)/ '(k)
)

satisfying all the properties listed in Proposition 10.3.1.2. This OPE is
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given by the same sum-over-bridges formula derived in Proposition 10.3.2.2,
except that the contribution of each bridge is now taken up to the addi-
tion of a Ck function instead of a C0 function.

We can use these Ck equivalence relations to produce a quotient of
the Dolbeault complex of C̊n, which is still a complex.

10.5.2.1 Definition. Let

Ω0,∗(C̊n)/ '(n−∗)

denote the quotient of the Dolbeault complex Ω0,∗(C̊n) where in each degree i,
we apply the equivalence relation '(n−i) to Ω0,i(C̊n).

In this definition, we are quotienting by a sub-complex because if we
have an Dolbeault form

α ∈ Ω0,i(C̊n)

that extends across the origin as a Cn−i Dolbeault form, then ∂α extends
across the origin as a Cn−i−1 Dolbeault form.

To understand the structure of the OPE using this refined notion of
equivalence, we need to understand the cohomology groups of this
complex, which are described by the next lemma.

10.5.2.2 Lemma. The cohomology groups

Hk
(

Ω0,∗(C̊n)/ '(n−∗)
)

. (10.5.2.1)

vanish unless k = n− 1.

Moreover, there is a pairing

C[z1, . . . , zn]⊗ Hn−1
(

Ω0,∗(C̊n)/ '(n−∗)
)
→ C

F(zi)⊗ α 7→
∫

S2n−1 F(zi) ∧ α dz1 . . . dzn

by integrating over the unit 2n− 1-sphere S2n−1 the wedge product of a form
α in Ω0,n−1(C̊n) with the (n, 0)-form F(zi)dz1 . . . dzn. The induced map

Hn−1
(

Ω0,∗(C̊n)/ '(n−∗)
)
↪→ (C[z1, . . . , zn])

∨

is an embedding.

Proof Throughout the proof, let Ω0,i
(n−i)(C

n) denote the Dolbeault forms
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the are smooth away from the origin and of class Cn−i at the origin. Let
Ω0,∗

(n−∗)(C
n) denote the complex built from these forms, with the Dol-

beault differential ∂.

There is a short exact sequence of cochain complexes

0→ Ω0,∗
(n−∗)(C

n)→ Ω0,∗(C̊n)→
(

Ω0,∗(Cn \ 0)/ '(n−∗)
)
→ 0.

The cohomology of the middle term Ω0,∗(C̊n) can be computed by an
easy Čech cohomology calculation associated to the cover of C̊n by the
n open sets obtained by removing a coordinate hyperplane from Cn.

One finds that it is the space Hol(Cn) of holomorphic functions on
Cn in degree 0 (recall Hartogs’ theorem), and it is zero in degrees not
equal to n− 1. In degree n− 1, the natural integration pairing∫

S2n−1
: Ω0,n−1(C̊n)⊗C[z1, . . . , zn]dz1 . . . dzn → C

gives an embedding

Hn−1
∂

(C̊n) ↪→ C[z1, . . . , zn]
∨.

To complete the proof of the lemma, we need to verify that the coho-
mology of Ω0,∗

(n−∗)(C
n) consists of holomorphic functions in degree 0.

In other words, we need to check that the inclusion map

Ω0,∗
(n−∗)(C

n) ↪→ Ω0,∗(Cn)

induces an isomorphism on cohomology. The fact that cohomology in
degree 0 of Ω0,∗

(n−∗)(C
n) consists of holomorphic functions follows from

elliptic regularity. To check that the higher cohomology vanishes, one
uses the usual proof of the ∂-Poincaré lemma applies, which applies
with the degree of regularity we are using.

�

10.5.3 The main result on holomorphic OPE

Now we can finally describe the structure of the semi-classical OPE of
a holomorphic theory.
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10.5.3.1 Proposition. For a holomorphically translation-invariant classical
field theory on Cn, the semi-classical OPE

{−,−}(n)OPE : Obscl(0)⊗Obscl(0)→
(

C∞(C̊n)/ '(n)
)
⊗Obscl(0)

extends to a cochain map

{−,−}∂
OPE : Obscl(0)⊗Obscl(0)→

(
Ω0,∗(C̊n)/ '(n−∗)

)
⊗Obscl(0).

When n = 1 and our theory is equivariant for rotation, recall that the
observables determine a vertex algebra (see Theorem I.5.3.3). In this
case, this semi-classical OPE determines a vertex Poisson algebra.

Proof We will follow the argument in section I.5.2. Since we start with
a holomorphically translation-invariant theory, for i = 1, . . . n, we have
commuting operators ηi acting on Obscl(0) that are of cohomological
degree −1 and that satisfy[

dObscl(0), ηi

]
= Dzi ,

where Dzi indicates the action of differentiation with respect to zi on Obscl(0).

Now consider the expression{
O, e−∑ ηidziO′

}
OPE
∈
(

Ω0,∗(C̊n)/ '(n−∗)
)
⊗Obscl(0).

which is the same formula used in Chapter I.5. We need to check that
this expression defines a cochain map. To do it, we will calculate the
failure of the differential dObscl(0) to satisfy the Leibniz rule for this op-
eration. For concision’s sake, let d be shorthand for dObscl(0). Then we
compute

d{O, e−∑ ηidziO′}OPE ={dO, e−∑ ηidziO′}OPE ± {O, de−∑ ηidziO′}OPE

={dO, e−∑ ηidziO′}OPE ± {O, e−∑ ηidzi dO′}OPE

∓ {O, e−∑ ηidzi dzjDzjO
′}OPE.

Using the fact that applying Dzi to O′(x) is the same as differentiating
with respect to the position x of the operator O′, we find that

d{O, e−∑ ηidziO′}OPE ={dO, e−∑ ηidziO′}OPE ± {O, e−∑ ηidzi dO′}OPE

∓∑ dzj∂zj{O, e−∑ ηidziO′}OPE
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so that

{dO, e−∑ ηidziO′}OPE ± {O, e−∑ ηidzi dO′}OPE =

d{O, e−∑ ηidziO′}OPE ±∑ dzj∂zj{O, e−∑ ηidziO′}OPE,

as desired. �

At the level of cohomology, the semi-classical OPE for holomorphi-
cally translation-invariant theories takes a particularly nice form. It is a
map

H∗(Obscl(0))⊗H∗(Obscl(0))→ H∗
(

Ω0,∗(C̊n)/ '(n−∗)
)
⊗H∗(Obscl(0)),

and we know some of the cohomology groups by Lemma 10.5.2.2. In
particular, we know that the Dolbeault cohomology classes appear-
ing in the OPE can be detected by integrating them over the 2n − 1-
sphere against polynomials in the coordinates zi. Hence the content of
the holomorphic OPE is encoded in a sequence of bracket operations

{−,−}k1 ...kn
OPE : H∗(Obscl(0))⊗ H∗(Obscl(0))→ H∗(Obscl(0))

defined by the formula

{O, O′}k1 ...kn
OPE =

n

∑
i=1

∫
S2n−1

{
O, η1 · · · η̂i · · · ηnO′

}
OPE zk1

1 · · · z
kn
n dz1 · · · d̂zi · · ·dzndnz.

This expression is given in terms of the ordinary OPE between the op-
erator O and the auxiliary operators η1 . . . η̂i . . . ηnO′ built from O′. This
collection of brackets is a systematic generalization to higher dimen-
sions of the Laurent (or mode) expansion of the OPE for vertex alge-
bras.

10.5.4 A remark on topological field theories

These results can be generalized to topological field theories in a straight-
forward way, and also to theories where some directions are topological
and others are holomorphic. Suppose we have a translation-invariant
theory on Rn ×Cm where all the translations on Rn act homotopically
trivial and where the anti-holomorphic translations ∂zi act homotopi-
cally trivial. We denote the homotopies trivializing these actions by ηa
and η′i where a runs from 1 to n and i from 1 to m, respectively.
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For any U ⊂ Rn ×Cm, consider the mixed de Rham/Dolbeault com-
plex that we denote A∗(U). This complex is the quotient of the full de
Rham complex Ω∗(U) by the differential ideal generated by dzi.

With the same proof as we just gave, one can show that the expres-
sion {

O, e−∑ ηadxa+η′i dziO′
}

OPE

defines a cochain map

Obscl(0)⊗Obscl(0)→
(
A∗((Rn ×Cm) \ {0})/ '(n+m−∗)

)
⊗Obscl(0).

For a topological field theory on Rn, the cohomology of Ω∗(Rn \
0)/ '(−∗) consists of C in degree n − 1. Thus, at the level of coho-
mology, the semi-classical OPE gives H∗(Obscl(0)) a bi-derivation of
degree 1− n, exactly as we would expect from the semi-classical limit
of an En algebra.

10.5.5 The holomorphic twist of the free N = 1 chiral
multiplet on R4

Many holomorphic theories arise as twists of supersymmetric theories.
In these examples, the auxiliary operators η1 · · · η̂i · · · ηnO′ are called
supersymmetric descendents of O′, because the operators ηi come from
certain supersymmetries of the physical theory. We will now quickly
demonstrate an example of how these techniques yield efficient tools
for computing OPE in an example.

Consider the field theory in complex dimension 2 whose fields are
α ∈ Ω0,∗(C2) and β ∈ Ω2,∗(C2)[1], equipped with the odd symplectic
pairing given by wedge and integration, so α and β pair as

∫
αβ. (This

theory is cotangent-type.) Here, as usual, we work in the BV formalism.
In the language of physics, the action functional is

S(α, β) =
∫

C2
β ∂α,

and this theory is the holomorphic twist of the free N = 1 chiral multi-
plet.
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We will refer to the graded components of Dolbeault degree i as αi

or βi. At the level of cohomology, the commutative algebra of classical
point observables is the freely generated by the observables

An,m(α, β) = ∂n
z1

∂m
z2

α0(0) and Bn,m(α, β) = ∂n
z1

∂m
z2

β0(0).

These are of cohomological degree 0 and 1 respectively.

The operators ηi, which are the homotopies trivializing the action of
∂zi , act on the fields by contracting with ∂zi . Applied to the observables
An,m, Bn,m, we get

ηi An,m(α, β) = ∂n
z1

∂m
z2

ι∂zi
α1(0) and ηiBn,m(α, β) = ∂n

z1
∂m

z2
ι∂zi

β1(0).

Thus, η1 An,m picks up the dz1 component of α1 ∈ Ω0,1(C2).

The propagator of the theory is the Green’s function for the Dolbeault
operator, which is

dz1dz2
z1dz2 − z2dz1

(|z1|2 + |z2|2)2

up to factors of π. We have the non-trivial OPEs

{A0,0, η1B0,0(z1, z2)}OPE =
−z2

(|z1|2 + |z2|2)2

and

{A0,0, η2B0,0(z1, z2)}OPE =
z1

(|z1|2 + |z2|2)2
.

The holomorphic OPE

{−,−}n,m
OPE : H∗(Obscl(0))⊗ H∗(Obscl(0))→ H∗(Obscl(0)).

satisfies

{A0,0, B0,0}n,m
OPE =

∫
S3

zn
1 zm

2
z1dz2 − z2dz1

(|z1|2 + |z2|2)2
dz1dz2

= Cδn=0δm=0

for some non-zero constant C. Thus, the holomorphic OPE between
these two operators is non-zero.

The holomorphic OPE between the operators An,m and Br,s are deter-
mined from those between A0,0 and B0,0 by the compatibility conditions
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between the OPE and differentiation described in proposition 10.3.1.2.
For instance, we have

{Ar,s, Ba,b}n,m
OPE = ∑

∫
S3

dzi{Ar,s(0, 0), ηiBa,b(z1, z2)}OPEzn
1 zm

2 dz1dz2.

Since Ba,b = Dz1 Ba−1,b and since

{O(0, 0), Dz1O′(z1, z2)}OPE = ∂z1{O(0, 0), O′(z1, z2)}OPE,

we find

∑
i

∫
S3
{Ar,s(0, 0), ηiBa,b(z1, z2)}OPE zn

1 zm
2 dzidz1dz2

= ∑
i

∫
S3

∂z1{Ar,s(0, 0), ηiBa−1,b(z1, z2)}OPE zn
1 zm

2 dz1dz2dzi.

Integrating by parts, we find that

{Ar,s, Ba,b}n,m
OPE = −n{Ar,s, Ba−1,b}n−1,m

OPE .

Similarly, the properties derived in proposition 10.3.1.2 tell us that

Dz1{Ar,s(0, 0), ηiBa,b(z1, z2)}OPE = {Dz1 Ar,s(0, 0), ηiBa,b(z1, z2)}OPE

+ {Ar,s(0, 0), Dz1 ηiBa,b(z1, z2)}OPE.

We deduce the identity

Dz1{Ar,s, Ba,b}n,m = {Ar+1,s, Ba,b}n,m
OPE + {Ar,s, Ba+1,b}n,m

OPE.

Since {Ar,s, Ba,b}n,m
OPE is a multiple of the identity operator in this free

theory, the left hand side of this equation is zero. These identities reduce
all the holomorphic OPEs to the computation of {A0,0, B0,0}n,m

OPE.

10.6 Quantum groups and higher-dimensional gauge
theories

Computations of the bracket {−,−}OPE can be done for many field
theories. In this section we will analyze an example related to quantum
groups that play an important role in recent work on geometric repre-
sentation theory, as we discuss below. This example is more involved
than any other we consider in this book, and it is included to illustrate
how the techniques apply in contemporary research.
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10.6.1 Higher-dimensional Chern-Simons theories and
quantum groups

According to the philosophy of Costello (2013b, 2017); Costello et al.
(2019), quantum groups are associated to Chern-Simons-type field the-
ories in various dimensions. Ordinary Chern-Simons theory is a topo-
logical theory defined in three dimensions, but it has cousins where
one or more of the real directions has been complexified. If only one
real direction is complexified (e.g., R3 is replaced by R2 × C), we find
the four-dimensional Chern-Simons theory studied in those references.
In fact, depending on whether the complexified direction is C, C×, or
an elliptic curve, the corresponding quantum groups are the Yangian,
the quantum loop group, and the elliptic quantum group, respectively.
These are one-variable quantum groups: they are quantizations of the
Lie algebra of maps from a Riemann surface to a Lie algebra.

If two real directions of ordinary Chern-Simons theory are complex-
ified (e.g., R3 is replaced by R×C2), one finds a 5-dimensional Chern-
Simons theory studied in Costello (n.d., 2017). The corresponding quan-
tum groups are two-variable quantum groups: they are quantizations
of the Lie algebra of polynomial maps from an affine algebraic surface
to a finite-dimensional Lie algebra. (To make the construction work at
the quantum level, the affine algebraic surface needs to be symplectic.
See Costello (n.d.) for details.)

In the literature, two-variable quantum groups have been constructed
where the affine algebraic surface is C2, C× ×C, or C× ×C×. The cor-
responding quantum groups are called the deformed double current
algebra Guay (2007); Guay and Yang (2017), the affine Yangian Maulik
and Okounkov (2019); Schiffmann and Vasserot (2013), and the quan-
tum toroidal algebra Hernandez (2009). These quantum groups play an
important role in recent work in algebraic geometry Maulik and Ok-
ounkov (2019); Schiffmann and Vasserot (2013), representation theory
Guay (2007); Guay and Yang (2017), and string theory Gaiotto and Oh
(2019). So far, a rigorous proof that these two-variable quantum groups
are those corresponding to 5-dimensional Chern-Simons theory is only
available in the case that the surface is C2, but it is expected to hold in
general.
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10.6.2 Five-dimensional Chern-Simons theory on R×C2

We will take the affine algebraic surface to be C2. The fields and the ac-
tion functional of the theory are defined in terms of a differential graded
associative algebra

A(R×C2) = Ω∗(R×C2)/〈dz1, dz2〉
= Ω∗(R)⊗̂Ω0,∗(C2).

On the first line, we have described the algebra as the quotient of forms
on R× C2 by the differential ideal generated by dz1 and dz2. Because
it is a differential ideal, the de Rham operator on Ω∗(R×C2) descends
to a differential on A, which we will call dA. Denoting the coordinate
on R by t, we write explicitly

dA = dt ∂t + dz1 ∂z1 + dz2 ∂z2 .

That is, dA is the sum of the de Rham operator on R with the Dolbeault
operator on C2.

The fundamental field of the theory is an element

α ∈ A(R×C2)⊗ glN [1].

The action functional is the Chern-Simons functional∫
R×C2

dz1, dz2 CS(α) =
∫

R×C2
dz1 dz2

(
1
2 Tr(α dAα) + 1

3 Tr(α3)
)

.

We are writing, as usual, the action functional in the BV formalism.

This theory is associated to the local dg Lie algebra A⊗ glN on R×
C2. The corresponding formal moduli problem is the moduli of GLN-
bundles on R× C2 with a holomorphic structure on C2, a connection
along R, and the compatibility that the parallel transport along R gives
an isomorphism of holomorphic bundles on C2. The dg Lie algebra has
a natural invariant pairing

〈ω⊗M, ω′ ⊗M′〉 = Tr(MM′)
∫

dz1, dz2 ∧ω ∧ω′

given by tracing over the matrix factor and integrating the forms wedged
with a holomorphic volume form on C2.

The first hint of the two-variable quantum groups in this field theory
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can be seen by taking its cohomology:

H∗(A(C2)⊗ glN) = Hol(C2)⊗ glN ,

where Hol(C2) denotes the space of holomorphic functions on C2. In
words, the cohomology is concentrated in degree 0, by the ∂-Poincaré
lemma, and it is the Lie algebra of holomorphic maps from C2 to glN .

Remark: In Costello (2017) it was important that we study a certain de-
formation of this theory, where the dg commutative algebraA(R×C2)
deforms into a non-commutative dg algebra. At the level of cohomol-
ogy, this deformation amounts to replacing the algebra Hol(C2) of holo-
morphic functions on C2 (i.e., the cohomology of A(R×C2)) by a de-
formation quantization using the Poisson tensor ∂z1 ∧ ∂z2 . The Moyal
product is a classic formula for this deformation quantization, and it
extends to deform the algebra structure on A(R×C2) as well. If c de-
notes the deformation parameter, the deformed product α ∗c β has the
form

αβ +
c
2

εij
∂

∂zi
α

∂

∂zj
β +

c2

22 · 2!
εi1 j1 εi2 j2

(
∂

∂zi1

∂

∂zi2
α

)(
∂

∂zj1

∂

∂zj2
β

)
+ · · ·

where εij is the alternating tensor and we have used the summation
convention.

It was essential to use the Moyal product in Costello (2017) because
there are potential obstructions to quantizing the undeformed 5-dimensional
Chern-Simons theory to all orders in h̄. These potential obstructions are
given by degree 1 cohomology classes in the complex of local function-
als. Certain symmetries of the theory guarantee, however, that these
obstructions can only appear at order h̄2 and higher. Since we are do-
ing a semi-classical analysis, i.e., working to order h̄ only, they will
not appear in our story and we can use the undeformed version of 5-
dimensional Chern-Simons theory. ♦

10.6.3 The main result

The goal of this section is to show a precise relationship with quantum
groups using the OPE technology we have developed in this chapter.

To state the main result, we need the concept of Koszul duality of dg
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associative algebras, a rather advanced topic for which we recommend
Polishchuk and Positselski (2005); Positselski (1993); Fløystad (2006);
Keller (2006) as starting points into the vast literature. In section 11.2.1
we discuss Koszul duality briefly, with an emphasis on the dg algebras
arising from a Lie algebra, which is the primary situation of interest
here.

In brief, the Koszul dual A! of a differential graded algebra A with an
augmentation ε : A→ C is

A! = RHomA(C, C),

where we view C as an A-module via the augmentation. (We empha-
size that the dual depends on the augmentation.) The product in A! is
by composition of homomorphisms. This dual algebra is well-defined
up to quasi-isomorphism, and one can provide explicit dg models, when
needed.

For example, the polynomial algebra C[x] of functions on the affine
line can be augmented by evaluating functions at the origin x = 0, and
the Koszul dual algebra is C[ε], where ε has degree one. (This example
generalizes to duality between symmetric and exterior algebras.) As a
more subtle example — and crucial for us here — the enveloping alge-
bra Ug of a Lie algebra g, with the canonical augmentation that annihi-
lates the ideal generated by g, has Koszul dual given by the Chevalley-
Eilenberg cochains C∗(g). The subtlety here is that we must treat C∗(g)
as a filtered dg algebra, with the filtration

FiC∗(g) = C≥i(g).

This setting is treated in detail in Costello (2013b). We use this fact in
the main result.

10.6.3.1 Proposition. The point observables of the theory associated to A⊗
glN on R×C2 satisfy:

(i) At the classical level, the point operators form a dg commutative algebra
quasi-isomorphic to C∗(glN [[z1, z2]]). The Koszul dual of this dg algebra is
U(glN [[z1, z2]]).

(ii) At the quantum level, modulo h̄2, the point operators form a dg algebra
quasi-isomorphic to a non-trivial deformation of C∗(glN [[z1, z2]]), where
the deformation is determined by an explicit Poisson bracket. The Koszul
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dual of this algebra of point operators is an explicit first-order deformation
of U(glN [[z1, z2]]) into a “quantum universal enveloping algebra.” The
form of this deformation is studied in Guay (2007); Costello (2017).

There are a few technical subtleties to bear in mind about our use of
Koszul duality. First, the factorization algebra associated to any quan-
tum or classical field theory comes equipped with a filtration, and it is
this filtration that we use. It corresponds, under the quasi-isomorphism
mentioned in the proposition, to the filtration

FiC∗(glN [[z1, z2]]) = C≥i(glN [[z1, z2]])

on C∗(glN [[z1, z2]]). The second point to bear in mind is that the observ-
ables have a unique augmentation (up to homotopy). This happens at
either the quantum or classical level, because H0 of the algebra of ob-
servables is simply C[[h̄]], and negative cohomology vanishes.

The remainder of this chapter provides proof of the proposition, but
we break it up over several subsections to develop the relevant ideas.

10.6.4 The algebra of classical point operators of
5-dimensional Chern-Simons theory

We are interested in point observables. Hence we need to consider a
nested sequence of open sets whose intersection is the origin, and we
need to determine the limit of the classical observables over this se-
quence.

We thus take an open subset in R × C2 of the form I × D, where
I is an interval in R and D is a polydisc in C2. The cohomology of
the fields A(I ×D) is Hol(D), the algebra of holomorphic functions on
D, and therefore the algebra of classical observables in I × D is quasi-
isomorphic to C∗(Hol(D)⊗ glN).

There is a canonical map on the fields

Hol(D)⊗ glN → glN [[z1, z2]]

given by taking Taylor series at the origin in D. Observe that if a func-
tional on Hol(D)⊗ glN only depends on the value of the fields and their
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derivatives at the origin, then the functional factors through this Tay-
lor expansion map. We conclude that the algebra of point observables
satisfies

Obscl(0) ' C∗(glN [[z1, z2]]).

It is important to note that we are taking here the continuous Lie algebra
cochains of the topological Lie algebra glN [[z1, z2]], so we now turn to
unpacking what that means.

Recall that the continuous linear dual of C[[z1, z2]] is C[∂z1 , ∂z2 ], as fol-
lows. Given a constant-coefficient differential operator D ∈ C[∂z1 , ∂z2 ],
there is a continuous linear functional LD on C[[z1, z2]] sending f (z1, z2)
to D f (0), the value of D f at the origin. That is, there is a map D 7→ Dδ0
sending such a differential operator D to a distribution with support at
the origin. This map is, in fact, an isomorphism. Hence, we see that the
classical point observables satisfy

C∗(glN [[z1, z2]]) = Sym∗(gl∨N ⊗C[∂z1 , ∂z2 ][−1])

as a graded vector space. We have shown the first item of Proposi-
tion 10.6.3.1.

10.6.5 The Poisson bracket and the OPE

In the connection between quantum groups and field theories, the quan-
tum group arises as the Koszul dual of the algebra of quantum point
observables. In our five-dimensional theory, the Koszul dual of the clas-
sical point observables C∗(glN [[z1, z2]]) is U(glN [[z1, z2]]). The quantum
group associated to the quantized theory will be a deformation of this
enveloping algebra as an associative algebra.

To identify this deformation, our strategy is to view the real direction
of our space C2×R as a kind of time coordinate and to treat our theory
as a mechanical system in this direction. By construction, the factoriza-
tion algebra for this theory is locally constant along R and holomorphic
along C2, both at the classical and quantum levels. Thanks to the local
constancy along R, the product of observables in this direction should
determine an associative algebra. In particular, the quantization of the
theory should deform this product.



250 Operator product expansions, with examples

More formally, let Obs denote the factorization algebra associated to
the theory we are studying (either at the quantum or classical level).
Let π : C2 ×R → R be the projection map. The factorization algebra
we want is almost π∗Obs. Due to analytical issues, however, it is more
convenient to consider the subalgebra πres

∗ Obs given by those observ-
ables that, order by order in h̄, are finite sums of eigenvectors for the
U(1)×U(1) action that rotates each coordinate of C2.

One can check that πres
∗ Obs is also a locally constant factorization al-

gebra on R. Therefore, it defines a homotopy associative algebra. Fur-
ther, for any interval I ⊂ R containing the origin, the inclusion

Obs(0) ↪→ πres
∗ Obs(I)

is a quasi-isomorphism. In this way, we equip the point observables
Obs(0) with a homotopy associative algebra structure, using the fac-
torization product of πres

∗ Obs on R.

We now compute this product explicitly using the techniques devel-
oped in this chapter. LetO1 andO2 be two point observables in Obs(0).
Consider the factorization product

O1(0) · O2(t) ∈ (πres
∗ Obs)(R) ' Obs(0)

for t ∈ R \ 0. This punctured line has two components, and in each
component, the product does not change under small variations of t
(up to cohomologically exact terms) because our factorization algebra
is locally constant on R. When t > 0, it is the product in our homotopy
associative algebra structure on Obs(0). When t < 0, it is the product in
the opposite algebra. Therefore, the commutator of the product satisfies

[O1,O2] = O1(0)O2(t)−O1(0)O2(−t)

for any t > 0.

This expression allows us to relate the operator product expansion in
the t-direction to the commutator. The factorization productO1(0)O2(t)
is locally constant as a function of t, up to exact terms, while the oper-
ator product expansion picks up the singular parts of this product. But
in this one-dimensional situation, singular parts becomes quite simple:
the space of singular functions on R \ {0} that are locally constant is
spanned by the step function Sign(t), which is 1 on R>0 and −1 on
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R<0. We thus conclude that the operator product expansion is

O1(0)O2(t) ' [O1,O2] Sign(t),

where as before ' indicates equality up to non-singular functions of t.

To first order in h̄, we then have two descriptions of the same situa-
tion. On the other hand, by the general theory of deformation quanti-
zation, the commutator bracket to first order in h̄ is given by a Poisson
bracket, which makes the classical point observables into a Poisson al-
gebra. On the one hand, by our work in this chapter, we know the OPE
modulo h̄ determines a bracket {O1(0),O2(t)}OPE. Hence we can con-
clude that

{O1(0),O2(t)}OPE = {O1,O2} Sign(t), (10.6.5.1)

which tells us that the OPE for the quantized theory determines the
Poisson bracket that contols the deformation quantization we want to
identify (i.e., the quantum group).

10.6.6 Computing the Poisson bracket

Our next goal is to compute the Poisson bracket {O1,O2} for two ele-
ments in

C∗(glN [[z1, z2]]) ' Obscl(0),

which we will read off the OPE bracket {−,−}OPE by equation (10.6.5.1).
It suffices to compute the bracket of linear observables, because the OPE
bracket is a derivation in each factor and so we can compute it for poly-
nomial observables by iterations of the Leibniz rule.

We have seen that the linear dual of glN [[z1, z2]] is glN [∂z1 , ∂z2 ]. Con-
cretely, a linear operator has the form

O(α) = Tr(M(Dα)(0))

for some N×N-matrix M and some constant-coefficient differential op-
erator D ∈ C[∂z1 , ∂z2 ]. Here α ∈ A(R×C2)⊗ glN [1] is the fundamental
field, and by (Dα)(0) we mean evaluation at the origin of the function
Dα in A0(R×C2)⊗ glN [1].

For convenience we introduce some useful notation to describe such
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O1(0) I I O2(x)

Figure 10.4 The unique bridge with two internal vertices that contributes
to our OPE calculation.

operators. Let {Eij} denote the standard linear basis for glN given by
the elementary matrices. (That is, Eij is zero in every entry except the
(i, j)th, where it is one.) Then, thanks to our description of linear oper-
ators above, we see that {Eij ∂l

z1
∂k

z2
} forms a linear basis for the linear

observables glN [∂z1 , ∂z2 ], since these span the matrix-valued, constant-
coefficient differential operators.

In this section we will not compute the OPE between arbitrary linear
observables, just a minimal collection that determines what we need
here. In fact, we will only compute the OPE between such linear opera-
tors where the differential operator D is the identity but where M is an
arbitrary matrix. If we replace glN by a simple Lie algebra such as slN ,
all OPEs are determined from this restricted class by certain algebraic
consistency conditions.

Before delving into the OPE computation, we record the remarkably
simple answer for the most basic such observables.

10.6.6.1 Lemma. The Poisson bracket on the classical point observables sat-
isfies

{Eij, Ekl} = (Eil∂z1)(Ekj∂z2)− (Eil∂z2)(Ekj∂z1), (10.6.6.1)

where on the left hand side Eij means the operator Eij ∂0
z1

∂0
z2

, which involves
no interesting differential operator.

This lemma follows from a general computation, which we now un-
dertake. According to Proposition 10.3.2.2, these OPEs are given by a
sum-over-bridges formula. In the theory at hand, for each n ≥ 0 there
is exactly one bridge with 2 + n vertices that contributes to the calcu-
lation. The bridge with n = 2 is illustrated in figure 10.4; this bridge
plays the most important role in our computation.

We could calculate the amplitude of each diagram contributing to the
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OPE by performing an integral, as we did in the scalar field case. In this
example, however, we will introduce a more efficient method. To com-
pute the amplitude of a diagram such as that in figure 10.4, we compose
operators acting on the space of fields A⊗ glN , instead of performing
integrals. (Note that the natural pairing on this space of fields lets us
turn an integral kernel into an operator and vice versa.) This operator
approach gives the same answer as the integrals, because the integral
expressions describe convolutions that compute the composition of op-
erators.

For instance, instead of viewing the propagator P(Φ) as an integral
kernel, we view it as the linear operator

d∗A4−1
Φ

on A(R×C2)⊗ glN . Here we have chosen the gauge-fixing operator

d∗A = 2∂
∗
C2 + d∗R

= ι∂t ∂t + 4ι∂z1
∂z1 + 4ι∂z2

∂z2

The operator4−1
Φ is given by convolution with the regularized Green’s

kernel defined by the parametrix Φ. (We give an explicit formula for
this kernel below, when it is needed.) By construction, 4−1

Φ is a two-
sided inverse — up to smoothing operators that depend on Φ — to the
Laplacian

4 = [dA, d∗A]

= ∂2
t + 4∂z1 ∂z1 + 4∂z2 ∂z2

= ∂2
t + ∑

i
(∂2

xi
+ ∂2

yi
),

where on the final line we expand zj = xj + iyj and hence obtain the
standard Euclidean Laplacian. (Recall that a smoothing operator is an
operator that sends an input distribution to a smooth output. Smooth-
ing operators are given by convolution with smooth kernels.)

Thus, each edge in the diagram gives the operator d∗A4
−1
Φ . Likewise,

at each interior vertex, its external leg takes as input a background field
α in A ⊗ glN [1]. Each interior vertex then gives the operator Ad α of
bracketing with α, which is linear on the Lie algebra A⊗ glN [1]. It re-
mains to describe the effect of the initial and final vertices.

We read the diagram from left to right. The initial vertex — the left-
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most vertex in the diagram in figure 10.4 — is associated to an opera-
tor that is a linear functional on A(R× C2) ⊗ glN . Via the pairing on
A(R × C2) ⊗ glN , this linear functional is an element of the distribu-
tional completion A(R×C2)⊗ glN of this space. We choose

O1(α) = Tr(M1 α(0))

for some M1 ∈ glN . The corresponding element of A(R×C2)⊗ glN is
δ0M1. (We have abused notation slightly by viewing the δ-function at
the origin as an element of A3

(R× C2) by removing dz1dz2 from the
usual δ-function, viewed as a distributional 5-form on R×C2.)

At the final vertex — the rightmost vertex in figure 10.4 — we place
our second operator

(O2(x)) (α) = Tr(M2 α(x)),

which we also view as a linear functional onA(R×C2)⊗ glN and sup-
ported at some point x ∈ C2 ×R. We are only interested in the case
where x = (0, 0, t) ∈ C2 ×R, so we view the operator as a function of t
from here on.

Composing these operators, we find that the amplitude for the dia-
gram with n internal vertices is

Tr
[

M2 d∗A4−1
Φ

(
(Ad α)d∗A4−1

Φ

)n
M1δ0

]
(t).

Here α ∈ A(R×C2)⊗ glN [1] is the field placed at the external legs, and
the trace is taken in the fundamental representation of glN . We read this
composition of operators from the right to left: we take M1δ0, apply the
operator (Ad α)d∗A4

−1
Φ n times, apply the operator M2d∗A4

−1
Φ , trace

over the glN indices, and finally evaluate at t.

At the level of cohomology, each operator arising in the diagram only
depends on the component of α in A0. We will therefore assume that α

has cohomological degree −1 and so lies in A0(R × C2) ⊗ glN . This
restriction greatly simplifies the problem, so that the only nontrivial
diagram has precisely 3 edges, and so 2 internal vertices. In other words
figure 10.4 is the only one that matters.

Justifying this claim that only this digram matters is the following
argument by cohomological degrees. Note that we must end up with
something in A0(R × C2), because otherwise the evaluation at t will
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be zero. Vertices do not change the degree because it is bracketing with
a degree 0 element α ∈ A0(R× C2)⊗ glN . Every edge of the diagram
involves one copy of the operator d∗A, which changes degree by 1. Fi-

nally, the δ-function δ0 is inA3
(R×C2). Thus we need exactly 3 edges,

as asserted.

We have thus found that the only non-trivial contribution to the one-
loop OPE comes from the expression{

Tr
(

M2d∗A4−1
Φ (Ad α)d∗A4−1

Φ (Ad α)d∗A4−1
Φ M1δ0

)}
(t). (10.6.6.2)

This quantity is a continuous function of α. Therefore we can assume
without loss of generality that α is a polynomial, by Weierstrass approx-
imation. At the level of cohomology, α only needs to be a polynomial in
z1, z2, not in z̄1, z̄2. Thus we can write α as a linear combination

α = ∑ fi Ni

for some matrices Ni and polynomial functions fi of z1 and z2. We can
now explicitly describe the OPE.

10.6.6.2 Lemma. Consider the operators

Oi(α) = Tr(Miα(0))

associated to N × N-matrices Mi. When the field α takes the form f i Ni for
fi functions on R × C2 and Ni matrices, the OPE of these operators is the
operator

{O1(0),O2(t)}OPE( f i Ni)

= (δt≥0− δt≤0)
1

8π
εkl(∂zk f i)(0)(∂zl f j)(0)Tr(M1(Ad Ni)(Ad Nj)M2),

where εkl is the alternating symbol, and we sum over repeated indices..

Lemma 10.6.6.1 is a quick consequence of this result. We note that we
absorbed the factors of π into the constant h̄ in that expression.

Proof Note that d∗A commutes with 4−1
Φ and that (d∗A)

2 = 0. This
property means that we can rewrite the quantity in the expression 10.6.6.2
as

Tr(M2 Ad(Ni)Ad(Nj)M1)
{

d∗A4−1
Φ [d∗A, fi]4−1

Φ [d∗A, f j]4−1
Φ δ0

}
(t).
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We have factored the OPE into a product of a Lie-theoretic factor Tr(M2 Ad(Ni)Ad(Nj)M1)
and an analytic factor that depends on the fi. Since the fi are holomor-
phic, the operator [d∗A, fi] becomes

[d∗A, fi] = 4(∂z1 fi)ι∂z1
+ 4(∂z2 fi), ι∂z2

where the operators ι∂zl
denote contraction with the vector field ∂zl .

These commute with4−1
Φ and so the analytic factor of the OPE simpli-

fies to

16 εkl

{
∂t4−1

Φ (∂zk fi)4−1
Φ (∂zl f j)4−1

Φ ι∂zk
ι∂zl

ι∂t δ
A
0

}
(t) (10.6.6.3)

where εkl is the alternating symbol.

In this expression, δA0 is the δ-function at the origin, viewed as a dis-
tributional element of the algebraA in degree 3. Once we apply the con-
traction ι∂zk

ι∂zl
ι∂t in formula (10.6.6.3), we replace δA0 by the δ-function

without any dependence on differential forms, which we denote δ0.

Thus, by stripping off the Lie algebra factor, we have reduced the
problem to one entirely about functions on R × C2. We now need to
compute

∂t4−1
Φ (∂z1 f )4−1

Φ (∂z2 g)4−1
Φ δ0 (10.6.6.4)

for two arbitrary functions f and g. To do this calculation we need to
describe the propagator explicitly.

The propagator for our gauge fixing and parametrix Φ is an element

P(Φ) ∈ glN ⊗ glN ⊗A(R×C2)⊗̂A(R×C2).

It is a tensor product of the quadratic Casimir cglN in glN ⊗ glN with an
integral kernel in A(R× C2)⊗̂A(R× C2). The Green’s kernel for the
scalar Laplacian on R×C2 is

1(
(t− t′)2 + ∑

∣∣zi − z′i
∣∣2)3/2 ,

up to factors of 2 and π. Our parametrix is this Green’s function mul-
tiplied by F(t− t′,

∣∣zi − z′i
∣∣), where F is a function on R3 that is 1 near
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the origin and 0 outside a ball of finite radius. Then

P(Φ) = cglN d∗A

 F(t− t′,
∣∣zi − z′i

∣∣)(
(t− t′)2 + ∑

∣∣zi − z′i
∣∣2)3/2 d(t− t′)d(z1 − z′1)d(z2 − z′2)


is the propagator for our theory.

We are interested in the function (10.6.6.4) up to non-singular terms.
We will show by dimensional analysis that this quantity is non-singular
unless ∂z1 f and ∂z2 g are constant.

Under the action of uniform scaling of R×C2, a holomorphic mono-
mial zm

1 zn
2 has weight m + n. Thus, the delta-function δ0 has weight −5,

and each derivative, such as ∂t, has weight −1. The operator 4−1 in-
creases weight by 2. The operator4−1

Φ does as well, up to non-singular
terms. That is, if ρ denotes the vector field corresponding to rescaling
R×C2, then

[ρ,4−1
Φ ]D = 24−1

Φ D + a smooth operator

for any distribution D. Thus, if we assume that the functions f , g are
homogeneous polynomials of weights k, l, then the function in (10.6.6.4)
has weight−5+ 6+ k+ l− 3, up to non-singular terms, with the 6 from
the three copies of4−1

Φ and the −3 from the three derivatives.

This function in (10.6.6.4) will be non-singular whenever k + l > 2.
Note that if k = 0 or l = 0, the function is zero because f , g are dif-
ferentiated in equation (10.6.6.4). In particular, the only way to get a
nontrivial singular OPE is if f = z1 and g = z2. This choice reduces
equation (10.6.6.4) to computing

∂t4−1
Φ 4

−1
Φ δ0.

To compute the square of4−1
Φ applied to δ0, we use the technique from

section 10.4.1, where we used the heat kernel to determine the OPE for
the scalar field.

If our parametrix is given by the heat kernel, then we have∫ L

s=0
sKs ' 4−1

Φ 4
−1
Φ δ0,

exactly as we found in the case of the scalar field. Letting r2 = t2 +
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|z1|2 + |z2|2, we have

Ks =
1

(4πs)3/2 e−r2/4s.

Since we are interested in evaluating the result at zi = 0, we find that
we need to compute the t-derivative of∫ L

s=0

(
1

(4π)3/2s1/2 e−t2/4s
)

dt.

This integral can be computed to be

1
8π3/2 |t|

(
π1/2 erf(t)− 1

)
+ smooth functions of t

where the error function erf(t) is defined by

erf(t) = 2π−1/2
∫ t

0
e−u2

du.

As |t| erf(t) has a continuous first derivative, it will not contribute to
our OPE. Hence

∂t4−1
Φ 4

−1
Φ δ0 ' (δt≥0 − δt≤0)

1
8π

,

which yields the analytic factor of the OPE. �

10.6.7 The first-order deformation of the Koszul dual algebra

We have now identified the Poisson bracket on C∗(glN [[z1, z2]]) ' Obscl(0)
arising from the first-order OPE. As we discussed earlier, this bracket
identifies the deformation quantization of these observables, and un-
der Koszul duality it will also identify the deformation quantization of
the algebra U(glN [[z1, z2]]), which is the Koszul dual to the algebra of
classical point operators of our 5-dimensional theory.

Let us explain how to calculate this first-order deformation explic-
itly. The generators Eijzk

1zl
2 of the algebra U(glN [[z1, z2]]) are linear dual

to the generators Eji∂
k
z1

∂l
z2

of the algebra C∗(glN [[z1, z2]]), up to a fac-
tor. By turning off the differential on C∗(glN [[z1, z2]]) and replacing
U(glN [[z1, z2]]) by the symmetric algebra Sym∗ glN [[z1, z2]], the Koszul
duality becomes the very simplest kind of Koszul duality: that between



10.6 Quantum groups and higher-dimensional gauge theories 259

an exterior algebra on a vector space V and the symmetric algebra
Sym(V∗) on its dual.

Let us recall how deformations of these symmetric and exterior al-
gebras transform under Koszul duality. If V is a vector space, then a
quadratic-coefficient Poisson bracket (i.e., a bi-vector field) on the al-
gebra Sym(V∗) is an element of ∧2V ⊗ Sym2 V∗. (We are not assum-
ing that this Poisson bracket satisfies the Jacobi identity.) This Poisson
bracket gives a first-order deformation of Sym(V∗), and so a first-order
deformation of its Koszul dual∧V. This first-order deformation is again
given by a quadratic-coefficient Poisson bracket on ∧V, now viewed as
an element of Sym2 V∗ ⊗∧2V.

The map on quadratic Poisson brackets induced by Koszul duality is
simply the isomorphism between Sym2 V∗ ⊗∧2V and ∧2V ⊗ Sym2 V∗.
All that happens is that the interpretation of the two tensor factors are
reversed. Let us see how this identification works in terms of a basis
on V. Let vi be a basis V and vi the dual basis of V∗. Suppose we have
an element π

ij
kl in Sym2 V∗ ⊗ ∧2V. It determines a Poisson bracket on

Sym(V∗) by the formula

{vi, vj} = π
ij
klv

kvl ,

and it gives a Poisson bracket on ∧V by the formula

{vi, vj} = πkl
ij vkvl ,

in which the role of upper and lower indices has been reversed.

This analysis allows us to understand the first-order deformation of
the associative algebra structure on U(glN [[z1, z2]]) because we have an
explicit formula in terms of a basis. By reading formula 10.6.6.1 back-
wards, we find

[Eijz1, Eklz2] = h̄EilEkj if i , l, j , k. (10.6.7.1)

This expression is part of a first-order deformation of U(glN [[z1, z2]])
into an associative algebra that is not a universal enveloping algebra.

Thus we have shown the second part of Proposition 10.6.3.1.

Remark: In fact, one can show that this first-order deformation is uniquely
determined by equation (10.6.7.1), together with the fact that it is GLN-
invariant and that the elements in gl1[[z1, z2]] remain central. The idea
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is that firstly, any deformation of the commutator of Eijz1 with Ejkz2
can be absorbed into a redefinition of Eikz1z2, and so is not relevant.
Secondly, the Lie algebra slN [[z1, z2]] is generated by elements that are
constant or linear along C2, i.e., by elements of slN and by elements
M z1, N z2 for M, N ∈ slN . ♦



PART THREE

A FACTORIZATION ENHANCEMENT OF
NOETHER’S THEOREM





11
Introduction to Noether’s theorems

Symmetries play a key role in field theory, just as actions of Lie groups
and algebras play a key role in mathematics. In field theory, the cen-
tral result is Noether’s theorem, which says, loosely speaking, that any
symmetry has an associated conserved quantity. For instance, in a one-
dimensional theory, invariance under time translation corresponds to
conservation of energy, which is described by the Hamiltonian func-
tion of the theory.

Our goal in this part of the book is to provide a refinement of Noether’s
theorem in the language of factorization algebras; there will be both
classical and quantum versions.

The basic approach is local over a manifold X. Given a field theory
on X, the symmetries will be encoded as a local Lie algebra L (or lo-
cal L∞ algebra) on X. From the local Lie algebra L, we can produce its
enveloping factorization algebra UL; associated to a central extension
of L, there is the twisted enveloping factorization algebra UαL. (The
enveloping factorization algebra of a local Lie algebra is discussed in
detail in Sect I.3.6.) Recall that L is a locally constant sheaf of Lie al-
gebras on the real line R, the enveloping factorization algebra encodes
the universal enveloping algebra of the Lie algebra given by the stalk
of L. Hence one should view the enveloping factorization algebra as a
natural generalization of the notion of universal enveloping algebra.

In the BV formalism, the quantum observables of a field theory form
a factorization algebra Obsq on X. Our formulation of Noether’s theo-
rem says that if a field theory on X has a local Lie algebra L of symme-
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tries, then there is a map of factorization algebras

UαL → Obsq

from the twisted enveloping factorization algebra of L to quantum ob-
servables, where α is a central extension determined by the compatibil-
ity of quantization with the symmetry.

At the classical level, the result has a similar flavor, but we replace
UαL by its associated graded with respect to a natural filtration. The
associated graded Gr UαL has the structure of a P0 algebra in factoriza-
tion algebra, and it can be interpreted as the universal P0 factorization
algebra containing L, which we denote by UP0L. Our formulation of
classical Noether’s theorem asserts that if L acts on a classical field the-
ory, we have a map of P0 factorization algebras

UP0
α (L)→ Obscl ,

where, again, a central extension might be required.

What these theorems tell us is that every symmetry — encoded by
a section of L— is represented by some observable of the field theory.
We identify this observable with the corresponding conserved current.

This formulation of Noether’s theorem encompasses many construc-
tions familiar in physics. For instance, in a chiral conformal field theory
on a Riemann surface Σ, the holomorphic vector fields provide a sym-
metry and so we can take

L = Ω0,∗(Σ, T1,0
Σ ).

This result then says that we obtain a factorization algebra map

ρ : Virc → Obsq

where Virc is the Virasoro factorization algebra obtained by taking the
enveloping factorization algebra with the central extension with level c.
As shown in Williams (2017), this factorization algebra recovers the
usual Virasoro vertex algebra, and hence the Noether theorem ensures
that we obtain the usual inner action of the Virasoro vertex algebra on
the vertex algebra arising from this chiral conformal field theory.

In this chapter, we will overview the key algebraic ideas that under-
pin these results and then give a precise statement of the theorems. Sub-
sequent chapters will give proofs of these factorization Noether the-
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orems, while also examining concrete examples and explaining how
more standard versions, such as Ward identities or the usual Noether
theorem, follow from our results.

11.1 Symmetries in the classical BV formalism

In the setting of Hamiltonian mechanics and symplectic geometry, the
discussion of symmetries is very clean. A compelling feature of the BV
formalism is that it rephrases the Lagrangian approach in a Hamilto-
nian style, as we will now see.

11.1.1 The ordinary symplectic version

Let’s begin by recalling the approach to symmetries in Hamiltonian me-
chanics. Let (X, ω) be a symplectic manifold. Then the natural symme-
tries are the symplectic vector fields SympVect(X), which is the sub Lie
algebra of smooth vector fields that preserve the symplectic form. Ex-
plicitly, we have

SympVect(X) = {Z ∈ Vect(X) | LZω = 0}.

Note that the Lie algebra of symplectomorphisms is precisely this Lie
algebra.

For g an ordinary Lie algebra, a Lie algebra map ρ : g→ SympVect(X)
encodes the idea that g is a symmetry of the mechanical system. But
such a map does not realize the symmetry as an observable of the sys-
tem. To do that, we need to produce a lift

O(X)

Ham
��

g

ρ̃
99

// SympVect(X)

where the vertical map sends a function f to its Hamiltonian vector
field { f ,−}.

The kernel of the map Ham is just the constant functions, and the
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cokernel is isomorphic to H1(X), since the isomorphism ω] : Vect(X) �
Ω1(X) identifies SympVect(X) with closed 1-forms and Hamiltonian
vector fields with exact 1-forms. Hence, there exists a lift ρ̃ only if the
composite g → coker(Ham) � H1(X) is trivial. If a lift exists, it is
unique up to a scalar. Even if the lift is obstructed, we can centrally
extend g to get a sequence of maps

C //

=

��

g̃ //

ρ̃

��

g

ρ

��
C // O(X) // SympVect(X)

In short, symmetries can be realized as observables, up to a central ex-
tension.

We can rephrase this situation fully in the setting of Poisson alge-
bras, which will help us articulate generalizations. Note that Sym(g)
is a Poisson algebra by extending the Lie bracket. For instance, given
x, y, z ∈ g, we have

{x, yz} = [x, y]z + [x, z]y

where concatenation like yz means the commutative product. Indeed,
Sym(g) is the enveloping Poisson algebra of g, as Sym is the left adjoint
to the forgetful functor from Poisson algebras to Lie algebras. Thus,
a Lie algebra map g → O(X) determines a map of Poisson algebras
Sym(g)→ O(X).

Remark: We have not specified here a Hamiltonian function H, and so
we have only discussed kinematics and not dynamics. Given H, the
natural symmetries are symplectic vector fields that commute with the
Hamiltonian vector field {H,−}. Thus we should look to give a map of
Lie algebras ρ̃ : g → O(X) such that {H, ρ̃(x)} = 0 for every x ∈ g. In
the BV setting, we replace H with the action functional S and asks for a
cochain map. ♦

11.1.2 The shifted symplectic version

A parallel story applies in the classical BV setting. Here X is a -1-symplectic
space and so the commutative dg algebra O(X) has a 1-shifted Pois-
son bracket. There is also a dg Lie algebra Vect(X) of derivations of
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O(X), and there is another dg Lie algebra SympVect(X) of derivations
that preserve the shifted symplectic structure. (One should take care to
give the correct derived definitions — as we will do later — but here
we assume this has been done and focus on the analogy with ordinary
symplectic geometry.) There is a dg Lie algebra map

Ham : O(X)[−1] → SympVect(X)
f 7→ { f ,−}

that produces the Hamiltonian vector field of a function.

We can now mimic the story of symmetries in ordinary symplec-
tic geometry. For g a dg Lie algebra, a dg Lie algebra map ρ : g →
SympVect(X) encodes the idea that g is a symmetry of the classical BV
theory. But such a map does not realize the symmetry as an observable.
To do that, we need to produce a lift

O(X)[−1]

Ham
��

g

ρ̃
99

// SympVect(X)

where the vertical map sends a function f to its Hamiltonian vector
field { f ,−}.

Again, the map Ham has kernel C[−1], with the shift arising from
the shift of O(X). (Note that the kernel is also the derived kernel here.)
Finding a lift ρ̃ is the same as splitting an exact sequence of the form

0→ C[−1]→ g̃→ g→ 0

of homotopy Lie algebras. Exact sequences like this are classified by
elements in the first Lie algebra cohomology group H1(g). If this coho-
mology class vanishes, then the set of ways of splitting the extension of
homotopy Lie algebras is a torsor for H0(g).

We remark that for any dg Lie algebra g, the commutative dg algebra
Sym(g[1]) obtains a natural shifted Poisson bracket by extending the
shifted Lie bracket. In fact, the functor Sym(−[1]) is left adjoint to the
“forgetful” functor from 1-shifted Poisson algebras to dg Lie algebras
(where one forgets the commutative product and shifts). Thus a dg Lie
algebra map g → O(X)[−1] determines a map Sym(g[1]) → O(X) of
1-shifted Poisson algebras.



268 Introduction to Noether’s theorems

Thus, the map g → C∞(X) is entirely analogous to the map that ap-
pears in our formulation of classical Noether’s theorem. Indeed, we de-
fined a field theory to be a sheaf of formal moduli problems with a −1-
shifted symplectic form. The P0 Poisson bracket on the observables of
a classical field theory is analogous to the Poisson bracket on observ-
ables in classical mechanics. Our formulation of Noether’s theorem can
be rephrased as saying that, after passing to a central extension, an ac-
tion of a sheaf of Lie algebras by symplectic symmetries on a sheaf of
formal moduli problems is Hamiltonian.

This similarity is more than just an analogy. After some non-trivial
work, one can show that our formulation of Noether’s theorem, when
applied to classical mechanics, yields the statement discussed above
about actions of a Lie algebra on a symplectic manifold. The key result
one needs in order to translate is a result of Safronov (2018) and Nick
Rozenblyum.

Observables of classical mechanics form a locally constant P0 factor-
ization algebra on the real line, and so encode an E1 algebra in P0 al-
gebras, by a theorem of Lurie discussed in Section I.6.4. Safronov and
Rozenblyum show that E1 algebras in P0 algebras are the same as P1,
that is ordinary Poisson, algebras. This identification allows us to trans-
late the shifted Poisson bracket on the factorization algebra on R of
observable of classical mechanics into the ordinary unshifted Poisson
bracket that is more familiar in classical mechanics, and to translate our
formulation of Noether’s theorem into the statement about Lie algebra
actions on symplectic manifolds discussed above.

11.1.3 A field theory version

We have just seen that symmetries in shifted symplectic geometry work
much as they do in ordinary symplectic geometry, but the extensions
and obstructions are shifted. This bit of algebra must now be integrated
into the context of field theory. In particular, we want to enforce locality,
so that the Lie algebra acts locally on the spacetime manifold.
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Defining symmetries

Let us unravel this situation in more explicit terms. Suppose we have a
classical BV theory on a manifold M, whose fields are E and whose
action functional is S. Then Obscl = (O(E ), {S,−}) would seem to
play the role of O(X) above. Likewise, there is a dg Lie algebra Vect
of derivations of Obscl , and a subalgebra SympVect of derivations pre-
serving the shifted symplectic pairing.

To enforce locality, however, we work with certain subcomplexes con-
sisting functions or derivations that are local in nature, i.e., constructed
out of polydifferential operators. We will start by discussing the local
version of the dg Lie algebra of symplectic vector fields. This is the
dg Lie algebra Oloc[−1] of (shifted by one) local functionals, defined
in Chapter 3.5.1. It is important to bear in mind that local functionals
are taken up to the addition of an additive constant. This is why they
should be thought of as the analog in our context of symplectic vector
fields. Reintroducing the additive constant will give rise to the exact
sequence relating Hamiltonian and symplectic vector fields.

Note that the dg Lie algebra Oloc[−1] controls the symmetries and
deformations of a classical field theory, just as the dg Lie algebra of
symplectic vector fields controls the symmetries and deformations of
a shifted symplectic manifold. Note also that the BV bracket {−,−} is
well-defined on Oloc, so we avoid an analytical issue about the shifted
Poisson structure on O(E ).

11.1.3.1 Definition. A dg Lie algebra g acts by local symmetries on the
classical BV theory if there is a map of dg Lie algebras ρ : g→ Oloc[−1].

Here is a simple example. Suppose we have a free scalar field theory
on a manifold M, with n fields φi ∈ C∞(M). In the BV formalism, we
also introduce n anti-fields ψi ∈ Ωd(M), where d is the dimension of
M. The odd symplectic pairing is

∫
φiψi, and the action functional is∫

dφi ∧ ∗dφi. In both formulae we use the summation convention.

This theory is acted on by the Lie algebra so(n). To describe the action
in the sense of 11.1.3.1 we need to construct, for every anti-symmetric
matrix B ∈ so(n), a local functional of cohomological degree 1. We re-
quire the BV bracket of these local functionals to reproduce the com-



270 Introduction to Noether’s theorems

mutator in so(n). The desired local functionals are simply

SB = ∑ Bijψiφj.

One can compute easily that {SB, SC} = S[B,C] for matrices B, C ∈ so(n).

From global to local symmetries

So far we have kept g as just a dg Lie algebra, but it is natural to consider
instead a local Lie algebra on M. This step constitutes a generalization,
since we can always replace a dg Lie algebra g by the local Lie algebra
Ω∗M ⊗ g. This replacement does nothing on small opens, in the sense
that the Poincaré lemma ensures

g
'−→ Ω∗(D)⊗ g

for any disk D, but it allows us to use differential-geometric or field-
theoretic techniques, which makes computations easier, and has inter-
esting global consequences on manifolds with interesting topology.

Moreover, once we are working in this totally local setting, it is possi-
ble to talk about maps of Lie algebras that are local on M and hence to
discuss maps of factorization algebras. We pursue this line of thought
throughout our discussion of the factorization Noether theorems.

11.2 Koszul duality and symmetries via the classical
master equation

Throughout this book we work in a perturbative setting, which gives
access to several useful algebraic tools. A running theme of this book
has been the utility of phrasing constructions both in terms of dg Lie
and commutative algebras, and we lean heavily into this theme in de-
veloping the Noether theorems. The key issue here is to have several
ways to describe or encode a map of Lie algebras.
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11.2.1 Koszul duality

Given that we use homotopical algebra in the BV formalism, it is nat-
ural to use a more flexible, homotopical version of map between Lie
algebras. Recall that a homotopy-coherent map of dg Lie algebras or
L∞ algebras

ρ : g h

is in fact a map of coaugmented dg cocommutative coalgebras

ρ : C∗g→ C∗h,

which can also be described by the dual map of augmented dg commu-
tative algebras

ρ∨ : C∗h→ C∗g.

Such a map encodes the idea of a map that does not respect the bracket
or Jacobi relation on the nose, but only up to exact terms. See Ap-
pendix A.1 for further discussion.

Remark: This notion of a homotopy-coherent map encompasses, of course,
the usual, stricter notion, and it hence provides added flexibility and
examples. Thus, in practice we modify Definition 11.1.3.1 by replacing
a strict map of dg Lie algebras everywhere by a homotopy-coherent
map. This generalization becomes particularly useful in the quantum
setting. ♦

There is yet another way to describe such a map ρ : g  h. Because
C∗h is semifree — i.e., the underlying graded-commutative algebra is a
symmetric algebra — the map ρ∨ is determined by where it sends the
generators

h
∨[−1] = Sym1(h∨[−1]) ⊂ Ŝym(h∨[−1]) = C]

h.

The generators must land in the augmentation ideal C∗red(g) ⊂ C∗g to
ensure that the map of algebras respects the augmentations. Hence ρ∨

is encoded by a degree zero element

Aρ ∈ Hom(h∨[−1], C∗red(g)) � h[1]⊗ C∗red(g),

which is conventionally viewed as a degree one element of h⊗ C∗red(g).
The condition that ρ∨ is a map of dg commutative algebras is encoded
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by the Maurer-Cartan equation

dAρ +
1
2
[Aρ, Aρ] = 0,

where the differential d and bracket [−,−] mean those on the dg Lie
algebra h⊗ C∗red(g). (It is a straightforward but illuminating exercise to
verify that this equation does indeed correspond to giving a map of dg
algebras.)

Remark: The identification of (homotopy-coherent) maps of Lie algebras
with maps of augmented commutative algebras is a standard and cen-
tral example of Koszul duality. Loosely speaking, this duality means
that one can often translate between Lie algebras and commutative al-
gebras, although one obtains a perfect translation, such as an equiva-
lence of categories, only under restrictive hypotheses. We use this trans-
lation mechanism throughout the book but do not rely on more subtle
aspects of Koszul duality. There should be important applications of
this notion to field theory and factorization algebras. ♦

11.2.2 Rephrasing classical BV symmetries

In our primary context, the -1-symplectic space X we work with is a
formal stack, and so it is encoded by a dg Lie algebra or L∞ algebraM
with an invariant pairing. We assume here thatM is finite-dimensional:
essentially we are studying quantum field theory on a point. Later we
will generalize this analysis to the case whenM is a local L∞ algebra
on some space.

The 1-shifted Poisson algebra of function onM is

O(X) = C∗M,

and we will freely refer to X as BM. The symplectic vector fields are all
Hamiltonian here, and so we have

SympVect(X) = C∗red(M)[−1],

where we have identified the reduced Chevalley-Eilenberg cochains
with the quotient of O(X) by the constants.

Giving a homotopy-coherent map of Lie algebras

ρ : g SympVect(X)
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is thus equivalent to solving the Maurer-Cartan equation in the dg Lie
algebra

C∗red(M)[−1]⊗ C∗red(g).

In other words, we look for a degree one element A ∈ C∗red(M)[−1]⊗
C∗red(g) such that

dA +
1
2
{A, A} = 0, (†)

where {−,−} denotes the shifted Poisson (or BV) bracket on C∗red(M)
and d denotes the differential determined by the differentials on C∗red(M)
and C∗red(g) under tensor product.

This equation for A is, in essence, a version of the classical master
equation. To be precise, consider the 1-shifted Poisson algebra

C∗(M)⊗ C∗red(g),

where the bracket is simply the Poisson bracket on C∗M extended to
be C∗red(g)-linear. Note that by construction, the subcomplex C∗red(g) ↪→
C∗M⊗ C∗red(g) is Poisson-central and hence determines an ideal in the
sense of Lie algebras. In consequence, the quotient

(C∗M[−1]⊗ C∗red(g))/C∗red(g)[−1]

inherits a dg Lie algebra structure. It is straightforward to check that
the inclusion C∗redM ↪→ C∗M determines an isomorphism

C∗red(M)[−1]⊗ C∗red(g)
�−→ (C∗M[−1]⊗ C∗red(g))/C∗red(g)[−1]

of dg Lie algebras.

Under this identification, our Maurer-Cartan equation (†) amounts
to asking for a degree zero element B in the Poisson algebra that satis-
fies the classical master equation modulo constants in the base ring: that
is, we want dB + 1

2{B, B} to live in the constants C∗red(g) ⊂ C∗M⊗
C∗red(g), i.e.,

dB +
1
2
{B, B} ∈ C∗red(g).

Equivalently, we want dB + 1
2{B, B} to vanish in the quotient space

(C∗M⊗ C∗red(g))/C∗red(g). The desired element A is simply the image
of such a solution B in C∗red(M)⊗ C∗red(g).
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Given the central importance of this dg Lie algebra in classifying
symmetries, we introduce some notation.

11.2.2.1 Definition. Let BM be a -1-shifted symplectic formal derived stack,
whereM is an L∞ algebra. For g an L∞ algebra, let

Act(g,M) = (C∗M[−1]⊗ C∗red(g)) /C∗red(g)[−1]

denote the dg Lie algebra whose Maurer-Cartan solutions encode homotopy-
coherent actions of g on BM as symplectic symmetries.

Equivariant classical observables

This description of a g-action on a formal shifted symplectic manifold
is the one most convenient for the BV formalism. One of its compelling
features is that it reduces the question of exhibiting a map to a familiar
challenge: solving a master equation. We can thus rephrase the chal-
lenge of exhibiting g as a symmetries of a classical BV theory as follows.

Suppose BM is a -1-symplectic formal stack, described by an L∞ al-
gebraMwith -3-shifted invariant pairing. That means there is a degree
zero element S in the graded-commutative algebra

Ored(M[1]) = Ŝym
>0

(M∨[−1])

such that {S, S} = 0. Note that we are solving here the classical master
equation modulo constants, which here is C since that is the base ring.

To exhibit g as symmetries of this classical BV theory is to find a
g-equivariant solution to the classical master equation. Explicitly, we
mean that working over the base ring C∗(g) = O(Bg), we find a degree
zero element Seq in the graded-commutative algebra

Ored(M[1])⊗O(Bg)

such that

• dgSeq + 1
2{Seq, Seq} = 0 where dg is the Chevalley-Eilenberg differen-

tial on C∗(g) = O(Bg).
• Seq agrees with the original solution S when reduced along the aug-

mentation C∗g→ C (geometrically, this correspond to specializing to
the base point of Bg).
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In homotopy theory, to make something G-equivariant is to describe
it in families over the classifying space BG. Hence, we view Seq as en-
coding a g-equivariant classical BV theory, since working over the base
ring C∗g amounts to providing a family of BV theories over Bg.

The differential dg+ {Seq,−}makes O(M[1])⊗O(g[1]) into a semifree
commutative dga (which is also augmented). Therefore it corresponds
to an L∞ structure on the graded vector spaceM⊕ g. By assumption,
the natural map O(M[1])⊗O(g[1]) → O(M[1]) is a map of differen-
tial graded algebras, where O(M[1]) is identified with C∗(M). It fol-
lows that the L∞ structure onM⊕ g is such that there is a short exact
sequence of L∞ algebras

0→M→M⊕ g→ g.

Therefore the L∞ structure onM⊕ g is a semi-direct product L∞ alge-
bra, which we can write gnM.

We call the total complex C∗(gnM) = O(B(gnM)[1]) the total
complex O(gnM) the equivariant classical observables.

Inner actions and the classical master equation

The notion of an inner action has a natural articulation along these lines
as well. Since C is Poisson-central, the constant functions form a Lie
ideal inside C∗(M)[−1] ⊗ C∗(g), so that the quotient C∗(M)[−1] ⊗
C∗(g)/C is a dg Lie algebra. There is a canonical isomorphism C∗red(g⊕
M) → C∗(M) ⊗ C∗(g)/C, along which we transfer the (shifted) Lie
bracket.

To ask for an inner action is to ask for a solution Sin to the classical
master equation in

Ored(M[1]⊕ g[1]) = Ŝym
>0

(M∨[−1]⊕ g∨[−1])

such that {Sin, Sin} = 0 modulo constants, here C. This equation means
that Sin encodes a homotopy-coherent map of Lie algebras g C∗(M)[−1],
rather than to C∗red(M)[1]. Given its importance, we introduce some
convenient notation.

11.2.2.2 Definition. Let BM be a -1-shifted symplectic formal derived stack,
whereM is an L∞ algebra with a −3 shifted invariant pairing. For g an L∞
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algebra, let

InnerAct(g,M) = (C∗(M)[−1]⊗ C∗(g)) /C

denote the dg Lie algebra whose Maurer-Cartan solutions encode homotopy-
coherent actions of g on BM as Hamiltonian symmetries.

Note that by construction, there is a short exact sequence of dg Lie
algebras

C∗red(g)→ InnerAct(g,M)→ Act(g,M),

where C∗red(g) is central in InnerAct(g,M). Thus, if we are given an
action Seq, specified by a solution to the Maurer-Cartan equation in
Act(g,M), then the obstruction to lifting it to an inner action Sin lives in
C∗red(g). Indeed, by hypothesis, we know that Seq satisfies the classical
master equation modulo C∗red(g) and so the failure to satisfy the classi-
cal master equation modulo C must live in C∗red(g). In other words, the
obstruction {Seq, Seq} is a degree one cocycle in C∗red(g).

Geometrically, reduced functions Ored(Bg) = C∗red(g) can be identi-
fied with closed 1-forms Ω1

cl(Bg), so this anomaly in H1(Bg, Ω1
cl) can be

viewed as a being the first Chern class of a line bundle.

11.2.3 Noether’s theorem as a map of P0 algebras

We have seen that if we have a g-action on a−1-shifted formal sympec-
tic stack X = BM, then there is a shifted central extension ĝ and a map
of homotopy Lie algebras ĝ→ O(X). In this section we will see how to
extend this to a map from a P0 algebra built from ĝ. This formulation
will generalize well to the quantum setting, and to the factorization al-
gebra setting, which is our ultimate goal.

There is a forgetful functor from P0 algebras to Lie algebras. This
functor has a left adjoint, which is the universal P0 algebra receiving
a map from a given Lie algebra.

11.2.3.1 Definition. The enveloping P0 algebra of a dg Lie algebra g is

UP0(g) = Sym∗(g[1])
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the free graded commutative algebra with differential given by the derivation

d(xy) = dg(x)y± x dg(y).

It has a shifted Poisson structure characterized by the fact that when restricted
to the generators g[1], it is a shift of the Lie bracket on g.

For formal reasons, there is a version of this construction which takes
a homotopy Lie algebra to a homotopy P0 algebra, but we will not dwell
on this generalization.

More generally, suppose that we have a class in α ∈ H1(C∗red(g)),
determining a central extension

0→ C[−1] · c→ ĝ→ g.

Then the central element c ∈ ĝ[1] lifts to a Poisson central element c in
UP0(ĝ) = Sym∗(ĝ[1]). We can form the quotient

UP0
α (g) = UP0(ĝ)/ (c = 1)

determined by setting the central element c to 1. This quotient inherits
a P0 structure, because c is Poisson central.

This quotient UP0
α (g) is called the twisted enveloping P0 algebra associ-

ated to g and the class α ∈ H1(C∗red(g)).

In this language, Noether’s theorem in the classical BV formalism has
the following formulation.

11.2.3.2 Lemma. Suppose we have a g-action on a −1-shifted formal sym-
plectic stack X = BM, and let α ∈ H1(C∗(g)) denote the obstruction to
making this an inner action.

There is then a canonical map of P0 algebras

UP0
α (g)→ O(X) (11.2.3.1)

which encodes the action.

Proof This result is easily proved. By definition, we have a map of ho-
motopy Lie algebras from g → O(X)red[−1]. This map extends to a
homomorphism from ĝ → O(X)[−1], where ĝ is the central extension
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pulled back from the central extension

0→ C[−1]→ O(X)[−1]→ O(X)red[−1].

By the universal property of an enveloping P0 algebra, we find a homo-
morphism from UP0(ĝ)→ O(X) of P0 algebras, which sends the central
element in ĝ[1] to 1 ∈ O(X). Hence this homomorphism descends to a
map from the twisted enveloping P0 algebra UP0

α (g). �

11.3 Symmetries in the quantum BV formalism

As in the classical setting, we begin by discussing the algebraic story
before bringing in field theory.

11.3.1 The algebraic essentials

Let X be a -1-symplectic space so that O(X) is a 1-shifted Poisson al-
gebra. Let O(X)q denote some BD quantization, so that the underlying
graded algebra is O(X)[[h̄]] but the differential has the form dO + h̄ dq.
There are two distinct questions that interest us here:

• Given an action of g on X, does it admit a lift to an action on the
quantization O(X)q?
• Given an action of g on the quantization O(X)q, does it admit a lift to

an inner action?

The tools used to answer each question are similar to those used in the
classical setting. In particular, we will use the notion of a g-equivariant
solution to the quantum master equation to encode and analyze sym-
metries of a quantum BV theory.

The equivariant quantum master equation

Let us now analyze symmetries in terms of equivariant solutions to the
quantum master equation. As in the classical setting, we will restrict
attention to the setting of formal stacks and use Koszul duality.
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We now let X = BM so that O(X) = C∗M. We suppose that we
have fixed a BD quantization (C∗M)q of C∗M by deforming the dif-
ferential {S,−} to {S,−}+ h̄ dq. Then, O(X)q is a dg Lie algebra, and
the constant functions C[[h̄]] are a Lie ideal. Given a Lie algebra (or ho-
motopy Lie algebra) g, we say that a g-action at the quantum level is a
map of homotopy Lie algebras

ρq : g→ O(X)q/C[[h̄]].

This is just the obvious quantum version of the notion of classical g-
action.

As in our analysis of the classical version, such a g-action is the same
as a solution of the Maurer-Cartan equation in the dg Lie algebra C∗reg(g)⊗C

O(X)
q
red (where we use the notation O(X)

q
red for the quotient of O(X)q

by C[[h̄]]). Again, following our classical analysis, such a solution to the
Maurer-Cartan equation is the same as an element

Seq ∈ C∗(g)⊗O(X)
q
red

with the following properties:

• Seq satisfies the quantum master equation

dgSeq + h̄4Seq + 1
2{S

eq, Seq} = 0.

Here dg indicates the Chevalley-Eilenberg differential on C∗(g), and
4 is the BV Laplacian.

• When reduced modulo the maximal ideal in C∗(g), Seq becomes the
original solution S ∈ O(X)

q
red to the quantum master equation.

As in the classical setting, we can also give a definition of an inner
action of a Lie algebra on a BV theory. Given a homotopy Lie algebra
g, and a BD algebra O(X)q quantizing a formal −1-shifted symplectic
stack X = BM, then an inner action of g is by definition a map of
homotopy Lie algebras

g→ O(X)q.

This is the same as a solution to the Maurer-Cartan equation in C∗(g)⊗C

O(X)q. It is also equivalent to given a functional

Sinner ∈
(
C∗(g)⊗C O(X)q

)
/C[[h̄]]

with the following properties:
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• Sinner satisfies the quantum master equation

dgSinner + h̄4Sinner + 1
2{S

inner, Sinner} = 0.

• Sinner It reduces modulo the maximal ideal of C∗(g) to the original
solution S ∈ O(X)q to the quantum master equation that defines or
BV theory.

Just as in the classical case, there are dg Lie algebras whose Maurer-
Cartan solutions describe actions and inner actions.

11.3.1.1 Definition. Let X = BM be a −1-shifted formal dg stack, where
M is a homotopy Lie algebra with an invariant pairing of degree −3. Suppose
we have chosen a quantization of this BV theory, given by a solution to the
quantum master equation S ∈ O(M[1])q reducing modulo h̄ to the solution
to the classical master equation encoded by the Lie algebra structure onM.

Define a dg Lie algebra

Actq(g,M) = (Oq(M[1])[−1]⊗ C∗red(g)) /C∗red(g)[[h̄]][−1]

with differential dg + {S,−} + h̄4. Then a solution to the Maurer-Cartan
equation on Actq(g,M) is the same as a g-action on the BV theory.

Similarly, define

InnerActq(g,M) (Oq(M[1])[−1]⊗ C∗red(g)) /C[[h̄]][−1]

A solution to the Maurer-Cartan equation in this is an inner action of g on the
BV theory given by the quantization ofM.

Note that there is a short exact sequence

0→ C∗red(g)[[h̄]][−1]→ InnerActq(g,M)→ Actq(g,M)→ 0.

This tells us that the obstruction to lifting an inner action to an ac-
tion is an element of H1(C∗red(g))[[h̄]]. As in the classical case, this im-
plies that an action of g will lift to an inner action once we replace g
by a shifted central extension determined by the obstruction class in
H1(C∗red(g))[[h̄]].

We can also ask whether an action of g at the classical level lifts to an
action at the quantum level, or similarly for an inner action. Actq(g,M)
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is a dg Lie algebra in the category of free C[[h̄]]-modules, which re-
duces modulo h̄ to Act(g,M). The problem of lifting a Maurer-Cartan
solution in Actq(g,M) defined modulo h̄n to one defined modulo h̄n+1

is given by a cohomology class in H2(Act(g,M)). We can thus under-
stand, by obstruction theory, whether an action at the classical level lifts
to one at the quantum level. A simlar remark holds for lifting inner ac-
tions to the quantum level.

A quantized Noether’s map

Now let us analyze the quantum version of lemma 11.2.3.2. This lemma
told us that a g-action X = BM on a classical field theory led to a map
from a twisted enveloping P0 algebra of g to the P0 algebra O(X). At
the quantum level, we need to replace the enveloping P0 algebra of g
by the enveloping BD algebra, which we now introduce.

We claim that the Chevalley-Eilenberg chains C∗g is a natural BD
quantization of the enveloping P0 algebra Sym(g[1]), since the Chevalley-
Eilenberg differential encodes the Lie bracket by

dCE(xy) = dg(x)y± x dg(y) + [x, y].

More accurately, to keep track of the h̄-dependency in BD algebras, we
introduce a kind of Rees construction.

11.3.1.2 Definition. The enveloping BD algebra of a dg Lie algebra g is
UBD(g), the graded-cocommutative coalgebra in C[[h̄]]-modules

Sym(g[1])[[h̄]] � SymC[[h̄]](g[[h̄]][1])

with differential given by the coderivation

d(xy) = dg(x)y± x dg(y) + h̄[x, y].

We occasionally use the notation UBD(g), and hope that it will not cause con-
fusion.

It is straightforward to verify that UBD(g) is a BD algebra. Moreover,
as one can check by direct computation, this functor UBD determines
the left adjoint to the forgetful functor from BD algebras to Lie algebras.
(One can clearly use L∞ algebras as well.) This definition also makes
sense when g is a dg Lie algebra in the category of free modules over
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C[[h̄]]. In this more general context, the symmetric algebra Sym∗ g[1] is
taken over C[[h̄]] and the formula for the BD structure is unchanged.

More generally, suppose we have a h̄-linear central extension

0→ C[[h̄]][−1]→ ĝh̄ → g[[h̄]]→ 0

determined by a cohomology class α ∈ H1(C∗red(g))[[h̄]]. Then we can
make the following definition.

11.3.1.3 Definition. The α-twisted enveloping BD algebra UBD
α (g) is the

quotient of UBD(ĝ) by the relation setting the central element equal to 1.

We now see that the map of quantum symmetries ρq determines
canonically a map of BD algebras

ρq : UBD(g)→ O(X)q.

11.3.1.4 Lemma. Suppose we have a g-action on a BV theory quantizing a
formal −1 shifted symplectic dg stack X. Let α ∈ H1(C∗red(g))[[h̄]] is the
obstruction to making this an inner action. There is thus a map of BD algebras

ρq : UBD(g)→ O(X)q.

Proof This claim is a simple formal consequence of the universal prop-
erty of the enveloping BD algebra, as in lemma 11.2.3.2. �

This map manifestly dequantizes to the map ρ : UP0
α (g) → O(X)

of P0 algebras, since UBD
α (g) is given by deforming the differential of

Sym(g[1]) in an h̄-dependent fashion.

This articulation of quantum symmetries has a nice pay-off: it says
that quantizing a symmetry amounts to lifting a map of P0 algebras to
a map of BD algebras.

It also provides a natural home for elements that behave like symme-
tries but are not elements of a Lie algebra, namely the “polynomials”
that appear in UBD

α (g). Under the map ρq, these nonlinear elements go
to nonlinear observables. In this sense, UBD

α (g) plays a role in the BV
formalism analogous to the role that the enveloping algebra Ug plays
in traditional algebra. For instance, the Casimir element is quite useful
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in representation theory but it is quadratic in Ug and hence is not it-
self in g. At the level of factorization algebras, this formulation of the
theorem will be important: the factorization version of enveloping BD
algebras will include objects like the Virasoro and Kac-Moody vertex
algebras.

11.3.2 Porting the story to field theory

So far, we have discussed everything over a space-time manifold that is
a point. Our goal, of course, is to analyze Noether’s theorem for honest
field theories over a non-trivial space-time manifold.

The homological algebra we have developed in this chapter will ap-
ply, but with a few additional analytical subtleties, as usual. In the
factorization-theoretic version of this story, it will be important to re-
place a Lie algebra g of symmetries with a local Lie algebra L. The en-
veloping BD algebra UBDL is then a factorization algebra, and as we
will see, current algebras from physics, such as the Kac-Moody or Vira-
soro chiral algebras, appear as examples of this construction. If L acts
by quantum symmetries on a quantum BV theory, we will thus obtain
a map of factorization algebras

UBDL → Obsq

that realizes currents as quantum observables. On global sections, one
recovers Ward-Takahashi identities, but the local story implies, for in-
stance, statements about algebras and vertex algebras, for one- and
two-dimensional field theories respectively.
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Noether’s theorem in classical field theory

A central result in field theory is Noether’s theorem, which states that
there is a one-to-one correspondence between continuous symmetries
of a field theory and conserved currents. In this chapter we will de-
velop a version of Noether’s theorem for classical field theories in the
language of factorization algebras. In the following chapter, we will de-
velop the analogous theorem for quantum field theories.

12.1 An overview of the main theorem

In the approach to classical field theory developed in this book, the
statement runs as follows.

Suppose we have a classical field theory on a manifold X, and let

Õbs
cl

denote the P0 factorization algebra of observables of the classi-
cal theory and let Obscl denote the quasi-isomorphic factorization alge-

bra containing it, as developed in Chapter 5. The P0 structure on Õbs
cl

makes Õbs
cl
[−1] into a precosheaf of dg Lie algebras, by forgetting the

commutative multiplication and shifting. Moreover, this dg Lie algebra

Õbs
cl
(U)[−1] acts on Obscl(U) by the shifted Poisson bracket.

Now suppose that L is a local L∞ algebra on X that acts on our clas-
sical field theory. This action also naturally induces an action on the
global observables Obscl(X). (We will define soon precisely what we

284
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mean by an action.) Let Lc denote the precosheaf of L∞ algebras on X
given by compactly supported section of L. We wish to refine the ac-
tion of L on Obscl(X) to a local action involving Lc and Obscl , which
furthermore realizes a symmetry as an observable.

Our formulation of Noether’s theorem involves shifted central exten-
sions of this precosheaf Lc. Such central extensions were discussed in
Section I.3.6; we are interested in −1-shifted central extensions that fit
into short exact sequences

0→ C[−1]→ L̂c → Lc → 0,

where C is the constant precosheaf.

The theorem is then the following.

Theorem. If a local L∞ algebra L acts on a classical field theory with observ-
ables Obscl , then there is a −1-shifted central extension L̂c of the precosheaf
Lc of L∞ algebras on X, and a map of precosheaves of L∞ algebras

L̂c  Õbs
cl
[−1]

that sends the central element of L̂c to the observable 1 in Õbs
cl
(U)[−1] for

every open subset U.

This map is, by construction, compatible with the action of the cosheaf
Lc on Obscl induced by the action Lc on the field theory. Let us explain
the form of this compatibility.

When the dg Lie algebra Õbs
cl
(U)[−1] acts on Obscl(U) by the Pois-

son bracket, the constant observable 1 acts by zero. The L∞ map we just
discussed therefore gives an action of L̂c(U) on Obscl(U), which de-
scends to an action of Lc(U) because the central element acts by zero.

Theorem. In the situation of the preceding theorem, the action ofLc(U) com-

ing from the L∞-map L̂c  Õbs
cl

and the action coming from the action of L
on the classical field theory coincide up to a homotopy.
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12.2 Symmetries of a classical field theory

We will start by examining what it means for a homotopy Lie algebra
to act on a field theory. We are particularly interested in what it means
for a local L∞ algebra to act on a classical field theory. Recall from Sec-
tion 3.1.3 that a local L∞ algebra L is a sheaf of L∞ algebras given by
sections of a graded vector bundle L and whose L∞-structure maps are
polydifferential operators.

We know from Chapter 4 that a perturbative classical field theory is
described by an elliptic moduli problem on X with a degree −1 sym-
plectic form. Equivalently, it is described by a local L∞ algebraM on X
equipped with an invariant pairing of degree −3, as discussed in Sec-
tion 4.2. Therefore, an action of L on M should be an L∞ action of L
onM. Thus, the first thing we need to understand is what it means for
one L∞ algebra to act on the other.

12.2.1 Actions of L∞ algebras

We develop the notion starting from more concrete situations. If g, h are
ordinary Lie algebras, then it is straightforward to say what it means
for g to act on h: there is a map of Lie algebras from g to Der(h). One can
then define the associated semidirect product g n h. This semi-direct
product lives in a short exact sequence of Lie algebras

0→ h→ gn h→ g→ 0.

Conversely, one can recover the action of g on h (up to equivalence)
from the data of such a short exact sequence of Lie algebras.

We take this construction as a model for the action of one L∞ algebra
g on another L∞ algebra h.

12.2.1.1 Definition. An action of an L∞ algebra g on an L∞ algebra h is
an L∞-algebra structure on g⊕ h, which we denote gn h, with the property
that the maps in the exact sequence of vector spaces

0→ h→ gn h→ g→ 0

are strict maps of L∞ algebras.
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Remark: We note:

(i) The set of actions of g on h enriches to a simplicial set, whose n-
simplices are families of actions over the dg algebra Ω∗(4n).

(ii) There are other possible notions of action of g on h that might seem
more natural to the reader. For instance, an abstract notion is to say
that an action of g on h is an L∞ algebra h̃ with a map φ : h̃  g and
an isomorphism of L∞ algebras between the homotopy fibre φ−1(0)
and h. One can show that this fancier definition is equivalent to the
concrete one just proposed, in the sense that the two ∞-groupoids of
possible actions are equivalent.

If h is finite dimensional, the dg Lie algebra of derivations of C∗(h)
can be identified with the module C∗(h, h[1]), equipped with a natural
Lie bracket. It is then straightforward to verify the following.

12.2.1.2 Lemma. An action of g on h is equivalent to an L∞-algebra map
g C∗(h, h[1]).

Remark: We view C∗(h, h[1]) as the dg Lie algebra of vector fields on the
formal moduli problem Bh. This lemma shows that an action of g on h
is the same as an action of g on the formal moduli problem Bh which
may not preserve the base point of Bh. ♦

12.2.2 Actions of local L∞ algebras

Now let us return to the setting of local L∞ algebras and define what it
means for one local L∞ algebra to act on another.

12.2.2.1 Definition. LetL andM be local L∞ algebras on X. Then an action
of L on M is an local L∞ structure on L ⊕M, which we denote LnM,
such that the exact sequence of maps of sheaves

0→M→ LnM→ L → 0

consists of maps of L∞ algebras.

More explicitly, this definition says thatM, with its original L∞ struc-
ture, is both a sub-L∞ algebra ofMnL, but also an L∞ ideal: if at least
one element ofM is the input to an operation, the output lands inM.
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A classical field theory involves a local L∞ algebra with a pairing, so we
need to articulate a compatibility between the pairing and the action to
define a symmetry of a theory.

12.2.2.2 Definition. Suppose thatM has an invariant pairing 〈−,−〉. An
action of L on M preserves the pairing if for any compactly supported
sections {α1, . . . , αr} of L and {β1, . . . , βs} ofM, the expression

〈lr+s(α1, . . . , αr, β1, . . . , βs), βs+1〉

is graded totally anti-symmetric under permutation of the βi.

Consider then a classical field theory defined by a local L∞ algebra
M with an invariant pairing of degree −3.

12.2.2.3 Definition. LetM be a local L∞ algebra with an invariant pairing
of degree −3, so that it encodes a classical field theory by Definition 4.2.0.4.
If L acts onM and preserves its pairing, we call it an action of a local L∞
algebra L on the classical field theory.

We will often refer to a classical field theory with an action of a local
L∞ algebra as an equivariant classical field theory.

The definition we just gave is a little abstract. We can make it more
concrete, by relating it to action functionals, along the lines of Sec-
tion 11.2.2. (Some readers might prefer to examine Example 12.3.1 be-
fore reading the general discussion.)

Recall that the space of fields of the classical field theory associated
toM isM[1] and that the L∞ structure onM is entirely encoded in the
action functional

S ∈ Oloc(M[1]),

which satisfies the classical master equation {S, S} = 0. Indeed, Oloc(M[1])[−1]
has a Lie structure via the BV bracket {−,−}, and the L∞ structure is
given by a Maurer-Cartan element in that graded Lie algebra. (Recall
that the notation Oloc always indicates local functionals modulo con-
stants. A priori the bracket is defined on all local functionals, but the
constants are central for the BV bracket, so we can equip the quotient
with a Lie bracket.)
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An action of a local L∞ algebra L on M can also be encoded in a
certain local functional, which depends on L. Before providing this ap-
proach, we need to describe the precise space of functionals that arise
in formulating it.

If X denotes the space-time manifold on which L andM are sheaves,
then L(X) is an L∞ algebra. Thus, we can form the Chevalley-Eilenberg
cochain complex

C∗(L(X)) = (O(L(X)[1]), dL)

as well as its reduced version C∗red(L(X)), which is the maximal ideal of
that dg commutative algebra. In section 3.5.2 we also defined the local
version of this, which is a subcomplex

C∗red,loc(L) ⊂ C∗red(L(X))

of local cochains.

The completed tensor product

C∗(L(X)) ⊗̂C∗red,loc(M)[−1]

is a dg Lie algebra, as it is a tensor product of a dg commutative algebra
and a dg Lie algebra. There is a subcomplex

C∗red,loc(L⊕M)[−1]

which one can check explicitly is a sub dg Lie algebra. The Lie bracket
comes from the invariant pairing onM. The complex C∗red,loc(L)[−1] is
a subcomplex which is in the center of this Lie bracket.

By restricting local cochains to the sub Lie algebraM ⊂ L⊕M, we
get a map of dg Lie algebras

C∗red,loc(L⊕M)[−1]→ C∗red,loc(M)[−1]. (12.2.2.1)

12.2.2.4 Definition. We let InnerAct(L,M) denote the kernel of this map
of dg Lie algebras. We let Act(L,M) be the quotient of InnerAct(L,M) by
the central subcomplex C∗red,loc(L).

Note that as a cochain complex, we can identify

Act(L,M) = C∗red,loc(L⊕M)/(C∗red,loc(L)⊕ C∗red,loc(M).

This identification does not make sense as an isomorphism of dg Lie
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algebras, because C∗red,loc(M) is not an ideal in C∗red,loc(L⊕M). This is
because the cochain map 12.2.2.1 splits as a cochain map, but not as a
map of dg Lie algebras.

This notation allows us to offer an alternative description of the ac-
tion of a local L∞ algebra on a classical field theory.

12.2.2.5 Lemma. LetM be a local L∞ algebra with an invariant pairing of
degree−3, so that it encodes a classical field theory. To give an action of a local
L∞ algebra L on a classical field theory is the same as to give a Maurer-Cartan
element SL in Act(L,M), i.e., satisfying

(dL + dM)SL + 1
2{S

L, SL} = 0.

Such a Maurer-Cartan element is a solution to a kind ofL-equivariant
classical master equation modulo local functionals depending just on L
orM.

This lemma suggests that we view a classical field theory with an
action of L as a family of classical field theories over the sheaf of formal
moduli problems BL. Further justification for this idea will be offered
in Proposition 12.3.0.2.

Proof Given such an SL, then

dL + dM + {SL,−}

defines a differential on O(L(X)[1] ⊕M(X)[1]). The classical master
equation implies that this differential is of square zero, so that it defines
an L∞ structure on L(X)⊕M(X). Moreover, the locality condition on
SL guarantees that it produces a local L∞ algebra structure. Direct ex-
amination shows that this L∞ structure respects the exact sequence

0→M→ L⊕M→ L → 0

and the invariant pairing onM. �

The Maurer-Cartan equation satisfied by SL can be rephrased as fol-
lows. Let S ∈ Oloc(M[1]) be the solution to the classical master equa-
tion for our classical theory. Let

Stot = SL + S ∈ C∗red,loc(L⊕M)/C∗red,loc(L).
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Then the Maurer-Cartan equation for SL is equivalent to the classical
master equation

dLStot + 1
2{S

tot, Stot} = 0. (12.2.2.2)

Here, as before, dL is the Chevalley-Eilenberg differential associated to
the Lie bracket on L.

We can then interpret Stot as defining a field theory with fieldsM[1]
and “background fields” L[1]. For example, if L = Ω≤1

X ⊗ g, for some
Lie algebra g, then we are specifying an action functional Stot which
depends on the fields in M[1] and on a background connection A ∈
Ω1(X)⊗ g. The dependence of Stot on Ω0(X)⊗ g[1] tells us how gauge
transformations act on the fields onM[1], and the classical master equa-
tion 12.2.2.2 tells us that the system is gauge invariant, where we in-
clude the action of gauge transformations on both the fields in M[1]
and on the connection in Ω1(X)⊗ g.

In this special case, giving an action of L = Ω≤1
X ⊗ g on a field the-

ory specified byM is equivalent to giving a gauge-invariant action de-
pending on a background gauge field. This is a familiar manifestation
of symmetry in physics.

At this stage it is worthwhile introducing a very simple example of
an action of a local L∞ algebra on a theory, to which we can apply our
constructions.

Example: Consider a chiral free fermion on a Riemann surface Σ. In the
BV formalism, the fields are

Ψ ∈ ΠΩ1/2,∗(Σ)

where Π denotes parity shift. (We work here with Z/2 × Z graded
vector spaces, where the Z/2 counts fermion number and Z is the co-
homological grading. Both gradings contribute to signs.)

We let ψ denote the component of Ψ in Ω1/2,0 and ψa. f . denote the
component in Ω1/2,1. The field ψ is the usual fermion, and ψa. f . is its
anti-field. The odd symplectic pairing is 1

2

∫
Ψ ∧ Ψ =

∫
ψψa. f ., and the

Lagrangian is

S = 1
2

∫
Ψ∂Ψ.
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The corresponding L∞ algebra is

M = ΠΩ1/2,∗(Σ)[−1].

The only non-trivial L∞ operations onM are l1 = ∂.

We can take n copies ofM,

M⊕n = πΩ1/2,∗(Σ, Cn)[−1].

This has an action of the local Lie algebra

L = Ω0,∗(Σ, so(n))

which combines the so(n) action on Cn with the wedge product of Dol-
beault forms. The corresponding semi-direct product L∞ algebra is the
dg Lie algebra

LnM⊕n = Ω0,∗(Σ, so(n))n πΩ1/2,∗(Σ, Cn)[−1].

The corresponding equivariant action functional, for α ∈ L[1] and Ψ ∈
M⊕n[1], is

SL(α, Ψ) = 1
2

∫
ΨαΨ. (12.2.2.3)

Adding to this the original Lagrangian we find

Stot = SL + S = 1
2

∫
Ψ(∂ + α)Ψ.

If we restrict to α1 ∈ Ω0,1(Σ, so(n)). ,we find the action functional for a
free fermion in the presence of a background gauge field. Restricting to
α0 ∈ Ω0,0(Σ, so(n))[1], we find the Lagrangian∫

ψα0ψa. f ..

Since ψa. f . is the anti-field and α0 is the ghost, this term describes the
action of Ω0,0(Σ, so(n)) on the fields of the free fermion system. ♦

12.2.3 Inner actions

In definition 12.2.2.4, we defined a dg Lie algebra InnerAct(L,M) so
that there is a short exact sequence of dg Lie algebras

0→ InnerAct(L,M)→ C∗red,loc(L⊕M)→ C∗red,loc(M)→ 0.
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12.2.3.1 Definition. An inner action of L on M is a Maurer-Cartan ele-
ment

SL ∈ InnerAct(L,M).

Viewed as an L-dependent local functional on the classical field theory, SL is
of cohomological degree 0 and satisfies the master equation

dLSL + 1
2{S

L, SL} = 0.

(Recall we work with the shift C∗loc(M)[−1] to obtain an unshifted Lie alge-
bra.)

In the example of a chiral free fermion, the equivariant action in
(12.2.2.3) is easily seen to be an inner action. Indeed, the classical mas-
ter equation holds without having to drop any terms which depend on
just L[1]. This is because §L is quadratic in M[1], so that the Poisson
bracket {SL, SL} and the differential dLSL are both quadratic inM[1].

This observation generalizes.

12.2.3.2 Lemma. Given an action of L on a field theoryM, there is an ob-
struction class in H1(C∗red,loc(L)) such that the action extends to an inner
action if and only if this class vanishes.

Proof There is a short exact sequence of dg Lie algebras

0→ C∗red,loc(L)→ InnerAct(L,M)→ Act(L,M)→ 0,

and Oloc(L[1]) is central. The result then follows from general facts
about Maurer-Cartan simplicial sets.

The obstruction is calculated explicitly as follows. Suppose we have
an action functional

SL ∈ Act(L,M).

There is a natural inclusion C∗red(M(X)) ↪→ C∗(M(X)) that allows us
to view SL as a functional

S̃L ∈ InnerAct(L,M) ⊂ C∗red(L(X))⊗ C∗(M(X))

using the . The obstruction is simply the failure of S̃L to satisfy the
Maurer-Cartan equation in InnerAct(L,M). �
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Let us now briefly remark on some refinements of this lemma, which
give more control over the obstruction class.

Define a subcomplex C≥2
red,loc(L) of C∗red,loc(L) consisting of those local

cochains which involve two or more sections of L. These correspond to
local functionals on BL which vanish to second order at the base point.

12.2.3.3 Lemma. If a local L∞ algebra L acts on a classical field theoryM,
then the obstruction to extending L to an inner action lifts naturally from
C∗red,loc(L) to the subcomplex C≥2

red,loc(L).

Proof Suppose that the action of L onM is encoded by an action func-
tional SL, as before. The obstruction is(

dLSL + dMSL + 1
2{S

L, SL}
) ∣∣∣

Oloc(L[1])
∈ Oloc(L[1]).

Here, dL and dM are the Chevalley-Eilenberg differentials for the two
L∞ algebras.

We need to verify that no terms in this expression can be linear in
L. Recall that the functional SL has no linear terms. Further, the differ-
entials dL and dM respect the filtration by polynomial degree, so that
they cannot produce a functional with a linear term from a functional
that does not have a linear term. �

Remark: There is a somewhat more general situation where this lemma
is false. It can be convenient to work with families of classical field the-
ories over some dg ring R with a nilpotent ideal I, where one allows the
L∞ algebraM describing the field theory to be curved, as long as the
curving vanishes modulo I. This situation is encountered in the study
of σ-models: see Costello (2011a); Grady and Gwilliam (2015); Li and
Li (2016). WhenM is curved, the differential dM does not preserve the
filtration by polynomial degree, so that this argument fails. ♦

Let us briefly discuss a special case where the obstruction vanishes.

12.2.3.4 Lemma. Suppose that the action of L on M is encoded by an L∞
structure on LnM such that the components of the L∞ structure maps ln
which map L⊗n to M all vanish. (When viewed as an action of L on the
sheaf of formal moduli problems BM, this conditions means that L preserves
the base point of BM.) Then the action of L extends canonically to an inner
action.
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Proof We need to verify that the obstruction(
dLSL + dMSL + 1

2{S
L, SL}

) ∣∣∣
Oloc(L[1])

∈ Oloc(L[1]).

is identically zero. Our assumptions on SLmean that it is at least quadratic
as a function onM[1]. Hence the obstruction is also at least quadratic as
a function ofM[1], so that it is zero when restricted to being a function
of just L[1]. �

12.2.4 Sheafifying actions of ordinary Lie algebras

We have explained what we mean by an action of a local L∞ algebra on
a classical field theory, and what it means to give an inner action. We
should also relate this notion to the more familiar and concrete notion
of an ordinary Lie algebra acting a field theory.

In particular, our formulation of Noether’s theorem will be phrased
in terms of the action of a local L∞ algebra on a field theory. In practice,
however, we are often presented first with the action of an ordinary,
finite-dimensional L∞-algebra on a theory, and we would like to apply
Noether’s theorem to this situation. Thus, we need to be able to refor-
mulate this kind of ordinary action as an action of a local L∞ algebra.

Hence, let g be an L∞ algebra, which we assume to be finite-dimensional
for simplicity. (Note that we are not working with a sheaf of L∞ algebras
here.) Let C∗(g) be its Chevalley-Eilenberg cochains, viewed as a pro-
nilpotent commutative dg algebra. Finally, consider a classical field the-
ory, represented as an elliptic L∞ algebraM with an invariant pairing.
Then we define the notion of a g-action onM as follows.

12.2.4.1 Definition. An action of g onM is any of the following equivalent
data:

(i) An L∞ structure on g⊕M(X) such that the exact sequence

M(X)→ gnM(X)→ g

is a sequence of maps of L∞-algebras, the structure maps

g
⊗n ⊗M(X)⊗m →M(X)
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are poly-differential operators in theM-variables, and the action preserves
the pairing.

(ii) An L∞-morphism g Oloc(BM)[−1]. (The shift ensures that Oloc(BM)[−1]
is an unshifted dg Lie algebra.)

(iii) An degree one element Sg in the dg Lie algebra

Act(g,M) = C∗red(g)⊗Oloc(BM)[−1]

that satisfies the Maurer-Cartan equation

dgSg + dMSg + 1
2{S

g, Sg} = 0.

(That is, Sg is a solution to a g-equivariant version of the classical master
equation.)

It is straightforward to verify that these three notions are identical.
The third version of the definition can be viewed as saying that a g-
action on a classical field theory is a family of classical field theories
over the dg ring C∗(g) that reduces to the original classical field the-
ory modulo the maximal ideal C>0(g). It will be this last version of the
definition that generalizes to the quantum level.

The following lemma shows how to relate this notion with the local
version already introduced.

12.2.4.2 Lemma. Let g be an L∞-algebra. There is a canonical homotopy
equivalence between the simplicial sets describing

(i) Actions of g on a fixed classical field theory on a manifold X.
(ii) Actions of the local L∞ algebra Ω∗X ⊗ g on the same classical field theory.

The appearance of the sheaf Ω∗X ⊗ g should not be surprising: it is a
fine resolution of the constant sheaf of L∞ algebras with value g. This
replacement of g by Ω∗X ⊗ g is, as always, a convenient way to approach
locally constant constructions via tools with a differential-geometric fla-
vor. Indeed, it codifies familiar manipulations from physics, where a
global symmetry is made local.

We remark that the lemma can be further generalized to show that for
any locally constant sheaf of L∞ algebras g, an action of g on a theory is
the same thing as an action of the de Rham resolution of g.
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Proof We have already explained how each space of actions arises from
the simplicial set of Maurer-Cartan elements for a dg Lie algebra. Hence,
it will suffice to give a quasi-isomorphism of dg Lie algebras

Act(Ω∗X ⊗ g,M)→ Act(g,M),

since one then obtains a weak equivalence between the simplicial sets
of Maurer-Cartan elements. (We remark that we work slightly outside
the most familiar deformation-theory set-up, as we are taking the Maurer-
Cartan simplicial sets associated to just a dg Lie algebra rather than to
a dg Lie algebra tensored with a nilpotent commutative algebra. This is
legitimate, however, as the dg Lie algebras we are considering are both
pro-nilpotent).

LetM denote a local L∞ algebra encoding a classical field theory, and
consider the trivial action of the local L∞ algebra Ω∗X ⊗ g onM.

Since constant functions include into the de Rham complex, we ob-
tain an inclusion of L∞ algebras

g ↪→ Ω∗(X)⊗ g

and hence a map of dg commutative algebras

C∗red(Ω
∗(X)⊗ g)→ C∗red(g).

Tensoring with Oloc(M[1]) yields a map of dg Lie algebras

C∗red,loc(Ω
∗(X)⊗ g)⊗Oloc(M[1]) // C∗red(g)⊗Oloc(M[1])

Act(Ω∗X ⊗ g,M) Act(g,M),

as desired. It remains to show that this map is a quasi-isomorphism.

To show this, we use a DX-module description of the left hand side.
Let J(M) refer to the DX-modules of jets of sections of M, and let
J(Ω∗X) refer to jets of the de Rham complex.

Recall that the local functionals for M are Lagrangian densities up
to total derivatives. One can phrase this statement in terms of tensor
products of DX-modules:

Oloc(M[1]) = DensX ⊗DX C∗red(J(M)),
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as shown in Lemma 6.6.1 of Chapter 5 of Costello (2011b). (Here C∗red(J(M))
is a description of Lagrangians.) The cochain complex underlying the
dg Lie algebra Act(Ω∗X ⊗ g,M) thus has the following interpretation in
the language of DX-modules:

Act(Ω∗X ⊗ g,M) = DensX ⊗DX

(
C∗red(J(Ω∗X)⊗C g)⊗C∞

X
C∗red(J(M))

)
.

On the other hand, the cochain complex Act(g,M) has the DX-module
interpretation

Act(g,M) = DensX ⊗DX

(
C∗red(C

∞
X ⊗ g)⊗C∞

X
C∗red(J(M))

)
.

Thankfully, there is a natural map of DX-modules

C∞
X → J(Ω∗X)

given by sending a smooth function to its jet, and this map is a quasi-
isomorphism by the Poincaré lemma. In consequence, the natural map

C∗red(J(Ω∗X)⊗C g)⊗C∞
X

C∗red(J(M))→ C∗red(C
∞
X ⊗ g)⊗C∞

X
C∗red(J(M))

is a quasi-isomorphism of DX-modules. Moreover, both sides of this
map are flat as left DX-modules, as C∗red(J(M)) is a flat DX-module. It
follows that this map is still a quasi-isomorphism after tensoring over
DX with DensX . �

This lemma has a modification when the L∞ algebra M is concen-
trated in degrees 1 and 2. This happens whenM is the L∞ algebra as-
sociated to a field theory with no gauge symmetry.

12.2.4.3 Lemma. In this situation, the action of Ω∗X⊗ g onM factors through
the truncation Ω≤1

X ⊗ g.

Proof This is for simple grading reasons. Specifying an action of Ω∗X ⊗
g is the same as specifying a Maurer-Cartan element in Act(Ω∗X⊗ g,M),
i.e., a component of

Oloc(Ω
∗
X ⊗ g[1]⊕M[1])/ (Oloc(Ω

∗
X ⊗ g[1])⊕Oloc(M[1])) [−1].

This Maurer-Cartan element is a local functional of an element in Ω∗X ⊗
g[1] and M[1]. It is also of cohomological degree 0. Therefore it can
not depend on fields in Ω≥2

X ⊗ g[1], and must descend to an element of
Act(Ω≤1

X ⊗ g,M). �
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The reason to mention this lemma is to connect with a standard state-
ment in physics, which is that if we have a field theory with an action of
g then we can couple to a background g connection in a gauge invariant
way. Such a coupling is precisely the same as an action of Ω≤1

M ⊗ g. The
dependence of the equivariant action functional on Ω1

M⊗ g gives us the
terms in the action which depend on the background connection, and
the dependence on Ω0

M ⊗ g tells us how gauge transformations act. The
Maurer-Cartan equation implies gauge invariance.

Notice that this lemma requires some hypothesis: we assume that
our space of fields M[1] lives in cohomological degrees 0 and 1. This
happens when the field theory associated toM is defined by an action
functional without gauge symmetry. The lemma is false without this
hypothesis, so that the standard physics statement is also false without
this hypothesis.

Example: Let us see how this works in our running example of the chiral
free fermion on a Riemann surface Σ. Recall that the fields are Ψ ∈
ΠΩ1/2,∗(Σ, Cn) with Lagrangian δij

∫
Ψi∂Ψj. This has an obvious action

of the constant sheaf of Lie algebras so(n). The action is given by the
functional

∫
Ψi MijΨj, where M ∈ so(n).

We have seen that this action extends in a unique way, up to homo-
topy, to an action of the de Rham resolution of this constant sheaf. Be-
cause of this uniqueness result, we simply need to write down some
action of the de Rham resolution Ω∗Σ ⊗ so(n).

Earlier, we described an action of Ω0,∗
Σ ⊗ so(n). The functional de-

scribing this action is
∫

ΨAΨ, where A ∈ Ω0,∗
Σ ⊗ so(n). There is a ho-

momorphism

Ω∗Σ ⊗ so(n)→ Ω0,∗
Σ ⊗ so(n)

which gives rise to an action of Ω∗Σ ⊗ so(n). ♦

12.3 The factorization algebra of equivariant classical
observables

When an L∞ algebra L acts on another L∞ algebraM, the dg commu-
tative algebra C∗(LnM) describes the functions on the formal moduli
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space BM that are L-invariant up to homotopy. In the setting of field
theory, we are thinking about the observables that are invariant with re-
spect to the symmetry encoded by L. This line of thought suggests the
following definition, which builds upon the commutative factorization
algebra C∗(L) that assigns to an open subset U, the dg commutative
algebra C∗(L(U)).

12.3.0.1 Definition. On a manifold X, let L be a local L∞ algebra acting on a
classical field theory encoded by a local L∞ algebraM with invariant pairing.
The equivariant classical observables are

Obscl
L = C∗(LnM)

= C∗(L, Obscl).

Here Obscl(X) denotes the classical observables for the theory associated to
M; its structure as an L-module manifestly depends on the action of L onM.

It is clear that this notion lifts to the level of prefactorization alge-
bras, since L and M are both local in nature. In fact, we showed in
Section I.6.6 that C∗(L nM) satisfies the local-to-global axiom for a
factorization algebra. By construction it is a C∗(L)-module in factoriza-
tion algebras.

We now turn to the more refined question of the P0 structure.

12.3.0.2 Proposition. LetM encode a classical field theory with an action of
L. The sub-factorization algebra

Õbs
cl
L = C∗(L, Õbs

cl
)

of Obscl
L is a P0 factorization algebra, and the bracket is linear with respect to

C∗(L)-module structure. It is, moreover, quasi-isomorphic to Obscl
L as factor-

ization algebras.

Proof We extend the results of Section 5.4 in a straightforward way.

By definition, Õbs
cl
L consists of those functionals that have smooth first

derivative but only in theM-directions. We equip these with a P0 struc-

ture by extending the P0 structure on Õbs
cl

in a C∗(L)-linear fashion to

Õbs
cl
L . Hence, those functionals that lie in C∗(L(U)) are central for this

Poisson bracket. By construction we thus have a P0-factorization alge-
bra over the factorization algebra C∗(L). �
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Example: Let’s see return to our example of a chiral free fermion. As we
have seen in Chapter I.5, when dealing with a chiral theory in dimen-
sion 2, it is often useful to consider those observables on a disc which
are in some eigenspace for the S1 action rotating the disc. Typically,
these eigenspaces are finite dimensional (at the level of cohomology).
The direct sum of these eigenspaces has the structure of a vertex alge-
bra. An operator which is in the k eigenspaces for this S1 action is said
to have spin k. For theories like a free fermion, where fields are spinors,
k may be a half-integer.

If we just consider the chiral free fermion, the cohomology of the
space of Obscl(D) is a commutative algebra. The subalgebra consisting
of those elements that are finite direct sums of S1-eigenvectors is freely
generated by the fermionic point observables (or operators)

Ψ 7→ ∂k
zΨi(0) (12.3.0.1)

of spin k + 1
2 . (These are simply holomorphic derivatives of the delta

function at the center of the disk.) As such it is the exterior algebra on
the vector space Cn[∂z]. Abusing notation slightly, we will refer to these
operations as ∂k

zΨi.

Let us now consider the equivariant observables for the action of
Ω0,∗

Σ ⊗ so(n), where again we consider operators which are finite sums
of S1 eigenvectors. The algebra of equivariant observables is a dg com-
mutative algebra freely generated by the operators (12.3.0.1), and by
new operators

∂k
zcij : α 7→ ∂k

zαij(0)

for α ∈ Ω0,∗(D, so(n))[1]. In physics the operator cij is referred to as the
c-ghost operators, and the other operators ∂k

zcij are its derivatives using
the natural action of C[∂z] on operators on a disc.

The operators ∂k
zcij are in cohomological degree 1, and so generate a

free exterior algebra on so(n)⊗C[∂z].

The commutative algebra generated by the operators ∂k
zΨi and ∂k

zcij
acquires a differential, which comes from the Chevalley-Eilenberg dif-
ferential for the action of Ω0,∗

Σ ⊗ so(n) on ΠΩ0,∗
Σ ⊗ Cn. Explicitly, the
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differential is characterized by the feature that

dΨi = cijΨj

dcij = cijcjk.

and by the requirement d commutes with ∂z. After taking ∂-cohomology,
the space of classical operators we are considering is C∗(son[[z]],∧∗(Cn[∂z])).♦

12.3.1 Simple examples of local L∞ algebras acting on a
classical field theory

There are many examples one can construct of local L∞ algebras acting
on classical field theories.

Example: Here is an example that demonstrates how our notion of ac-
tion goes beyond what is usually considered a symmetry of a field the-
ory in our physics. In derived mathematics, symmetries and deforma-
tions can be thought of on a unified footing: a deformation is an action
of a graded Lie algebra concentrated in degree 1. This suggests that,
whenever we have a deformation of a Lagrangian, we should find an
action of a sheaf of Lie algebras with a component in degree 1.

In fact, we saw this in the previous example, where the deforma-
tion of the Lagrangian of a free fermion by a term

∫
ψAψ, where A ∈

Ω0,1(Σ, so(n)), was interpreted as part of an action of the dg Lie algebra
Ω0,∗(Σ, so(n)). The phenomenon is very general, however.

Consider the free scalar field theory on an oriented Riemannian d-
dimensional manifold (X, g0). In the BV formalism, the fields are φ ∈
C∞(X) and ψ ∈ Ωd

X [−1]. The odd symplectic pairing is
∫

φψ, and the
action functional is 1

2

∫
dφ ∧ ∗dφ.

We can deform this theory by adding on the term

Ssource =
∫

f φ

where f ∈ Ωd(X) is a background field. This is a source term.

We claim that this deformation can be viewed as an action of the
Abelian Lie algebra Ωd(X)[−1]. In fact, this is entirely tautological: to
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define an action, the functional Ssource would need to satisfy the classi-
cal master equation

{Ssource + S, Ssource + S} = 0

(where S is the original action functional). This is true by virtue of the
fact that neither S nor Ssource involve the anti-field ψ.

We can similarly consider the case of φ4 theory, and define anaction
of L = Ωd

X [−1] by setting

SL( f , φ) =
1
2

∫
φ4g0 φ +

∫
f φ dVolg0 +

1
4!

∫
φ4dVolg0 ,

Again, this action functional is the usual way to encode a source.

We thus see that our generalized concept of symmetry (and our gen-
eralized Noether’s theorem) is very broad, and encodes such familiar
concepts as a source. ♦

Here is another simple example, which shows the importance of L∞
actions.

Example: Consider the theory of n free scalar fields in dimension 2. The
corresponding dg Lie algebra is the Abelian dg Lie algebra

M = Ω0,0
Σ ⊗Cn[−1] ∂∂−→ Ω1,1

Σ ⊗Cn[−2].

We will let Φ ∈ M[1] denote a field of the theory, which has two com-
ponents φ in degree 0 and ψ in degree 1. The odd symplectic pairing is∫

φψ, and the Lagrangian is 1
2

∫
φ∂∂φ.

This theory has an action of so(n), which must extend to an action
of Ω∗Σ ⊗ so(n). Further, as the fields of the theory are concentrated in
degrees 0 and 1, this action must come from an action of L = Ω≤1

Σ ⊗
so(n). To specify such an action, we must specify a functional SL which
depends on an element of L[1] and a field inM[1] and which satisfies
the relevant master equation.

The functional is the following. If A ∈ Ω1
Σ ⊗ so(n), and c ∈ Ω0

Σ ⊗
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so(n)[1], we can give a functional SL by the formula

SL(A, c, φ, ψ) =
∫

φicijψj

+ 1
2

∫
∂φi A

1,0
ij φj +

1
2

∫
A0,1

ij φj∂φi +
1
2

∫
A0,1

ij φj A
1,0
ik φk.

The first term in this expression – the one involving c – tells us how
gauge symmetries act. Because cij is coupled to φiψj, which is the Hamil-
tonian function on the odd symplectic manifold of fields for the usual
action of a generator of so(n), we see that gauge transformations act in
the usual way.

The remaining terms tell us how the fields couple to a background
connection. They are obtained by simply taking the original action,
which is 1

2

∫
∂φ∂φ, and replacing each derivative by a covariant deriva-

tive. The resulting action is gauge invariant, where we include gauge
transformations of the fields φ and the connection A. This implies that
SL satisfies the Maurer-Cartan equation defining an action.

We note that the functional SL contains a term quadratic in A. This
implies that there is a non-trivial L∞ action of L on the fields, which
contains an l3 term. Explicitly, the map

l3 : ∧2L⊗M→M

is given by the map

∧2Ω1(Σ, so(n))⊗Ω0(Σ, Cn)→ Ω2(Σ, Cn)

A1 ⊗ A2 ⊗ φ0 7→ (A1,0
1 ∧ A0,1

2 − A1,0
2 ∧ A0,1

1 )φ.

It is clear that the term in SL which is quadratic in A is necessary for
gauge invariance: the functional∫

A0,1
ij φj∂φi +

∫
∂φi A

1,0
ij φj

is not invariant under simultaneuous gauge transformations of the con-
nection A and of the scalar field φi. This implies that it is necessary to
include the l3 term to find an action of Ω≤1

Σ ⊗ so(n) on the field theory
defined byM. ♦

A large class of examples arises through the following result, which is
the analogue of the fact that an action on a manifold Y lifts canonically
to a symplectic action on its cotangent bundle T∗Y.
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12.3.1.1 Lemma. If L acts on an elliptic L∞ algebraM, then L acts on the
cotangent theory forM.

Proof This claim is immediate by naturality, but we also write down
explicitly the semi-direct product L∞ algebra describing the action. Note
that LnM acts linearly on the shifted coadjoint module

(LnM)! [−3] = L![−3]⊕M![−3].

Further, L![−3] is a submodule for this action, so that we can form the
quotient, which is naturally equivalent toM![−3]. Hence we consider
the associated extension

(LnM)nM![−3],

which is the desired semi-direct product. �

Remark: Note that this construction is simply the −1-shifted relative
cotangent bundle to the map B(LnM)→ BL. ♦

12.4 The classical Noether’s theorem

As we showed in lemma 3.5.3.2, there is a bijection between classes in
H1(C∗red,loc(L)) and local central extensions of Lc shifted by −1.

12.4.0.1 Theorem. Let M encode a classical field theory, and let Õbs
cl

be
the classical observables of the field theoryM, equipped with its P0 structure.
Let a local L∞ algebra L act on M, and let L̂c be the central extension cor-
responding to the obstruction class α ∈ H1(C∗red,loc(L)) for lifting L to an
inner action.

There is then a map of precosheaves of L∞-algebras

L̂c  Õbs
cl
[−1]

that sends the central element c to the unit 1 ∈ Õbs
cl
[−1]. (Note that, after

the shift, the unit 1 is in cohomological degree 1, as is the central element c.)

Remark: The linear term in the L∞-morphism is a map of precosheaves
of cochain complexes from L̂c to Obscl [−1]. The fact that we have such
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a map of precosheaves implies that we have a map of commutative dg
factorization algebras

Ŝym
∗
(L̂c[1])→ Õbs

cl
,

which, as above, sends the central element to 1. This formulation is the
one that will quantize: we will find a map from a certain Chevalley-
Eilenberg chain complex of L̂c[1] to quantum observables. ♦

Remark: Lemma 12.2.3.3 implies that the central extension L̂c is split
canonically as a presheaf of cochain complexes:

L̂c(U) = C[−1]⊕Lc(U).

Thus, we have a map of precosheaves of cochain complexes Lc →
Obscl . The same argument will show that that this cochain map ex-
tends to a continuous map from the distributional completion Lc(U)
to Obscl . ♦

Before giving the proof, we rehearse the argument in the finite-dimensional
setting, in the case when the central extension splits. Let g, h be L∞ alge-
bras, and suppose that h is equipped with an invariant pairing of degree
−3, so that C∗(h) is a P0 algebra. Recall that an L∞ map g C∗(h)[−1]
is encoded by an element

G ∈ C∗red(g)⊗ C∗(h)

of cohomological degree 0 satisfying the Maurer-Cartan equation

dgG + dhG + 1
2{G, G} = 0,

where dg, dh are the Chevalley-Eilenberg differentials for g and h, re-
spectively, and {−,−} denotes the Poisson bracket coming from the P0
structure on C∗(h).

Let us now consider the case of a central extension. Suppose that we
have an element

G ∈ C∗red(g)⊗ C∗(h)

of degree 0 and an obstruction element α ∈ C∗red(g) of degree 1 such that

dgG + dhG + 1
2{G, G} = α⊗ 1.

Let ĝ be the −1-shifted central extension determined by α, so that there
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is a short exact sequence

0→ C[−1]→ ĝ→ g→ 0.

The data of G and α is the same as a map of L∞ algebras ĝ→ C∗(h)[−1]
that sends the central element of ĝ to 1 ∈ C∗(h).

To see this, choose a splitting ĝ = g⊕C · c where the central element
c is of degree 1. Let c∨ be the linear functional on ĝ that is zero on g and
that sends c to 1. The image of α under the natural map C∗(g)→ C∗(ĝ)
is made exact by c∨, viewed as a zero-cochain in C∗(ĝ). It follows that

G + c∨ ⊗ 1 ∈ C∗red(ĝ)⊗ C∗(h)

satisfies the Maurer-Cartan equation, and therefore defines (as above)
an L∞-map ĝ → C∗(h)[−1]. This L∞-map sends c to 1 because G only
depends on c by the term c∨ ⊗ 1.

Now let us turn to the proof of theorem 12.4.0.1.

Proof Let us apply the remarks we have made about the finite-dimensional
case to the setting of factorization algebras.

Suppose we have an action of a local L∞-algebra L on a classical field
theoryM. Let

α ∈ Oloc(L[1]) = C∗red,loc(L)

be a 1-cocycle representing the obstruction to lifting to an inner action
onM. Let

L̂c = Lc ⊕C[−1]

be the corresponding central extension. By the definition of α, we have
a functional

SL ∈ InnerAct(L,M) = C∗red,loc(L⊕M)/C∗red,loc(M)

satisfying the Maurer-Cartan equation

dSL + 1
2{S

L, SL} = α.

We now want to understand the precosheaf aspects of this data.

Let us first remind the reader of some properties of local function-
als. For any vector bundle E on our manifold M with space of sec-
tions E (U), a local functional in Oloc(E ) does not define a function
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on the space E (M) of global sections (unless M is compact). A local
functional does, however, determine a function on the space Ec(M) of
compactly supported global sections. More generally, if e ∈ Ec(M) and
F ∈ Oloc(E ), we can differentiate F with respect to e. A priori ∂eF is a
functional on Ec(M), but it turns out that it extends to a functional on
E (M).

More generally, if e ∈ Ec(U), then ∂eF gives rise to an element of
O(E (U)).

One can restate this by saying that if we have a local functional which
is homogeneous of degree n, and we place elements of Ec(U) on at least
one of its inputs, then we can place elements of E (U) on the remaining
inputs.

Applying these observations to the situation at hand, we find that for
every open subset U ⊂ M, we have an injective cochain map

Φ : C∗red,loc(L⊕M)/C∗red,loc(M)→ C∗red(Lc(U))⊗̂C̃∗(M(U)),

where ⊗̂ refers to the completed tensor product and C̃∗(M(U)) refers
to the subcomplex of C∗(M(U)) consisting of functionals with smooth
first derivative.

The cochain map Φ is in fact a map of dg Lie algebras, where the Lie
bracket arises as usual from the pairing on M. Thus, for every U, we
have an element

SL(U) ∈ C∗red(Lc(U))⊗̂C̃∗(M(U))

satisfying the Maurer-Cartan equation

dSL(U) + 1
2{S

L(U), SL(U)} = α(U).

It follows, as in the finite-dimensional case discussed above, that SL(U)
gives rise to a map of L∞ algebras

L̂c(U) C̃∗(M(U))[−1] = Õbs
cl
(U)[−1]

sending the central element c in L̂c(U) to the unit 1 ∈ Õbs
cl
(U). The

fact that SL is local implies immediately that it is a map of precosheaves.
�
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12.4.1 Noether’s theorem as a map of P0 factorization algebras

A classical field theory is encoded by its P0 factorization algebra Obscl .
It turns out that the classical Noether’s theorem can be reformulated
as saying that an action of L on a classical theory leads to a homomor-
phism of P0 factorization algebras from one built from L to classical ob-
servables. This version of the statement has the advantage that it leads
to a clean statement at the quantum level.

We have already seen the non-factorization version of this statement
in section 11.2.3. There, we saw that we must replace the (finite-dimensional)
L∞ algebra g of symmetries by its enveloping P0 algebra Ug, which is
the universal P0 algebra containing a sub-Lie algebra g.

We will implement the same construction in the world of factoriza-
tion algebras, under the simplifying assumption that our local Lie alge-
bra L is simply a dg Lie algebra, and not an L∞ algebra; and that the
map of pre-cosheaves of homotopy Lie algebras L̂c → Obscl of theorem
12.4.0.1 is a strict map of dg Lie algebras, and not an L∞ map.

12.4.1.1 Definition. Let L be a local Lie algebra on a manifold M, let α ∈
H1(C∗loc,red(L)) be a local cohomology class, and let L̂c be the corresponding
central extension with central element in degree 1.

Define a P0 factorization algebra U
P0
α (L) as follows. We first define UP0(L̂,

by saying that for every open subset U ⊂ M, we have an isomorphism of dg
commutative algebras

UP0(L)(U) = Sym∗(L̂c(U)[1]).

The right hand side of this equation has a P0 structure coming from the Lie
bracket on L̂c(U). This is a P0 factorization algebra in the category of modules
for C[c], which acts on each U

P0
α (L)(U) by multiplication with the central

element c ∈ L̂c(U)[1].

We then define

U
P0
α (L)(U) = UP0(L)(U)⊗C[c] Cc=1

to be obtained by specializing the central element c to 1.

12.4.1.2 Theorem. Suppose that a local Lie algebra L acts on a classical
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field theory with P0 factorizaton algebra of observables Obscl , and that α ∈
H1(C∗red,loc(L)) is the obstruction to making this an inner action.

Then, there is a homormorphism of P0 factorization algebras

U
P0
α (L)→ Obscl .

Proof This claim follows almost immediately from theorem 12.4.0.1.
This theorem shows that we have a map of precosheaves of dg Lie al-
gebras from L̂c → Obscl [−1] which sends the central element c to 1.
Shifting by 1, we get a map of shifted Lie algebra L̂c[1] → Obscl . Be-
cause Obscl is a commutative algebra, this extends canonically to a map
of prefactorization algebras

UP0(L̂) = Sym∗(L̂c[1])→ Obscl .

Since the central element in L̂c[1] gets sent to 1 ∈ Obscl , this descends
to a map of P0 factorization algebras U

P0
α (L)→ Obscl . �

12.5 Conserved currents

The standard formulations of Noether’s theorem associate to each sym-
metry a conserved current, which is a d− 1-form valued in Lagrangians if
the field theory lives on an oriented manifold X of dimension d. (Com-
pare with a local functional, which is a top form valued in Lagrangians.)
Such a current determines an observable by picking a closed subman-
ifold of codimension 1: for each field, evaluate the current on the field
and integrate over submanifold to compute the associated charge of the
field. In practice, people often work on spacetime manifolds that are
products N ×R and compute the charge along N × {t} at some fixed
time t. The charge is conserved because it is invariant under time trans-
lation.

This section is devoted to explaining why the version of classical
Noether’s theorem that we just presented leads to this more traditional
statement. Similar remarks will hold for the quantum version of Noether’s
theorem.

In our formalism, we generalize the usual notion of conserved cur-
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rent with the following definition, which will be valid at the quantum
level as well.

12.5.0.1 Definition. A conserved current in a field theory is a map of pre-
cosheave

J : Ω∗c [1]→ Obscl

to the factorization algebra of classical observables.

Such a J can be viewed as a form valued in classical observables. For
each open subset U, J determines a closed, degree 0 element

J(U) ∈ Ω∗(U)[d− 1]⊗̂Obscl(U),

and this element is compatible with inclusions of open subsets in the
obvious way. In particular, consider the component

J(U)d−1,0 ∈ Ωd−1(U)⊗̂Obscl(U)0,

where the superscript in Obscl(U)0 indicates cohomological degree 0.
This term J(U)d−1,0 is an d − 1-form valued in observables, which is
precisely what is traditionally called a current.

Let us now explain why our definition means that this current is con-
served (up to homotopy). A little notation is needed to explain this
point. If N ⊂ X is a closed subset, let

Obscl(N) = limN⊂U Obscl(U)

be the limit of observables on open neighbourhoods U of N. Thus, an
element of Obscl(N) is an observable defined on every open neighbour-
hood of N, in a way compatible with inclusions of open sets. When
p ∈ X is a point, the complex Obscl(p) is the algebra of point operators
we defined in Chapter 10 in the discussion of the OPE.

Remark: For this discussion, we could use either the homotopy limit or
the ordinary limit. We choose to use the ordinary limit because because
we chose to use the ordinary limit in the discussion of point observables
(functional analytic complications make the homotopy limit somewhat
difficult to work with). ♦

Now let J be a conserved current, in the sense of the definition above.
For every compact codimension 1 oriented submanifold N ⊂ X, the
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delta-distribution on N is an element

[N] ∈ Ω1
(U)

defined for every open neighbourhood U of N. Applying J, we get an
element

J[N] ∈ Obscl(U)

for every neighbourhood U of N. This element is compatible with in-
clusions U ↪→ U′, and so defines an element of Obscl(N). This quantity
is to be identified with what is usually called the charge of a conserved
current, which is the integral of the current over a codimension 1 sub-
manifold.

The fact that a current is conserved should say that the correspond-
ing charge only depends on the homology class of the codimension 1
submanifold on which we integrate it. Let us see why this is true in our
approach.

Consider what happens when we have a cobordism between two
such submanifolds: let M ⊂ X be a codimension 0 submanifold with
boundary ∂M = N q N′. Then the fact that J is cochain map tells us
that

dJ[M] = J[N]− J[N′] ∈ Obscl(M),

and so the cohomology class [J[N]] of J[N] does not change if N is
changed by a cobordism. In particular, if our space-time manifold is
a product

X = N ×R,

then the cohomology class [J[Nt]] associated to the submanifold N ×
{t} is independent of “time” t. This condition is precisely the traditional
formulation of a conserved current.

With these ideas in place, we can now explain why our version of
Noether’s theorem produces a conserved current from a symmetry.

12.5.0.2 Lemma. Suppose we have a classical field theory on a manifold X
that has an infinitesimal symmetry. To this data, our formulation of Noether’s
theorem produces a conserved current.

Proof A theory with an infinitesimal symmetry is acted on by the abelian
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Lie algebra R (or C). Lemma 12.2.4.2 shows us that such an action is
equivalent to the action of the Abelian local dg Lie algebra Ω∗X . Lemma
12.2.3.3 implies that the central extension L̂c is split as a cochain com-
plex. We thus get a map

Ω∗X,c[1]→ Obscl .

The remark following theorem 12.4.0.1 tells us that this map extends to
a continuous cochain map

Ω∗X,c[1]→ Obscl ,

which is our definition of a conserved current. �

12.6 Examples of classical Noether’s theorem

We now outline some examples of this construction. Chapter 14 con-
tains a more extensive treatment of some other examples, with a dis-
cussion of their quantizations as well.

12.6.1 Examples where the obstruction is trivial

For all of the examples described here, the central extension of the local
L∞ algebra of symmetries is trivial.

Example: Let us revisit the example of a source, which is the first exam-
ple considered in section 12.3.1. There, we saw that the free scalar field
theory with Lagrangian

∫
X φ D φ has an action of the Abelian local Lie

algebra Ωd
X [−1]. The equivariant Lagrangian describing the action con-

tains an interaction term
∫

f φ, where f is a section of Ωd
X and plays the

role of a background field.

The Noether map is then the map

Ωd
c (U)→ Obscl(U)

f 7→
∫

f φ.

This map then describes the observables obtained by integrating the
field φ against an arbitrary function.
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We remark that the most fundamental point observable (or local op-

erator) appears by extending this map to the distributional forms Ωd
(X):

for every point p ∈ X, the delta-function δp maps to a point observable
in Obscl(p). This observable varies smoothly with p.

Consider the case X = Rn. Then any point observable supported at
the origin — built from a polynomial of the value of φ and its deriva-

tives at the origin — defines an action of Ωd
[−1]. At the quantum level,

it is sometimes useful to define an operator supported at a point to be

an action of Ωd
[−1]. ♦

Example: Let us revisit another running example of a system of n chiral
free fermions on a Riemann surface Σ, acted on by the local Lie algebra
Ω0,∗

Σ ⊗ son. The fields of the fermionic theory are Ψi ∈ Ω1/2,∗(Σ), and
the map produced by theorem 12.4.0.1 is the map

Ω0,∗
c (U)⊗ so(n)[1] 7→ Obscl(U)

Aij 7→
∫

Ψi AijΨj.

As in the remark following theorem 12.4.0.1, this map extends to a map
from the distributional completion Ω0,∗

c (U)⊗ so(n)[1].

Take U to be a disc D, and let us consider elements of Ω0,∗
c (D) which

are finite sums of eigenvectors under the S1 action rotating D. A ba-
sis for the cohomology of this spaces is provided by the delta-function
δp (where p ∈ D is the center of the disc) and its z-derivatives. The
Noether map is

∂n
z δp Mij 7→ ∂n

z (Ψi(p)MijΨj(p)) ∈ Obscl(D).

These are precisely the Kac-Moody currents that, at the quantum level,
describe the action of the Kac-Moody vertex algebra on the vertex alge-
bra of n free fermions. ♦

12.6.2 Geometric examples of classical field theories with an
action of a local L∞ algebra

Many field theories are defined on a class of manifolds, not just on a
fixed manifold. For example, the free scalar field theory makes sense
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on any Riemannian manifold; Yang-Mills theory makes sense (classi-
cally) on any manifold equipped withe a conformal class of metric; and
chiral conformal field theories, such as the βγ system or the free chi-
ral fermion, make sense on any Riemann surface. This kind of situation
can be formalized by saying that a theory is acted on by a local L∞ al-
gebra associated to that type of manifold. The observables built from
this action by the Noether map define the stress-energy tensor for the
appropriate class of geometry.

Below we will examine explicitly theories associated with Rieman-
nian, conformal, or complex geometry. But the method generalizes to
any geometric structure on a manifold that can be described by a com-
bination of differential equations and symmetries.

Riemannian geometry

We start by introducing the local dg Lie algebra LRiem on a Riemannian
manifold X that controls deformations of X as a Riemannian manifold.
This local dg Lie algebra acts on field theories that are defined on Rie-
mannian manifolds; we will exhibit this action explicitly in the case of
scalar field theories. The current associated to the action of this Lie al-
gebra is the stress-energy tensor.

Let (X, g0) be a Riemannian manifold of dimension d. Consider the
local dg Lie algebra LRiem(X) consisting of the sheaf Vect of smooth
vector fields in degree 0 and the sheaf Γ(X, Sym2 TX) in degree 1. The
differential d sends a vector field V to dV = LV g0, the Lie derivative
of the metric g0 along V. The bracket is given by the Lie bracket of
vector fields in degree 0 and by the Lie derivative acting on symmetric
2-tensors for the action of a degree 0 element on a degree 1 element.

The degree 0 component thus encodes infinitesimal diffeomorphisms
of X, and the zeroth cohomology is the vector space of Killing fields for
g0. The degree 1 component encodes infinitesimal deformations of the
metric g0, and the first cohomology identifies first-order deformations
modulo infinitesimal diffeomorphism. Hence, LRiem(X) is the dg Lie
algebra describing the formal neighbourhood of (X, g0) in the moduli
space of Riemannian manifolds.

Example: For simplicity, let us now suppose X is oriented. Consider the
free scalar field theory on X, defined by the Abelian elliptic dg Lie al-
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gebra

M(X) = C∞(X)[−1]
4g0−−→ Ωd(X)[−2]

where the superscript indicates cohomological degree, and

4g0 = d ∗ d

is the Laplacian for the metric g0, modified to land in top forms. This dg
Lie algebra describes the formal moduli space of harmonic functions on
(X, g0). The pairing onM is the integration pairing.

To describe the action of LRiem(X) on M(X), we specify an action
functional SL that couples the fields in LRiem(X) to those inM(X). Let
φ, ψ ∈ M(X)[1] denote fields of cohomological degree 0 and 1, respec-
tively, and let V ∈ Vect(X) and α ∈ Γ(X, Sym2 TX) denote elements of
L(X). We define

SL(φ, ψ, V, α) =
∫

φ(4g0+α −4g0)φ +
∫
(Vφ)ψ.

On the right hand side we interpret 4g0+α as a formal power series in
the field α; in other words, we expand the dependence of that Laplacian
on α order by order, as in usual perturbation theory. The fact that SL

satisfies the master equation follows from the fact that the Laplacian
4g0+α is covariant under infinitesimal diffeomorphisms:

4g0+α + ε[V,4g0+α] = 4g0+α+εLV g0+εLV α.

One can rewrite this assertion in the language of L∞ algebras by Taylor
expanding4g0+α in powers of α. The resulting L∞-algebra LRiem(X)n
M(X) describes the formal moduli space of Riemannian manifolds to-
gether with a harmonic function φ.

Note that the classical master equation holds on the nose, and not
just modulo functionals that depend only on the fields in L. This means
that we have an inner action of LRiem(X) on the theory, and not just an
action. The resulting L∞ map from LRiem

c (X) to classical observables
encodes the stress-energy tensor: the dependence of the theory on the
background metric. ♦

Example: Let us modify the previous example by considering a scalar
field theory with a polynomial interaction, so that the action functional
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has the form ∫
φ4g0 φ + ∑

n≥2

λn

n!
φn dVolg0 .

Hence we are deforming the Abelian dg Lie algebra from the preced-
ing example to obtain a non-Abelian L∞ algebra Mλ with brackets ln
defined by

ln : C∞(X)⊗n → Ωd(X)

where

ln(φ1, . . . , φn) = λnφ1 · · · φndVolg0 .

The action of LRiem onM is defined, as in the preceding example, by
specifying an action functional SL that couples the two types of fields:

SL(φ, ψ, V, α)+S(φ, ψ) =
∫

φ4g0+αφ+ ∑
n≥2

λn
1
n! φ

ndVolg0+α +
∫
(Vφ)ψ.

The associated L∞-algebraLRiem(X)nMλ(X) describes the formal mod-
uli space of Riemannian manifolds together with a function φ satisfying
a nonlinear PDE depending on the interaction. ♦

Conformal geometry

We next discuss classical conformal field theories.

As above, let (X, g0) be a Riemannian manifold. Define a local dg Lie
algebra Lcon f on X by setting the degree 0 component to be Vect(X)⊕
C∞(X) and the degree 1 component to be Γ(X, Sym2 TX). In other words,
we have added to LRiem a copy of C∞(X) that encodes Weyl rescalings
of the metric. The differential on Lcon f (X) is

d(V, f ) = LV g0 + f g0

where V ∈ Vect(X) and f ∈ C∞(X). The Lie bracket is defined by
saying that Vect(X) acts on everything by Lie derivative, and that

[ f , α] = f α

for f ∈ C∞(X) and α ∈ Γ(X, Sym2 TX). The Weyl rescalings form an
Abelian sub-Lie algebra.
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We observe that H0(Lcon f (X)) is the Lie algebra of conformal sym-
metries of X, since d(V, f ) = 0 implies that the infinitesimal deforma-
tion LV g0 is just given by a Weyl rescaling − f g0. Likewise, we note
that H1(Lcon f (X)) is the space of first-order conformal deformations of
X. Thus Lcon f describes the formal neighborhood in the moduli space
of conformal metrics of the conformal class of (X, g0). The inclusion
LRiem → Lcon f of dg Lie algebras encodes the formal version of the
quotient map from the moduli of Riemannian manifolds to the moduli
of conformal manifolds. The local dg Lie algebra Lcon f will act on any
classical conformal field theory; indeed, this assertion is almost tauto-
logical, inasmuch as a conformal field theory means a family of field
theories over the moduli of conformal manifolds.

Example: Consider the case of the free scalar field theory in dimension
2. LetM be the elliptic Abelian dg Lie algebra

C∞(X)
4g0−−→ Ω2(X),

as described in a previous example (as before the complex is in degrees
1, 2 when we view it as an L∞ algebra).

It is a straightforward and standard computation to verify that in
dimension 2, the action functional is invariant under Weyl rescaling. (In
more detail, a Weyl rescaling of the metric g 7→ g′ = e f g just rescales
the Laplacian on functions by the factor e− f ; this scaling factor on the
Laplacian is canceled by the scaling factor in the volume form dVolg.)
Hence, the action ofLRiem onM extends to an action ofLcon f by having
C∞(X) act trivially.

This action does not extend to the scalar field with a polynomial in-
teraction, because no polynomial interaction is conformally invariant,
as the volume form dVolg0 changes with Weyl scaling. However, if we
have n scalar fields, so thatM is

C∞(X)⊗Rn 4g0−−→ Ω2(X)⊗Rn

we have a non-trivial deformation by choosing a metric on Rn. If we
vary the flat metric δij on Rn by δij + hij, then the Lagrangian giving the
deformation is ∫

R2
hij(φ)dφi ∗g0 dφj

where the Hodge star operator is defined with respect to g0. This the-
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ory is manifestly conformally invariant, although only at the classical
level. ♦

There are many other, but more complicated, examples of this nature.
If X is a conformal 4-manifold, then Yang-Mills theory on X is confor-
mally invariant at the classical level. The same goes for self-dual Yang-
Mills theory. One can explicitly write an action of Lcon f on the elliptic
L∞-algebra on X describing either self-dual or full Yang-Mills theory.

Complex geometry

We now turn to the case of holomorphic field theories. (An extensive
treatment can be found in Williams (2020).)

Let X be a complex manifold. Consider the local dg Lie algebra

Lhol(X) = Ω0,∗(X, T1,0X),

equipped with the Dolbeault differential ∂ and the Lie bracket of vector
fields. The zeroth cohomology of this sheaf is the sheaf of holomorphic
vector fields on X, and Lhol is a resolution with a differential-geometric
flavor. A holomorphic classical field theory will be a theory with an
action of Lhol(X).

Remark: A stronger notion of holomorphicity might require the field
theory to be acted on by the group of holomorphic diffeomorphisms
of X, such that the derivative of this action extends to an action of the
local dg Lie algebra Lhol . ♦

Let us now give some examples of field theories acted on by Lhol .

Example: Let X be a complex manifold of complex dimension d, and let
g be a finite-dimensional Lie algebra for a complex Lie group G. Given
a holomorphic principal G-bundle P → X, consider the adjoint bundle
ad P, which is a holomorphic vector bundle. The associated Dolbeault
complex Ω0,∗(X, ad P) is the dg Lie algebra that describes the formal
neighborhood of P in the moduli of principal G-bundles on X. Form
the cotangent theory associated to this formal moduli space, which is a
classical field theory encoded by

M = Ω0,∗(X, ad P)⊕Ωd,∗(X, (ad P)∨)[d− 3].
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This theory is a holomorphic version of BF theory. For simplicity, we
will focus on the case of the trivial bundle so that we are working with
Dolbeault forms valued in g and g∨, respectively.

As discussed in Costello (2013a), this example is of interest to physics.
For instance, when d = 2 it describes a holomorphic twist of N = 1 su-
persymmetric gauge theory. In addition, one can express holomorphic
twists of supersymmetric σ-models in these terms via the formalism of
L∞ spaces developed in Costello (2011a, 2013a); Grady and Gwilliam
(2015); Gwilliam et al. (2020).

The dg Lie algebra Lhol(X) acts by Lie derivative on the Dolbeault
complex Ωk,∗(X) for holomorphic k-forms. An explicit description is
given by the Cartan homotopy formula

LVω = [ιV , ∂]ω,

where the contraction

Ω0,∗(X, TX)×Ωk,∗(X) → Ωk−1,∗(X)
(V, ω) 7→ ιVω

is the Ω0,∗(X)-linear extension of the contraction with smooth vector
fields. In this way, L acts on M. This action preserves the invariant
pairing.

It is straightforward to express this action in terms of anL-dependent
action functional. If α ∈ Ω0,∗(X, g)[1], β ∈ Ωd,∗(X, g∨)[d− 2] and V ∈
Ω0,∗(X, TX)[1], we define

SL(α, β, V) =
∫ 〈

β, (∂ + LV)α
〉
+ 1

2 〈β, [α, α]〉 .

Note that the fields α, β, V can be of mixed degree.

Consider the situation where V ∈ Ω0,∗(X, TX) is a cocycle of co-
homological degree 1. Then V determines a deformation of complex
structure of X, and the ∂-operator for this deformed complex structure
is ∂ + LV . The action functional SL therefore describes the variation of
the original action functional S as we vary the complex structure on
X. Other terms in SL encode the fact that the functional S is invariant
under holomorphic symmetries of X. ♦

We will return to this example throughout our discussion of Noether’s
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theorem. For instance, in dimension d = 1 and with g Abelian, we will
see in Section 14.2 that the quantized construction leads to a version of
the Segal-Sugawara construction: a map from the Virasoro vertex alge-
bra to the vertex algebra associated to a free βγ system.

Now let us consider a larger set of symmetries that appears in field
theories defined on a complex manifold X together with a holomorphic
principal G-bundle P → X. When X is a Riemann surface, field theo-
ries of this form play an important role in the mathematics of chiral
conformal field theory.

The relevant local dg Lie algebra L is

L(X) = Ω0,∗(X, TX)n Ω0,∗(X, ad P)

so that L(X) is the semi-direct product of the Dolbeault resolution of
holomorphic vector fields with the Dolbeault complex with coefficients
in the adjoint bundle ad P. Thus, L(X) is the dg Lie algebra controlling
deformations of X as a complex manifold equipped with a holomorphic
G-bundle. It is also known as the Atiyah algebroid AtP of P.

Example: Let V be a finite-dimensional representation of G. Consider
the Abelian elliptic moduli problem Ω0,∗(X, P ×G V)[−1] describing
holomorphic sections of the associated bundle. Form the cotangent the-
ory, encoded by

M(X) = Ω0,∗(X, V)[−1]⊕Ω0,∗(X, V∨)[d− 2].

This classical theory is manifestly acted on by the local L∞ algebra Lwe
described above, since deformations of the principal bundle P deform
the associated bundle as well.

When V is a trivial representation, one can view this theory as a holo-
morphic σ-model into V. (For nontrivial representations, it is a kind of
twisted σ-model.) Hence, as a generalization, we could replace the vec-
tor space V by a complex manifold M with a G-action and consider the
cotangent theory to the moduli of holomorphic maps to M. ♦

Example: Consider the βγ system on C, as developed in Section I.5.4.
The dg Lie algebraM describing this theory is

M(C) = Ω0,∗(C, V)[−1]⊕Ω1,∗(C, V∗)[−1],

where the field γ denotes a section of the first summand and the field β
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denotes a section of the second. Consider the dg Lie algebra

L = Ω0,∗(C, T1,0C),

the Dolbeault resolution of holomorphic vector fields on C. This Lie
algebra L acts onM by Lie derivative. The action functional encoding
this action is

SL(β, γ, V) =
∫
(LV β)γ,

where β ∈ Ω0,∗(C, V), γ ∈ Ω1,∗(C, V∗) and V ∈ Ω0,∗(C, TC).

In this case there is no central extension. Therefore, we have a map

Φ : Lc[1]→ Obscl

of precosheaves of cochain complexes. At the cochain level, this map
is easy to describe: it simply sends a compactly supported vector field
V ∈ Ω0,∗

c (U, TU)[1] to the observable

Φ(V)(β, γ) =
∫

U
(LV β) γ.

We are interested in what this construction does at the level of coho-
mology.

Let us work on an open annulus A ⊂ C. We have seen in Section I.5.4
that the cohomology of Obscl(A) can be expressed in terms of the dual
of the space of holomorphic functions on A:

H0(Obscl(A)) = Ŝym
∗ (

Hol(A)∨ ⊗V∨ ⊕Ω1
hol(A)∨ ⊗V

)
,

where Hol(A) denotes holomorphic functions on A, Ω1
hol(A) denotes

holomorphic 1-forms, and we are taking the continuous linear duals of
these spaces. Further, we use, as always, the completed tensor product
when defining the symmetric algebra. The other cohomology groups of
Obscl(A) vanish.

In a similar way, we can identify

H∗(Ω0,∗
c (A, T1,0 A)) = H∗(Ω0,∗(A, K⊗2

A ))∨[−1],

by Serre duality.

The residue pairing gives a dense embedding

C[t, t−1]dt ⊂ Hol(A)∨.
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There is a concrete map at the cochain level

R : C[t, t−1][−1]→ Ω0,∗
c (A)

that realizes this residue embedding, defined as follows. Choose a smooth
function f on the annulus that takes value 1 in a neighborhood of the
outer boundary and value 0 in a neighborhood of the inner boundary.
Then, ∂ f has compact support. The map R sends a polynomial P(t)
to ∂( f P). One can check that this construction is compatible with the
residue pairing: if Q(t)dt is a holomorphic one-form on the annulus,
then ∮

P(t)Q(t)dt =
∫

A
∂( f (t, t)P(t))Q(t)dt,

using Stokes’ theorem.

In fact, the residue pairing tells us that a dense subspace of H1(Lc(A)) is

C[t, t−1]∂t ⊂ H1(Ω0,∗
c (A, TA)).

We therefore want to describe a map

Φ : C[t, t−1]∂t → Ŝym
∗ (

Hol(A)∨ ⊗V∨ ⊕Ω1
hol(A)∨ ⊗V

)
.

In other words, given an element P(t)∂t ∈ C[t, t−1]dt, we need to de-
scribe a functional Φ(P(t)∂t) on the space of pairs

(β, γ) ∈ Hol(A)⊗V ⊕Ω1
hol(A)⊗V∨.

From what we have explained so far, it is easy to calculate that this
functional is

Φ(P(t)∂t)(β, γ) =
∮

(P(t)∂tβ(t)) γ(t).

The reader familiar with the theory of chiral conformal field theory and
vertex algebras will see that this is the classical limit of a standard for-
mula for the Virasoro current.

For the quantum analogue of this situation, see Section 14.2. ♦
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12.7 Noether’s theorem and the operator product
expansion

Consider a translation-invariant field theory on Rn. Let Obscl(0) de-
note the classical point observables, as considered in Chapter 10. In that
chapter, we saw how the cochain complex Obscl(0) has an additional
algebraic structure coming from the operator product expansion. It en-
codes the singularities appearing in the factorization product to leading
order in h̄.

The space of classical point observables Obscl(0) is a dg commutative
algebra. The operator product expansion (OPE) gives a linear map

{−,−}OPE : Obscl(0)⊗Obscl(0)→ (Cω(Rn \ 0)/ ')⊗Obscl(0).

On the right hand side, Cω(Rn \ 0)/ ' is the space of real-analytic
functions on Rn \ 0 modulo those that extend across the origin as con-
tinuous functions.

The linear map {−,−}OPE is a cochain map, and it is a derivation in
each factor for the commutative algebra structure on classical observ-
ables. Further properties of {−,−}OPE are listed in Proposition 10.3.1.2.

Now suppose that our classical theory on Rn is acted on by a translation-
invariant local Lie algebra L on Rn. We have seen that this action gives
rise to a map of P0 factorization algebras from the enveloping P0 fac-
torization algebra U

P0
α (L) of L to the P0 factorization algebra Obscl of

classical observables.

One can ask if there is a similar statement one can make about the
OPE? Is it possible to define the analog of the bracket {−,−}OPE on the
point observables in the factorization algebra U

P0
α (L)? If so, does the

map of 12.4.1.2 respect the map {−,−}OPE?

In this section we will answer these questions in the affirmative, un-
der an additional hypotheses on L: we will assume that L is elliptic, in
the sense that the differential on L makes L into an elliptic complex.
We will also make the simplifying assumption that L is not an L∞ al-
gebra, but an ordinary dg Lie algebra. (This assumption is not strictly
necessary, but it makes arguments a little easier. The L∞ versions can
be readily supplied at the cost of extra notation.)
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12.7.1 The OPE bracket for local Lie algebras

The first thing we need to do is to define the analog for L of the space
of point observables. To do it we first note, by Lemma 12.2.3.3, that the
central extension L̂ is split when viewed as an extension of cochain
complexes. The cochain complex that will play the role of point ob-
servables will not depend on the central extension, although the OPE
bracket will depend on the central extension.

Suppose that the local Lie algebra L arises as sections of a graded
vector bundle L on Rn. Since everything is translation-invariant, L is a
trivial vector bundle. For any open U ⊂ Rn, let L(U) refer to the dis-
tributional sections of L, and let L(0) denote the space of distributional
sections that are supported at the origin in Rn. It is the costalk at the
origin of the cosheaf L.

The analog of point observables will be Sym∗ L(0). Our next task is
to define an OPE map

{−,−}OPE : Sym∗(L(0)[1])⊗ Sym∗(L(0)[1])→
(Cω(Rn \ 0)/ ')⊗ Sym∗(L(0)[1]).

Here, we are following the terminology introduced in Chapter 10: Cω(Rn \
0) is the space of real-analytic functions on Rn, and the equivalence re-
lation' identifies two real analytic functions if they differ by a function
that extends across 0 as a continuous function.

It is in the definition of {−,−}OPE that we will use the assump-
tion that L(Rn) is an elliptic complex. In fact, we will make a slightly
stronger assumption on L(Rn), that puts us in a familiar setting, even
though it is not strictly necessary. We assume that there is a gauge-

fixing operator dGF
L such that the commutator [dL, dQGF

L ] is a general-
ized Laplacian. This assumption puts us in the situation we have stud-
ied extensively in field theory.

If we refer to the commutator [dL, dQGF

L ] as4L, then we can define a
parametrix

Φ : Lc(R
n)→ Lc(R

n)

that is an inverse to 4L up to a smoothing operator. We finally define
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the parametrix for the differential dL to be

P(Φ) = dGF
L Φ : Lc(R

n)→ Lc(R
n),

which satisfies

[dL, P(Φ)] = Id+ a smooth operator.

We will use this parametrix to define the OPE bracket on Sym∗(L(0)[1]).
Since this bracket will be a derivation in each factor, it suffices to define
it on the generators L(0)[1] of this dg commutative algebra.

The OPE bracket will be defined in terms of the Lie bracket on the
central extension L̂ of L. Since the central extension splits when viewed
as an extension of cochain complexes, we can view this Lie bracket as a
map

[−,−] : Lc(R
n)⊗Lc(R

n)→ Lc(R
n)⊕C · c[−1].

If we have inputs J ∈ L(0) and J′ ∈ L(Rn), where J′ is smooth near
0,then

[J, J′] ∈ L(0)⊕C · c[−1]

is well-defined because of the local nature of the central extension and
of the Lie bracket on L.

12.7.1.1 Definition. The OPE bracket

{−,−}OPE : Sym∗(L(0)[1])⊗ Sym∗(L(0)[1])
→ (Cω(Rn \ 0)/ ') Sym∗(L(0)[1])

is defined on the generators in L(0)[1] by

{J(0), J′(x)}OPE = −(−1)|J|[J(0), P(Φ)J′(x)] ∈ L(0)[1] ⊕ C.

On the right hand side, we apply the parametrix P(Φ) to J′(x) to get an
element of L(Rn) with singularities only at x. By bracketing with J(0) using
the Lie bracket on the central extension L̂, we find an element of L(0)[1]⊕C.

12.7.1.2 Proposition. The operation

{−,−}OPE : Sym∗(L(0)[1])⊗ Sym∗(L(0)[1])→
(Cω(Rn \ 0)/ ') Sym∗(L(0)[1])

satisfies all the properties listed in Proposition 10.3.1.2.
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Proof Let us first check that {−,−}OPE is a cochain map on the gener-
ators L(0). We have

dL[J(0), P(Φ)J′(x)] = [dL J(0), P(Φ)J′(x)]+ (−1)|J|[J(0), dLP(φ)J′(x)].

Now,

dL(P(Φ)J′(x)) = −P(Φ)dL J′(x) + J′(x) + ρ(x)

where the remainder term ρ(x) is a smooth function of x, i.e., with no
singularities at 0. (This term arises from the fact that [dL, P(Φ)] is the
identity plus a smoothing operator.)

Dropping the terms non-singular in x, we find

dL[J(0), P(Φ)J′(x)] = [dL J(0), P(Φ)J′(x)]− (−1)|J|[J(0), P(Φ)dL J′(x)]

+ (−1)|J|[J(0), J′(x)].

Since J(0), J′(x) have disjoint support, the last term vanishes. Incorpo-
rating the signs in the definition of {−,−}OPE, we see that it is a cochain
map.

The bracket {−,−}OPE is extended to a a bilinear operator on Sym∗(L(0))
by asking that it is a derivation in each factor. The remaining things to
check are the compatibilities between {−,−}OPE and the action of dif-
ferentiation on L(0). These, however, are not difficult and can be ver-
ified along the same lines as the proof of the corresponding statement
in Chapter 10. �

The OPE bracket on classical point observables captures the singular-
ities in the factorization product between quantum point observables,
to leading order in h̄. The OPE bracket we build from a local Lie algebra
has a similar interpretation, but where the algebra of quantum observ-
ables is replaced by the twisted enveloping factorization algebra UαL,
as defined in section I.3.6.

By definition,

(UαL) (U) = C∗(L̂c(U))⊗C[c] Cc=1

is obtained from the Lie algebra chains of L̂c(U) by setting the central
element to 1. As such, there is an isomorphism of graded vector spaces

(UαL) (U) = Sym∗(Lc(U)[1]).
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The complex Uα(L)(U) has a filtration where

FkUα(L)(U) = Sym≤k(Lc(U)[1]).

In particular, the subspace given by F1, which is Lc(U)[1]⊕C, is a sub-
complex. By using Lemma 12.2.3.3, which tells us that the extension
provided by α is trivial as an extension of cochain complexes, we see
that in fact Lc(U)[1] is naturally a subcomplex of Uα(L)(U). By vary-
ing the open subset U, we find that there is a map of precosheaves of
cochain complexes

Lc[1]→ Uα(L).

Passing to cohomology, we find that there is a natural map

H∗(Lc(U)[1])→ H∗(Uα(L)(U)).

Since we assume that the differential on L is elliptic, Lc(U)[1] and
Lc(U)[1] are quasi-isomorphic by the Atiyah-Bott lemma. Hence, for
any point p ∈ U, we have a map of graded vector spaces

ρ : H∗(Lc(p)[1])→ H∗(Uα(L)(U)).

Here, as before, by Lc(p) we mean those elements of Lc(U) which are
supported at p.

We assumed that our local Lie algebraL on Rn is translation-invariant.
Thus any class J(0) ∈ H∗(Lc(0)[1]) can be translated to J(x) ∈ H∗(Lc(x))
for any x ∈ Rn. Now fix two elements J, J′ ∈ H∗(Lc(0)[1]). Taking ε

small, we view

ρ(J(0)) ∈ H∗(Uα(L)(D(0, ε))),

ρ(J′(x)) ∈ H∗(Uα(L)(D(x, ε)))

The factorization product of these elements is then an element

J(0) · J′(x) ∈ H∗ (C∞(Rn \ 0, Uα(L)(Rn))) .

(We can take x ∈ Rn \ 0, as opposed to Rn \ D(0, 2ε), by using that fact
that this construction works for arbitrarily small ε and that the factor-
ization product is independent of the choice of ε as long as ‖x‖ > 2ε.)

12.7.1.3 Lemma. The OPE bracket

{J(0), J′(x)}OPE ∈ (Cω(Rn \ 0)/ ')⊗ (H∗(Lc(0)[1])⊕C)



12.7 Noether’s theorem and the operator product expansion 329

as defined in Definition 12.7.1.1 satisfies

{J(0), J′(x)}OPE ' ρ(J(0)) · ρ(J′(x)).

That is, {J(0), J′(x)}OPE and ρ(J(0)) · ρ(J′(x)) differ only by functions of x
that take valued in Uα(L)(Rn) and that are continuous at x = 0.

In other words, the OPE bracket {J(0), J′(x)}OPE captures the sin-
gular part of the factorization product between the elements ρ(J(0))
and ρ(J′(x)) in the cohomology of Uα(L). This lemma is the analog
of Proposition 10.3.2.2, which tells us that the OPE bracket on classi-
cal observables can understood either by an explicit formula, or as the
singular part in the factorization product of quantum observables.

Proof To prove this claim, we take cochain representatives J̃(0) and
J̃′(x), which are elements of Lc(D(0, ε))[1] and Lc(D(x, ε))[1] respec-
tively. We choose, as in the definition of the OPE bracket, an operator
d∗L on L such that the commutator4 = [dL, d∗L] is a generalized Lapla-
cian operator. We take a parametrix Φ for4, which we assume to be of
the form

Φ : Lc(R
n)→ Lc(R

n)

Φ(α) = f (x)4−1α

where4−1 indicates the standard Green’s operator, and f (x) ∈ C∞
c (Rn)

is some function which is 1 in a ball x = 0 of radius R, and of com-
pact support. The result will, as usual, be independent of the choice of
parametrix.

We let P(Φ) be the composition d∗LΦ. For any closed element α ∈
Lc(Rn)[1],

dL(P(Φ)α) = α + S(α).

If α is supported in a ball of radius ε around 0, then S(α) is supported
in the region where R < |x| < R + ε.

Let us calculate the differential on Uα(L) applied to the factorization
product of J̃(0) with P(Φ) J̃′(x). We find

dUα(L)

(
P(Φ) J̃′(x) · J(0)

)
= [P(Φ) J̃′(x), J̃(0)] + J̃′(x) · J̃(0) + SJ̃′(x) · J̃(0).

Note that SJ̃′(x) has support disjoint from 0 for small x, so that SJ̃′(x) ·
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J̃(0) extends smoothly across x = 0. We find that, modulo things which
extend smoothly across 0 and after passing to cohomology,

J̃′(x) · J̃(0) ' −[P(Φ) J̃′(x), J̃(0)].

Switching the order of J̃ and J̃′ on both sides, we pick up a sign of

(−1)| J̃(0)|, which appears in our definition of {−,−}OPE. �

We now give some examples.

Example: Let L be the Abelian local Lie algebra

L(Rn) = C∞(Rn)
d∗d−−→ Ωn(Rn)[−1]

that consists of functions on Rn in degrees 0, top forms in degree 1, and
with differential the Laplacian. We let φ be an element of L in degree 0,
and ψ an element in degree 1. Define a central extension

L̂ = L⊕C · c[−1]

with Lie bracket

[φ, ψ] = c
∫

Rn
φψ

We can thus identify Sym∗(L(0)[1]) with the point observables in the
free scalar field. The OPE bracket {−,−}OPE defined using the Lie bracket
on L̂ coincides with that for the point observables in a free scalar field.♦

Example: More generally, suppose that we have a translation-invariant
free field theory on Rn associated to an Abelian local Lie algebra M,
with a pairing of degree−3. We let L =M[1]. The invariant pairing on
M gives rise to a 1-shifted central extension L̂ = L⊕C · c[−1], where
the bracket of two elements α, β ∈ Lc is c 〈α, β〉, 〈−,−〉 indicating the
invariant pairing onM.

Let Obscl be the corresponding commutative factorization algebra,
and let Obscl(0) denote the dg commutative algebra of point observ-
ables. Thus,

Obscl(0) = Sym∗(M!
(0)[−1]) = Sym∗(L(0)[1]),

where we have used the invariant pairing to identifyM![−1] with L[1].
This OPE bracket {−,−}OPE on Obscl(0) coincides with that on Sym∗(L(0)[1]).♦

Example: Consider L = Ω∗R ⊗ g, with the trivial central extension. The
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cohomology of L(0)[1] is given by g, with representatives given by
Xδx=0 where X ∈ g.

The Green’s function for the Laplacian on R is 1
2 |x|. The parametrix

for the de Rham operator is the composition of d∗ with the operator of
convolution with the Green’s function. Explicitly, it is the linear map

P : Ω1
c (R) → Ω0(R)

f (x)dx 7→ ∂x′
∫

x f (x)dx 1
2 |x− x′|

= 1
2

∫
x f (x)dx (δx<x′ − δx>x′) .

If X, Y ∈ g, the OPE bracket {Xδx=0, Yδx=ε} is given by−[Xδx=0, P(Yδx=ε)].
Since

Pδx=ε = − 1
2 δx>ε +

1
2 δx<ε,

we find

{Xδx=0, Yδx=ε}OPE = 1
2 [X, Y] (δε<0 − δε>0) .

We should interpret this example as follows. If we take the product of
X times Y with Y to the right of X, minus the product taken in the other
order, the answer is [X, Y].

This example is the semi-classical version of the computation in Sec-
tion I.3.4, where we saw that the enveloping factorization algebra of the
sheaf of Lie dg Lie algebras Ω∗R⊗ g is given by the universal enveloping
algebra of g. ♦

Example: This example is the holomorphic version of the previous ex-
ample, and it is the semi-classical limit of the construction of the Kac-
Moody algebra as an enveloping factorization algebra presented in Sec-
tion I.5.5. In this example, we take L to be the local Lie algebra Ω0,∗

C
⊗ g

on C, with trivial central extension. Then the cohomology of L(0)[1]
is provided by g⊗C[∂z]. Representatives for these cohomology classes
are provided by X ∂n

z δz=0.

The OPE bracket is determined by that between Xδz=0 and Yδz=u.

Since the parametrix P (morally ∂
−1

applied to δz=0 is 1
2πi

1
z−u , we find

{Xδz=0, Yδz=u}OPE =
−1
2πi

1
u

.

This bracket is the semi-classical limit in the OPE of the Kac-Moody
vertex algebra, at level zero. (Note that we are recovering the vertex
Poisson structure.) ♦
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12.7.2 Classical Noether’s theorem and the OPE

In this subsection we will show that our version of classical Noether’s
theorem is compatible with the OPE brackets on both the local Lie al-
gebra and on the classical point observables.

Suppose that a translation-invariant elliptic local Lie algebra L acts
on a translation-invariant classical field theory. Consider the Noether
map from theorem 12.4.0.1:

Lc → Obscl .

By the remark following theorem 12.4.0.1, this map extends to a map
from the distributional completion Lc. It therefore gives a cochain map

µ : Lc(0)→ Obscl(0)

between the costalks of these cosheaves.

Because Obscl(0) is a commutative dg algebra, the map µ determines
a map of dg commutative algebras

µ : Sym∗ Lc(0)→ Obscl(0),

which in turn gives rise to a map

[µ] : Sym∗ H∗(Lc(0))→ H∗Obscl(0)

of graded commutative algebras.

12.7.2.1 Proposition. Suppose a translation-invariant elliptic local Lie alge-
bra L acts on a translation-invariant classical field theory. Suppose further
that both the translation-invariant classical field theory and the action of L
can be defined at the quantum level, modulo h̄2.

Then the map [µ] intertwines the OPE brackets on Sym∗ H∗((Lc(0)) and
on H∗(Obscl(0)). That is, if J, J′ ∈ Sym∗ H∗(Lc(0)), then

[µ]
(
{J(0), J′(x)}OPE

)
= {[µ](J)(0), [µ](J′)(0)}OPE

as elements in (Cω(Rn \ 0)/ ')⊗ H∗(Obscl(0)).

Remark: The assumption that the field theory and the L action can be
defined modulo h̄2 is not strictly necessary; it does facilitate the proof.♦

Proof To prove this claim, it suffices to take J, J′ to be elements of
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H∗(Lc(0)). As we will see in Chapter 13, the classical Noether map
extends to a quantum Noether map of the form

µq : Rees Uα(L)→ Obsq

where Rees Uα(L) is a Rees construction applied to the enveloping fac-
torization algebra Uα(L). The quantization parameter h̄ is the Rees pa-
rameter. (See Chapter 13 for more details on the Rees construction.)

Lemma 12.7.1.3 tells us that using the map

ρ : H∗(Lc(0))→ H∗(Uα(Lc)(D(0, ε))),

we can equate the OPE bracket of two elements J, J′ ∈ H∗(Lc(0)) with
the singularities in the factorization product of ρ(J)(0), ρ(J′)(x). If we
perform the same calculation in the Rees algebra Rees Uα(L) and in-
clude the Rees parameter h̄, we will find that

ρ(J)(0) · ρ(J′)(x) ' h̄{J(0), J′(x)}OPE,

where we view ρ(J) and ρ(J′) as elements of H∗(Rees Uα(L)(D(0, ε)),
with ε being sufficiently small.

The map µq of 12.7.2 respects the factorization product, and therefore
so does the map [µq] obtained from µq by passing to cohomology. This
feature tells us that

[µq]ρ(J)(0) · [µq]ρ(J)(x) = [µq](ρ(J(0)) · ρ(J(x))).

Further, [µq]ρ(J) is a lift of [µ](J) to a quantum observable defined mod-
ulo h̄2. Thus, we conclude that

[µ] {J(0), J(x)}OPE = {[µ]J(0), [µ]J(x)}OPE

as desired. �

Let us finish with an example of the OPE formulation of classical
Noether’s theorem.

Example: Let us revisit the example where L be the Abelian local Lie
algebra

L(Rn) = C∞(Rn)
d∗d−−→ Ωn(Rn)[−1]

with φ in degree 0 a function on Rn in degrees 0 and ψ a top form in
degree 1. Define a central extension

L̂ = L⊕C · c[−1]
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with Lie bracket

[φ, ψ] = c
∫

Rn
φψ

LetM = L[−1]. ThenM is the Abelian local Lie algebra with invariant
pairing of degree−3, which describes the free scalar field theory on Rn.

There is an action of L onM, given by the canonical translation ac-
tion of a vector space on itself (here, shifted). The semi-direct product
LoM describing this action is

LoM = (L⊕M, d),

where the differential is the identity map L →M = L[−1].

We can thus identify Sym∗(L(0)[1]) with the point observables in
the free scalar field. The OPE bracket {−,−}OPE defined using the Lie
bracket on L̂ coincides with that for the point observables in a free
scalar field. ♦



13
Noether’s theorem in quantum field theory

In this chapter we explore how to quantize the map that assigns a cur-
rent to a symmetry, using the BV approach. Our main result is a quan-
tum version of Noether’s theorem in the language of factorization alge-
bras, which recovers our classical Noether’s theorem when h̄→ 0. As a
demonstration of this method, we discuss how the local index theorem
arises, following Rabinovich (2020).

13.1 The quantum Noether’s theorem

So far, we have explained the classical version of Noether’s theorem,
which states that given an action of a local L∞ algebra L on a classical
field theory, we have a central extension L̃c of the precosheaf Lc of L∞-
algebras, and a map of precosheaves of L∞ algebras

L̃c → Obscl [−1].

Our quantum Noether’s theorem provides a version of this at the quan-
tum level. Before we explain this theorem, we need to introduce some
algebraic ideas about enveloping algebras of homotopy Lie algebras.

335
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13.1.1 Reformulating the classical case

Recall the notion of the enveloping P0 algebra UP0(g) of a dg Lie alge-
bra, from Definition 11.2.3.1. Explicitly, this enveloping P0 algebra is

UP0(g) = Sym(g[1]),

with the obvious commutative product and with the 1-shifted Poisson
bracket that is the unique biderivation that agrees with the 1-shifted Lie
bracket on g[1]. This construction provides a left adjoint to the forgetful
functor from P0 algebras to dg Lie algebras.

Furthermore, if we have a shifted central extension g̃ of g by C[−1],
determined by a class α ∈ H1(g), we define the twisted enveloping P0
algebra

UP0
α (g) = UP0(g̃)⊗C[c] Cc=1

obtained from UP0(g̃) by specializing the central parameter to 1.

For formal reasons, a version of these construction holds in the world
of L∞ algebras. If a dg commutative algebra is equipped with a 1-shifted
L∞ structure such that all higher brackets are multi-derivations for the
product structure, then it defines a homotopy P0 algebra. (The point is
that the operad describing such gadgets is naturally quasi-isomorphic
to the operad P0.)

In particular, if g is an L∞ algebra, one can directly construct such a
homotopy P0 algebra: take the commutative algebra is Sym(g[1]) and
give it the unique shifted L∞ structure where g[1] is a sub-L∞ algebra
and all higher brackets are derivations in each variable. This L∞ struc-
ture makes Sym(g[1]) into a homotopy P0 algebra, and one can show
that it is the homotopy enveloping P0 algebra of g. We will denote it
by UP0(g) as well, and suppress explicit mention of the fact that this
is a homotopy P0 algebra. (For deeper discussion of these ideas and
their quantum analogues, see Braun and Lazarev (2013); Bashkirov and
Voronov (2017); Gwilliam and Haugseng (2018).)

It is straightforward to formulate a version of these notions at the
level of factorization algebras, along the lines of Section I.3.6.

13.1.1.1 Definition. If L is a local L∞ algebra on a manifold X, its envelop-
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ing P0 factorization algebra UP0L assigns to each open subset U ⊂ X, the
homotopy P0 algebra UP0(Lc(U)).

Similarly, given a cocycle α ∈ H1
loc(L(X)), the twisted enveloping P0

factorization algebra is given by

U
P0
α L(U) = UP0

α (L̃c(U))

for every open U ⊂ X. Here L̃c denotes the central extension of the precosheaf
Lc of L∞ algebras associated to α.

Note that UP0L is a homotopy P0 algebra object in factorization alge-
bras.

We now rephrase the classical version of Noether’s theorem.

13.1.1.2 Theorem. Suppose that a local L∞ algebra L acts on a classical
field theory, whose factorization algebra of classical observables is Obscl . If
the obstruction to lifting this action to an inner action is a local cocycle α in
H1

loc(L(X)), then there is a map

U
P0
α (Lc)→ Obscl

of homotopy P0 factorization algebras.

The universal property of UP0
α (Lc) means that this theorem is a for-

mal consequence of the version of Noether’s theorem that we have al-
ready proved. At the level of commutative factorization algebras, this
map is obtained just by taking the cochain map L̃c(U)[1] → Obscl(U)
and extending it in the unique way to a map of dg commutative alge-
bras

Sym(L̃c(U)[1])→ Obscl(U),

before specializing by setting the central parameter to 1. There are higher
homotopies making it into a map of homotopy P0 algebras, but we will
not write them down explicitly. (They come from the higher homo-
topies making the map L̃c(U)→ Obscl(U) into a map of L∞ algebras.)

This formulation of classical Noether’s theorem is clearly ripe for
quantization. We must simply replace classical observables by quan-
tum observables, and the enveloping P0 algebra by the enveloping BD
algebra.
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13.1.2 The quantum version

Recall the notion of the enveloping BD algebra UBD(g) of a dg Lie al-
gebra, from Definition 11.3.1.2. Concretely,

UBD(g) = C∗(g)[[h̄]] = Sym∗(g[−1])[[h̄]]

with differential dg+ h̄dCE, where dg is the internal differential on g and
dCE is the Chevalley-Eilenberg differential. The commutative product
and Lie bracket are the h̄-linear extensions of those on the enveloping
P0 algebra we discussed above. It is straightforward to modify this dis-
cussion for L∞ algebras and obtain a homotopy BD algebra, in analogy
with our discussion of the enveloping P0 algebra.

Likewise, given a shifted central extension g̃ of g by C[−1], deter-
mined by a class α ∈ H1(g), the twisted enveloping BD algebra

UBD
α (g) = UBD(g̃)⊗C[c] Cc=1

obtained from UBD(g̃) by specializing the central parameter to 1.

There is a natural version of these notions at the level of factorization
algebras, along the lines of Section I.3.6.

13.1.2.1 Definition. If L is a local L∞ algebra on a manifold X, its envelop-
ing BD factorization algebra UBDL assigns to each open subset U ⊂ X,
the homotopy BD algebra UBD(Lc(U)).

Similarly, given a cocycle α ∈ H1
loc(L(X)), the twisted enveloping BD

factorization algebra is given by

UBD
α L(U) = UBD

α (L̃c(U))

for every open U ⊂ X. Here L̃c denotes the central extension of the precosheaf
Lc of L∞ algebras associated to α.

Now we can state the quantum version of Noether’s theorem, mod-
ulo explaining precisely what it means for a Lie algebra to act on a
quantum field theory, which we do in Section 13.2.

13.1.2.2 Theorem. Suppose a local L∞ algebra L acts on a quantum field
theory, whose factorization algebra of quantum observables is Obsq. There is
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then an h̄-dependent local cocycle α in H1
loc(L)[[h̄]] and a map

UBD
α (Lc)→ Obsq

of factorization algebras.

The map will arise by deforming the classical map in a way compat-
ible with the quantization of the field theory.

13.1.3 Interpretation via Noether currents

In Section 12.5, we discussed the relationship between this formulation
of Noether’s theorem and the traditional point of view, via currents.
Let us explain some aspects of this story that are slightly different in
the quantum and classical settings.

Suppose that an ordinary Lie algebra g is acting on a quantum field
theory on a manifold X. Then the quantum analogue of Lemma 12.2.4.2,
which we will prove below, shows that we acquire an action of the lo-
cal dg Lie algebra Ω∗X ⊗ g on the quantum field theory. The quantum
Noether theorem ensures we have a central extension of Ω∗X ⊗ g, given
by a class α ∈ H1(Oloc(Ω∗X ⊗ g[1]))[[h̄]], and a map

UBD(Ω∗X ⊗ g)→ Obsq

from the twisted enveloping BD algebra of this central extension to the
observables of our field theory.

We want to understand this map in terms of conserved currents.

Hence, pick an oriented codimension 1 submanifold N ⊂ X. (We
assume for simplicity that X is also oriented.) Choose an identification
of a tubular neighbourhood of N with N ×R, and let π : N ×R → R

denote the projection map to R.

Let us assume, for the moment, that the central extension vanishes.
The pushforward π∗UBD(Ω∗X ⊗ g) is a locally constant factorization al-
gebra on R, and so encodes a homotopy associative algebra. Moreover,
there is thus an isomorphism of associative algebras

H∗
(

π∗U
BD(Ω∗X ⊗ g)

)
� Rees(U(H∗(N)⊗ g)),
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where the right hand side is the Rees algebra for the universal envelop-
ing algebra of the graded Lie algebra H∗(N) ⊗ g, given by de Rham
cohomology with values in g. This Rees algebra is a C[[h̄]]-algebra that
specializes at h̄ = 0 to the completed symmetric algebra of H∗(N)⊗ g,
but is non-commutative when h̄ is generic (i.e., invertible).

As a concrete consequence of Noether’s theorem, we thus have a map

Rees(Ug)→ H0(π∗Obsq)

of factorization algebras on R. This map is closely related to the tra-
ditional formulation of Noether’s theorem: we are saying that every
symmetry (i.e., element of g) gives rise to an observable on every codi-
mension 1 manifold (that is, a current). The operator product between
these observables agrees with the product in the universal enveloping
algebra.

Now consider the case when the central extension is non-zero. The
group classifying possible central extensions can be identified as

H1(Oloc(Ω
∗
X ⊗ g[1]))[[h̄]] = Hd+1(X, C∗red(g))[[h̄]]

=
⊕

i+j=d+1

Hi(X)⊗ H j
red(g)[[h̄]],

where d is the real dimension of X, and C∗red(g) is viewed as a constant
sheaf of cochain complexes on X. (A version of this computation can
be found in Section 14.3 of Chapter 5 in Costello (2011b) and easily
amended to prove this statement.)

Suppose for simplicity that X is of the form N ×R, where N is com-
pact and oriented. Then the cocycle α can be integrated over N to yield
an element in H2

red(g)[[h̄]], which can be viewed as an ordinary, un-
shifted central extension of the Lie algebra g (but dependent on h̄). Form
the twisted universal enveloping algebra Uαg, obtained by taking the
universal enveloping algebra of the central extension of g and then set-
ting the central parameter to 1. This twisted enveloping algebra admits
a filtration, so that we can form its Rees algebra. Our formulation of
Noether’s theorem then produces a map

Rees(Uαg)→ H0(π∗Obsq)

of factorization algebras on R. In other words, every symmetry de-
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termines a current, up to taking a central extension, which is familiar
theme of quantum mechanical symmetries.

13.2 Actions of a local L∞-algebra on a quantum field
theory

Let us now build toward the proof of the quantum version of Noether’s
theorem. As in the setting of classical field theories, the first thing we
need to pin down is what it means for a local L∞ algebra to act on a
quantum field theory. Again, there are two variants of the definition
we need to consider: one for a field theory with an L-action, and one
for a field theory with an inner L-action. Just as in the classical story, the
central extension that appears in our formulation of Noether’s theorem
appears as the obstruction to lifting an action to an inner action.

Throughout this book we have used the definition of quantum field
theory given in Costello (2011b). The concept of field theory with an
action of a local L∞-algebra L relies on a refined definition of field the-
ory, also given in Costello (2011b): the concept of a field theory with
background fields. (See Section 13 of Chapter 2.) Let us explain this
definition.

13.2.1 Equivariant BV quantization, effectively

We recall some notation and terminology from Chapter 7 and 8 before
explaining the variant we need.

Fix a classical field theory, defined by a local L∞ algebraM on X with
an invariant pairing of cohomological degree −3. We use Q to denote
the linear differential operator on M. Choose a gauge fixing operator
QGF onM, as discussed in Section 7.2, so that we have a generalized
Laplacian [Q, QGF]. As explained in Section 7.2, these choices lead to
the following data:

(i) A propagator P(Φ) ∈ M[1]⊗2, defined for every parametrix Φ. If
Φ, Ψ are parametrices, then P(Φ)− P(Ψ) is smooth.



342 Noether’s theorem in quantum field theory

(ii) A kernel KΦ ∈ M[1]⊗2 for every parametrix Φ, satisfying

Q(P(Φ)− P(Ψ)) = KΨ − KΦ.

These kernels determine the key operators on the space O+
P,sm(M[1])[[h̄]],

the functionals with proper support, smooth first derivative, and at
least cubic modulo h̄. Namely, we obtain the RG flow operator W(P(Φ)−
P(Ψ),−) and BV Laplacian 4Φ, associated to parametrices Φ and Ψ.
There is also a BV bracket {−,−}Φ that satisfies the usual relation with
the BV Laplacian4Φ.

The role of these operators is as follows.

(i) For every parametrix Φ, we have the structure of 1-shifted differen-
tial graded Lie algebra on O(M[1])[[h̄]]. The Lie bracket is {−,−}Φ,
and the differential is

Q + {I[Φ],−}Φ + h̄4Φ.

The subspace O+
sm,P(M[1])[[h̄]] is a nilpotent sub-dg Lie algebra. The

Maurer-Cartan equation in this space is called the quantum master
equation (QME).

(ii) The map W(P(Φ)− P(Ψ),−) takes solutions to the QME with parametrix
Ψ to solutions with parametrix Φ. Equivalently, the Taylor terms of
this map define an L∞ isomorphism between the dg Lie algebras as-
sociated to the parametrices Ψ and Φ.

Now we describe how to incorporate background fields.

If L is a local L∞ algebra, then the functionals O(L[1]), with the
Chevalley-Eilenberg differential, form a dg commutative algebra. The
space O(L[1]⊕M[1]) of functionals on L[1]⊕M[1] can be identified
with the completed tensor product

O(L[1]⊕M[1]) = O(L[1]) ⊗̂π O(M[1]).

One can thus extend to this algebra, by O(L[1])-linearity, the operations
4Φ, {−,−}Φ and ∂P(Φ) associated to a parametrix onM. For instance,
the operator ∂P(Φ) is associated to the kernel

P(Φ) ∈ (M[1])⊗2 ⊂ (M[1]⊕L[1])⊗2.

If dL denotes the Chevalley-Eilenberg differential on O(L[1]), then we
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can form an operator dL ⊗ 1 on O(L[1] ⊕M[1]). Similarly, the linear
differential Q on M induces a derivation of O(M[1]), which we also
denote by Q; we can form a derivation 1⊗ Q of O(L[1]⊕M[1]). The
operators 4Φ and ∂Φ both commute with dL ⊗ 1 and satisfy the same
relation described above with the operator 1⊗Q.

Let

O+
sm,P(L[1]⊕M[1])[[h̄]] ⊂ O(L[1]⊕M[1])

denote the space of those functionals that satisfy the following condi-
tions:

(i) They are at least cubic modulo h̄ when restricted to be functions just
onM[1]. That is, we allow functionals that are quadratic as long as
they are either quadratic in L[1] or linear in both L[1] and inM[1],
and we allow linear functionals as long as they are independent of
M[1]. Further, we work modulo the constants C[[h̄]]. (This clause is
related to the superscript + in the notation.)

(ii) We require our functionals to have proper support as functionals on
L[1]⊕M[1], in the sense of Definition 7.2.4.1.

(iii) We require our functionals to have smooth first derivative, in the
sense of Section 5.4. Note that this condition involves differentiation
by elements of both L[1] andM[1].

We extend the renormalization group flow operator W(P(Φ)− P(Ψ),−)
on the space O+

sm,P(M[1])[[h̄]] to an O(L)-linear operator on O+
sm,P(L[1]⊕

M[1])[[h̄]]. It is defined by the equation

W(P(Φ)− P(Ψ), I) = h̄ log exp(h̄∂P(Φ) − h̄∂P(Ψ)) exp(I/h̄),

as before.

13.2.1.1 Definition. An element

I ∈ O+
sm,P(L[1]⊕M[1])[[h̄]]

solves the L-equivariant quantum master equation for the parametrix Φ if
it satisfies

dL I + QI + {I, I}Φ + h̄4Φ I = 0.

Here dL indicates the Chevalley differential on O(L[1]), extended by tensor-
ing with 1 to an operator on O(L[1]⊕M[1]), and Q is the extension of the
linear differential onM[1].
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As usual, the renormalization group flow takes solutions to the quan-
tum master equation for the parametrix Φ to those for the parametrix Ψ.

13.2.2 Equivariant quantum field theory

There are two different versions of quantum field theory with an action
of a Lie algebra that we consider: an action and an inner action. We
will follow the format of the classical situation, modified to take into
account that in the setting of effective theories, we must work over the
space of parametrices.

Suppose we have a quantum field theory on X, with space of fields
M[1], and let L be a local L∞ algebra on X. To talk about an action of L
onM, we consider the following class of functionals,

Actq
P,sm(L,M) = O+

P,sm(L[1]⊕M[1])/OP,sm(L[1])[[h̄]].

It consists of functionals modulo those that only depend on L. Com-
pare with Definition 12.2.2.4. Note that for each parametrix Φ, there is a
shifted Lie bracket given by {−,−}Φ, in parallel with that on Act(L,M).

Now we can define our notion of a quantum field theory acted on by
the local L∞ algebra L.

13.2.2.1 Definition. Let

I[Φ] ∈ O+
P,sm(M[1])[[h̄]]

denote the collection of effective interactions on M[1] describing the quan-
tum field theory . These satisfy the renormalization group equation, BV master
equation, and locality axiom, as detailed in Section 7.2.9.1.

An action of L on this quantum field theory is a collection of functionals

IL[Φ] ∈ Actq
P,sm(L,M)

for every parametrix Φ satisfying the following properties.

(i) It satisfies the renormalization group equation

W(P(Φ)− P(Ψ), IL[Ψ]) = IL[Φ].
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(ii) Each I[Φ] satisfies the quantum master equation (or Maurer-Cartan equa-
tion) for the dg Lie algebra structure associated to the parametrix Φ. We
can explicitly write out the various terms in the quantum master equation
as follows:

dL IL[Φ] + QIL[Φ] + 1
2{IL[Φ], IL[Φ]}Φ + h̄4Φ IL[Φ] = 0.

Here dL refers to the Chevalley-Eilenberg differential on O(L[1]), and Q
to the linear differential onM[1]. As above, {−,−}Φ is the Lie bracket on
O(M[1]) that is extended in the natural way to a Lie bracket on O(L[1]⊕
M[1]).

(iii) The locality axiom, as explained in Section 7.2.9.1, holds: the support of
IL[Φ] converges to the diagonal as the support of Φ tends to zero, with the
same bounds explained in Section 7.2.9.1.

(iv) Under the natural quotient map

Actq
P,sm(L,M)→ O+

sm,P(M[1])[[h̄]],

given by restricting to functions just of M[1], the image of IL[Φ] is the
original action functional I[Φ] defining the underlying, non-equivariant
theory.

We will often refer to a quantum theory with an action of a local L∞
algebra as an equivariant quantum field theory.

Remark: One should interpret this definition as a variant of the defini-
tion of a family of theories over a pro-nilpotent base ring A. Indeed, if
we have an L-action on a theory on X, then the functionals IL[Φ] define
a family of theories over the dg base ring C∗(L(X)) of cochains on the
L∞ algebra L(X) of global sections of L. In the case that X is compact,
the L∞ algebra L(X) often has finite-dimensional cohomology, so that
we have a family of theories over a finitely-generated pro-nilpotent dg
algebra.

Standard yoga from homotopy theory tells us that a g-action on any
mathematical object (if g is a homotopy Lie algebra) is the same as a
family of such objects over the base ring C∗(g) that restrict to the given
object at the central fibre. Thus, our definition of an action of the sheaf
L of L∞ algebras on a field theory on X gives rise to an action (in this
homotopical sense) of the L∞ algebra L(X) on the field theory.

However, our definition of action is stronger than this. The locality
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axiom we impose on the action functionals IL[Φ] involves both fields in
L and inM. As we will see later, this means that we have a homotopy
action ofL(U) on observables of our theory on U, for every open subset
U ⊂ X, in a compatible way. ♦

13.2.3 Inner actions at the quantum level

The notion of inner action is parallel, except that we enlarge our space
of functionals, in parallel with definition 12.2.2.4. Hence, let

InnerActq
P,sm(L,M) = O+

P,sm(L[1]⊕M[1])[[h̄]]

Each parametrix Φ equips it with a shifted Lie bracket by {−,−}Φ.

13.2.3.1 Definition. An inner action of L on the quantum field theory asso-
ciated to the I[Φ] onM, as above, is defined by a collection of functionals

IL[Φ] ∈ InnerActq
P,sm(L,M)

that satisfy the same four conditions as for an action, except in this larger space
of functionals.

13.3 Obstruction theory for quantizing equivariant
theories

As we explained in Section 7.5, the main result of Costello (2011b) is
that we can construct quantum field theories from classical ones by ob-
struction theory, order by order in h̄. More specifically, for a classical
field theory described by an elliptic L∞ algebra M, the obstruction-
deformation complex is the reduced, local Chevalley-Eilenberg cochain
complex C∗red,loc(M), which by definition is the complex of local func-
tionals on M[1] equipped with the Chevalley-Eilenberg differential.
Note that this result means that the classical theory determines the obstruction-
deformation complex used in constructing quantizations. (The obstruc-
tion cocycle, however, depends on the quantization.)

A similar result holds in the equivariant context, so that the classi-
cal problem determines the obstruction theory. Suppose a classical field
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theory is equipped with an action of a local L∞ algebra L, which we en-
code as a semi-direct product local L∞ algebra LnM, whereM is an
elliptic L∞ algebra. Thus, we can form the local Chevalley-Eilenberg
cochain complex

Oloc((LnM)[1]) = C∗red,loc(LnM),

but it does not provide the only relevant obstruction-deformation com-
plex. In fact, there are several distinct complexes, depending upon which
situation is of interest.

First, consider

C∗red,loc(LnM | L) = C∗red,loc(LnM)/C∗red,loc(L)

consisting of local functional on LnM except those depending just on
L. It provides the correct obstruction-deformation complex for quan-
tizing a classical field theory with an action of L into a quantum field
theory with an action of L. To see this, note that it allows one to modify
both the action functional ofM as well as how L acts onM, but it does
not allow one to deform L itself.

Alternatively, one might wish to deform the action of L onM, while
fixing the classical theory. We denoted the relevant obstruction-deformation
by Act(L,M) earlier (see Definition 12.2.2.4). Note that it fits into an
exact sequence

0→ Act(L,M)→ C∗red,loc(LnM | L)→ C∗red,loc(M)→ 0,

since deforming the whole situation except L itself (the middle term)
can be viewed as deforming the underlying theory (the base, just de-
pending onM) as well as howL acts on the theory (the fiber). A similar
remark at the quantum level. If we fix a non-equivariant quantization
of our original L-equivariant classical theory M, then we can ask to
lift this quantization to an L-equivariant quantization. In this case, the
obstruction-deformation complex is also Act(L,M).

Now, consider the inner versions of the deformation problems just
discussed. For instance, the problem of quantizing a classical field the-
ory with an inner L-action into a quantum field theory with an inner
L-action has obstruction-deformation complex C∗red,loc(LnM). If, in-
stead, we fix a non-equivariant quantization of the original classical
theory M, we can ask for the obstruction-deformation complex for
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lifting it to a quantization with an inner L-action. Here the relevant
obstruction-deformation complex is InnerAct(L,M) of Section 12.2.3.
We note that InnerAct(L,M) fits into a short exact sequence

0→ InnerAct(L,M)→ C∗red,loc(LnM)→ C∗red,loc(M)→ 0,

in parallel with the short exact sequence involving Act(L,M).

13.3.1 Spaces of equivariant theories

A more formal statement of these results about the obstruction-deformation
complexes is the following.

Fix a classical field theory M with an action of a local L∞ algebra
L. Let T (n) denote the simplicial set of quantizations without any L-
equivariance condition. The simplicial structure is defined in Chap-
ter 7.2: an n-simplex is a family of theories over the base ring Ω∗(4n) of
differential forms on the n-simplex. Similarly, let T (n)

L denote the sim-
plicial set of L-equivariant quantizations of this field theory defined
modulo h̄n+1. We will use DK to denote the Dold-Kan functor from
non-positively graded cochain complexes to simplicial sets.

Theorem. The simplicial sets T (n)
L are Kan complexes. In particular, there is

an obstruction map of simplicial sets

T (n)
L → DK

(
C∗red,loc(LnM | L)[1]

)
.

sitting in a homotopy fibre diagram

T
(n+1)
L

��

// 0

��

T
(n)
L

// DK
(

C∗red,loc(LnM | L)[1]
)

.

Furthermore, the natural map

T
(n)
L → T (n),

obtained by forgetting the L-equivariance data in the quantization, is a fibra-
tion of simplicial sets.
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Finally, there is a homotopy fibre diagram

T
(n+1)
L

��

// T (n+1) ×T (n) T
(n)
L

��
T

(n)
L

// DK (Act(L,M)[1]) .

We interpret the second fibre diagram as follows. The simplicial set
T (n+1)×T (n) T

(n)
L describes pairs consisting of anL-equivariant quan-

tization modulo h̄n+1 and a non-equivariant quantization modulo h̄n+2,
which agree as non-equivariant quantizations modulo h̄n+1. The obstruction-
deformation group to lifting such a pair to an equivariant quantization
modulo h̄n+2 is the group Act(L,M). That is, a lift exists if the obstruc-
tion class in H1(Act(L,M)) is zero, and the simplicial set of such lifts
is a torsor for the simplicial Abelian group associated to the cochain
complex Act(L,M)). At the level of zero-simplices, the set of lifts is a
torsor for H0(Act(L,M)).

This result implies, for instance, that if we fix a non-equivariant quan-
tization to all orders, then the obstruction-deformation complex for mak-
ing this into an equivariant quantization is Act(L,M)).

Further elaborations, as detailed in Chapter 7.2, continue to hold in
this context. For example, we can work with families of theories over a
dg base ring, and everything is fibred over the (typically contractible)
simplicial set of gauge fixing conditions. In addition, all of these results
hold when we work with translation-invariant objects on Rn and im-
pose “renormalizability” conditions, as discussed in Chapter 9.

A proof of this theorem in this generality is contained in Costello
(2011b) (see Section 13, Chaper 5), and it is essentially the same as
the proof of the corresponding non-equivariant theorem. In Costello
(2011b), the term “field theory with background fields” is used instead
of talking about a field theory with an action of a local L∞ algebra.

For theories with an inner action, the same result continues to hold,
except that the obstruction-deformation complex for the first statement
is C∗red,loc(LnM), and in the second case is InnerAct(L,M).
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13.3.2 Lifting actions to inner actions

Given a field theory with an action of L, we can try to lift it to one
with an inner action. For classical field theories, we have seen that the
obstruction class lives in H1(Oloc(L[1])) (with, of course, the Chevalley-
Eilenberg differential).

A similar result holds in the quantum setting.

13.3.2.1 Proposition. Suppose we have a quantum field theory with an action
of L. Then there is a cochain

α ∈ Oloc(L[1])[[h̄]] = C∗red,loc(L)

of cohomological degree 1 that is closed under the Chevalley-Eilenberg differ-
ential, such that trivializing α is the same as lifting L to an inner action.

Proof This result follows immediately from the obstruction-deformation
complexes for constructing the two kinds of L-equivariant field theo-
ries. Let us explain explicitly, however, how to calculate this obstruction
class, because it will be useful later. Indeed, let us fix a theory with an
action of L, defined by functionals

IL[Φ] ∈ O+
P,sm(L[1]⊕M[1] | L[1])[[h̄]].

It is always possible to lift I[Φ] to a collection of functionals

ĨL[Φ] ∈ O+
P,sm(L[1]⊕M[1])[[h̄]]

that satisfy the RG flow and locality axioms, but may not satisfy the
quantum master equation. The space of ways of lifting is a torsor for
the graded abelian group Oloc(L[1])[[h̄]] of local functionals on L. The
failure of the lift ĨL[Φ] to satisfy the quantum master equation is inde-
pendent of Φ, as explained in Section 11, Chapter 5 of Costello (2011b),
and therefore the obstruction is a local functional α ∈ Oloc(L[1]). That
is, we have

α = dL ĨL[Φ] + QĨL[Φ] + 1
2{ ĨL[Φ], ĨL[Φ]}Φ + h̄4Φ ĨL[Φ].

Note that functionals just of L are in the centre of the Poisson bracket
{−,−}Φ, and are also acted on trivially by the BV operator4Φ.

We automatically have dLα = 0. To lift IL[Φ] to a functional ĨL[Φ]
that satisfies the quantum master equation is clearly equivalent to mak-
ing α exact in C∗red,loc(L)[[h̄]]. �
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13.4 The factorization algebra of an equivariant
quantum field theory

In this section, we will describe the observables of an equivariant quan-
tum field theory. As above, let M denote the elliptic L∞ algebra on a
manifold X describing a classical field theory, which is acted on by a
local L∞-algebra L. Recall from Section I.6 that there is a factorization
algebra C∗(L) that assigns to an open subset U ⊂ X, the Chevalley-
Eilenberg cochains C∗(L(U)). (As usual, we use the appropriate com-
pletion of cochains.) Note that C∗(L) is a factorization algebra valued
in complete filtered differentiable dg commutative algebras on X.

We will give a brief sketch of the following result.

13.4.0.1 Proposition. Suppose we have a quantum field theory equipped with
an action of a local Lie algebra L. Then there is a factorization algebra Obsq

L of
equivariant quantum observables, quantizing Obscl

L , the factorization algebra
of equivariant classical observables constructed in Proposition 12.3.0.2. It is a
C∗(L)-module in factorization algebras.

Proof The construction is exactly parallel to the non-equivariant ver-
sion that was explained in Chapter 7.2, so we will only sketch the de-
tails. LetM denote the elliptic L∞ algebra encoding the corresponding
classical field theory.

We define an element of Obsq
L(U) of cohomological degree k to be a

family of degree k functionals O[Φ] on the space L(X)[1] ⊕M(X)[1]
of fields of the theory, with one functional for every parametrix Φ. We
require that if ε is a square-zero parameter of cohomological degree−k,
then IL[Φ] + εO[Φ] satisfies the renormalization group equation

W(P(Φ)− P(Ψ), IL[Ψ] + εO[Ψ]) = IL[Φ] + εO[Φ].

Furthermore, we require the same locality axiom detailed in Section 8.4,
saying roughly that O[Φ] is supported on U for sufficiently small para-
metrices Φ.

The differential on the complex Obsq
L(U) is defined by

(dO)[Φ] = dLO[Φ] + QO[Φ] + {IL[Φ], O[Φ]}Φ + h̄4ΦO[Φ],
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where Q is the linear differential on M[1], and dL corresponds to the
Chevalley-Eilenberg differential on C∗(L).

We make Obsq
L(U) into a module over C∗(L(U)) as follows. If O ∈

Obsq
L(U) and α ∈ C∗(L(U)), we define a new observable α ·O by

(α ·O)[Φ] = α · (O[Φ]).

This formula makes sense, because α is a functional on L(U)[1] and
so can be made a functional on M(U)[1] ⊕ L(U)[1]. The multiplica-
tion on the right hand side is simply multiplication of functionals on
M(U)[1]⊕L(U)[1].

It is easy to verify that α ·O satisfies the renormalization group equa-
tion; indeed, the infinitesimal renormalization group operator is given
by differentiating with respect to a kernel inM[1]⊗2, and so commutes
with multiplication by functionals of L[1]. Similarly, we have

d(α ·O) = (dα) ·O + α · dO

where dO as discussed above and where dα is the Chevalley-Eilenberg
differential applied to α ∈ C∗(L(U)[1]).

As usual, at the classical level we can discuss observables at scale 0.
The differential at the classical level is dL + Q + {IL,−}, where IL ∈
Oloc(L[1]⊕M[1]) is the classical equivariant action. This differential is
the same as the differential on the Chevalley-Eilenberg differential on
the cochains of the semi-direct product L∞ algebra LnM. Thus, it is
quasi-isomorphic, at the classical level, to the one discussed in Proposi-
tion 12.3.0.2. �

13.5 The quantum Noether theorem redux

We can now explain Noether’s theorem at the quantum level. As above,
suppose we have a quantum field theory on a manifold X with space
of fieldsM[1]. Let L be a local L∞ algebra that acts on this field theory.
Let α ∈ H1(C∗red,loc(L))[[h̄]] denote the obstruction to lifting this action
to an inner action.

Recall from Section I.3.6 that the enveloping factorization algebra
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UL of the local L∞ algebra L is the factorization algebra whose value
on an open subset U ⊂ X is the Chevalley-Eilenberg chain complex
C∗(Lc(U)). Given a cocycle β ∈ H1(C∗red,loc(L)), we can form a shifted
central extension

0→ C[−1]→ L̃c → Lc → 0

of the precosheaf Lc of L∞ algebras on X. Central extensions of this
form have already been discussed in Section 12.4.

We can also form the twisted enveloping factorization algebra UβL,
which is the factorization algebra on X whose value on an open subset
V ⊂ X is

UβL(V) = C∗(L̃c(V))⊗C[c] Cc=1.

Here we note that the center C[−1] has chains C∗(C[−1]) = C[c], where
c is the central parameter; it is thus a commutative algebra as well as a
coalgebra. The chains C∗(L̃c(V)) is a module over C[c], so the formula
makes sense.

There is a C[[h̄]]-linear version of the twisted enveloping factoriza-
tion algebra construction too: if our cocycle α is in H1(C∗red,loc(L))[[h̄]],
then we can form a central extension of the form

0→ C[[h̄]][−1]→ L̃c[[h̄]]→ Lc[[h̄]]→ 0,

which is an exact sequence of precosheaves of L∞ algebras on X in the
category of C[[h̄]]-modules. By performing the C[[h̄]]-linear version of
the construction above, one finds the twisted enveloping factorization
algebra Uh̄

αL. This factorization algebra assigns to an open subset V ⊂
X, the C[[h̄]]-module

Uh̄
αL(V) = C∗(L̃c[[h̄]])⊗C[[h̄]][c] C[[h̄]]c=1.

Here Chevalley-Eilenberg chains are taken in the C[[h̄]]-linear sense.

Our version of Noether’s theorem will relate this enveloping factor-
ization algebra of Lc — twisted by the cocycle α — to the factorization
algebra of quantum observables of the field theory on X. The main the-
orem is the following.

13.5.0.1 Theorem. Suppose that the local L∞-algebra L acts on a field theory
on X such that the obstruction to lifting this action to an inner action is a local
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cocycle α ∈ H1(C∗red,loc(L))[[h̄]]. There is then a C((h̄))-linear map

Uh̄
αL[h̄−1]→ Obsq[h̄−1]

of factorization algebras. (Note that on both sides we have inverted h̄.)

We prove this result in Section 13.5.3, but before that, we address the
natural question of how this statement relates to Noether’s theorem for
classical field theories.

13.5.1 Dequantizing this construction

In order to provide such a relationship, we need to present a version of
quantum Noether’s theorem that holds without inverting h̄. For every
open subset V ⊂ X, we define the Rees module of this twisted envelop-
ing factorization algebra

Rees Uh̄
αL(V) ⊂ Uh̄

αL(V)

as the submodule spanned by elements of the form h̄kγ, where γ ∈
Sym≤k(Lc(V)). This sub-C[[h̄]]-module forms a sub-factorization alge-
bra. One can check that Rees Uh̄

αL(V) is a free C[[h̄]]-module and that(
Rees Uh̄

αL(V)
)
[h̄−1] = Uh̄

αL(V)

upon inverting h̄.

Remark: The reason for the terminology is that when α = 0 (or more
generally when α is independent of h̄), this module Rees UαL(V) is
the Rees module for the filtered chain complex Cα

∗(Lc(V)), in the usual
sense. ♦

With this terminology in place, we assert the following variant of our
first version of quantum Noether’s theorem.

13.5.1.1 Theorem. The quantum Noether map

Uh̄
αL[h̄−1]→ Obsq[h̄−1]

of factorization algebras over C((h̄)) refines to a map

Rees Uh̄
αL → Obsq

of factorization algebras over C[[h̄]].
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We would like to compare this statement to the classical version of
Noether’s theorem. Let α0 denote the reduction of α modulo h̄. Let
L̃c denote the central extension of Lc arising from α0. The classical
Noether’s theorem states that there is a map of precosheaves of L∞ al-
gebras

L̃c → Õbs
cl
[−1],

where on the right hand side Õbs
cl
[−1] is endowed with the structure

of a dg Lie algebra via the shifted Poisson bracket on Õbs
cl

. Further-
more, this map sends the central element in L̃c to the unit element

in Õbs
cl
[−1].

We will not use the fact that this arises from an L∞ map in what fol-
lows. It will suffice that the classical Noether map gives rise to a map of
precosheaves of cochain complexes L̃c[1] → Obscl . We then note that
because Obscl is a commutative factorization algebra, we automatically
get a map of commutative prefactorization algebras

Sym(L̃c[1])→ Obscl .

Furthermore, because the Noether map sends the central element to the
unit observable, we get a map of commutative factorization algebras

Sym(L̃c[1])⊗C[c] Cc=1 → Obscl . (†)

In this form, the classical Noether map is similar to the quantum Noether
map as expressed in terms of the Rees module Rees Uα(L). In particu-
lar, when we specialize h̄ to zero, we can identify

Rees UαL(V)⊗C[[h̄]] Ch̄=0 = Sym(L̃c(V))⊗C[c] Cc=1.

Hence, we obtain the following dequantization result.

13.5.1.2 Lemma. The quantum Noether map Rees Uh̄
αL → Obsq of factor-

ization algebras becomes, upon setting h̄ = 0, the map in equation (†).

13.5.2 Remarks on twisting by cocycles

Before we begin our proof of quantum Noether’s theorem, it may be
helpful to discuss, in geometric terms, the meaning of the Chevalley-
Eilenberg chains and cochains of an L∞ algebra twisted by a cocycle.
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Recall that if g is an L∞ algebra, then C∗(g) should be thought of as
functions on the formal moduli problem Bg associated to g, and C∗(g)
should be viewed as the space of distributions on Bg. Given a coho-
mology class α ∈ H1(C∗(g)), we then interpret α as specifying a line
bundle on Bg or, equivalently, a rank 1 homotopy representation of g.
Sections of this line bundle are C∗(g) with the differential dg − α, i.e.,
we change the differential by adding a term given by multiplication by
−α. We call it a twisted differential. Since α is closed and of odd degree,
it is automatic that this differential squares to zero. We will often denote
this complex by C∗α(g).

Similarly, we can define C∗,α(g) to be C∗(g) with a differential dg −
ια, given by adding the operator of contracting with −α to the usual
differential. Think of C∗,α(g) as the distributions on Bg twisted by the
line bundle associated to α, i.e., the distributions that pair with sections
of this line bundle.

Let g̃ be the shifted central extension of g associated to α. The center
C[−1] has chains C∗(C[−1]) = C[c], where c is the central parameter;
it is a commutative algebra as well as a coalgebra. Hence, C∗(g̃) is a
module over C[c], and so we can identify

C∗(g̃)⊗C[c] Cc=1 = C∗,α(g).

A parallel remark holds for cochains.

In particular, for L a local L∞ algebra on a manifold X and α ∈
H1(C∗red,loc(L)) a local cocycle, we have

UαL(V) = C∗,α(Lc(V))

for any open subset V ⊂ X. This formula gives a succinct expression
for the twisted enveloping factorization algebra.

13.5.3 Proof of the quantum Noether theorem

Now we will turn to the proof of Theorems 13.5.0.1 and 13.5.1.1 and
Lemma 13.5.1.2. We begin by describing the map open-by-open, before
verifying it respects the full structure of the factorization algebras.
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The map on each open subset

The first step is to produce for every open subset V ⊂ X, a cochain map

F(V) : Cα
∗(Lc(V))→ Obsq(V)[h̄−1].

And before considering the differentials, we describe a map of graded
vector spaces.

Note that a linear map

f : Sym∗(Lc(V)[1])→ Obsq(V)[h̄−1]

is the same as a collection of linear maps, parametrized by parametri-
ces Φ,

f [Φ] : Sym∗(Lc(V)[1])→ O(M(X)[1])((h̄))

that satisfy the renormalization group equation and the locality axiom.
It is crucial to note the change of manifold from V to X on the codomain
of the map. The locality axiom assures that the maps define a map into
observables supported in V.

These f [Φ], in turn, are the same as a collection of functionals

O f [Φ] ∈ O(Lc(V)[1]⊕M(X)[1])((h̄))

satisfying the renormalization group equation and the locality axiom.
This identification uses the natural pairing between the symmetric al-
gebra of Lc(V)[1] and the space of functionals on Lc(V)[1] to identify a
linear map f [Φ] with a functional O f [Φ].

Our goal is thus to find the desired collection O f [Φ]. Our starting
point is the data specifying an action of the local L∞ algebra L on our
theory, namely the functionals

IL[Φ] ∈ O(Lc(X)[1]⊕Mc(X)[1])[[h̄]],

which satisfy the renormalization group equation and the quantum
master equation

(dL + Q)IL[Φ] + 1
2{IL[Φ], IL[Φ]}Φ + h̄4Φ

(
IL[Φ]

)
= α.

(Note that these functionals are supported everywhere on X, so one
issue is to whittle the L-dependence down to V.)

It will be convenient to lift functionals on Lc(X)[1] or Mc(X)[1] to
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the larger space Lc(X)[1]⊕Mc(X)[1]. To do this, we simply pull back
along the projection maps. We will use the notation F to denote the pull-
back of some F to a function on all the fields in Lc(X)[1]⊕Mc(X)[1].
In particular, if I[Φ] denotes the effective action of our quantum field
theory, which is simply a function of the fields in Mc(X)[1], we view
I[Φ] as a function on Lc(X)[1]⊕Mc(X)[1].

Thus, consider the collection of functionals

ÎL[Φ] = IL[Φ]− I[Φ]

in O(Lc(X)[1]⊕Mc(X)[1])[[h̄]]. This functional satisfies

(dL+Q) ÎL[Φ]+ 1
2{ ÎL[Φ], ÎL[Φ]}Φ + {I[Φ], ÎL[Φ]}Φ + h̄4Φ

(
ÎL[Φ]

)
= α,

(‡)
by construction. Note that this equation is equivalent to the statement
that

(dL − α + h̄4Φ) exp
(

I[Φ]/h̄ + ÎL[Φ]/h̄
)
= 0,

which is an α-twisted andL-equivariant version of the quantum master
equation. To properly interpret this assertion, we emphasize that

exp
(

ÎL[Φ]/h̄
)
∈ O(Lc(X)[1]⊕M(X)[1])((h̄)),

i.e., negative powers of h̄ appear in a very controlled way. Indeed, al-
though h̄−1 appears in the exponent on the left hand side, each Taylor
term of this functional only involves finitely many negative powers of
h̄, which is the requirement to live in the space specified on the right
hand side.

This exponentiated term also satisfies the renormalization group equa-
tion

exp
(

h̄∂P(Φ) − h̄∂P(Ψ)

)
exp (I[Ψ]/h̄) exp

(
ÎL[Ψ]/h̄

)
= exp (I[Φ]/h̄) exp

(
ÎL[Φ]/h̄

)
.

Compare this equality to the renormalization group equation for an
observable {O[Φ]} in Obsq(X):

exp
(

h̄∂P(Φ) − h̄∂P(Ψ)

)
exp (I[Ψ]/h̄)O[Ψ] = exp (I[Φ]/h̄)O[Φ].

In sum, we have seen that the collection exp (I[Ψ]/h̄) determines a kind
of equivariant observable, albeit with Laurent series in h̄.
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We wish to use this exponentiated term to produce the desired map
F(V) by sending ` ∈ Cα

∗(Lc(V)) to〈
`, exp

(
ÎL[Φ]/h̄

)〉
,

where 〈−,−〉 indicates the duality pairing between Cα
∗(Lc(V)) and C∗α(Lc(V)).

This formula is well-defined, but we need to show that the image lands
in Obsq(V)[h̄−1], as desired. At the moment, so far as we know, this for-
mula may produce an observable with support throughout the mani-
fold X.

Consider the Taylor components of the functional ÎL,

ÎLi,k,m[Φ] : Lc(X)⊗k ×Mc(X)⊗m → C,

where the index i denote the coefficients of h̄i. Such a Taylor term is
zero unless k > 0, by definition, and, moreover, this term has proper
support, which can be made as close as we like to the diagonal by mak-
ing Φ small. The proper support condition implies that this Taylor term
extends to a functional

Lc(X)⊗k ×M(X)⊗m → C,

because we only need one of the inputs has to have compact support
and we can choose it to be an L-input. Hence, by restricting to elements
of Lc(V), we obtain a functional

ÎL[Φ] ∈ O(Lc(V)[1]⊕M(X))[[h̄]],

to abuse notation.

We now observe that the renormalization group equation satisfied by
exp

(
ÎL[Φ]/h̄

)
is precisely the one necessary to define, as Φ varies, an

element that we denote

exp
(

ÎL/h̄
)
∈ C∗α(Lc(V), Obsq(X))[h̄−1].

The locality property for the functionals ÎL[Φ] tells us that for Φ small
these functionals are supported arbitrarily close to the diagonal, and
hence

exp
(

ÎL/h̄
)
∈ C∗α(Lc(V), Obsq(V))[h̄−1].

Thus, we have produced a linear map

F(V) : Cα
∗(Lc(V))→ Obsq(V)[h̄−1]
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via the formula

F(V)[Φ](`) =
〈
`, exp

(
ÎL[Φ]/h̄

)〉
,

as desired.

We still need to verify that F is a cochain map. Since the duality
pairing between Chevalley-Eilenberg chains and cochains of Lc(V) is
a cochain map, even when twisted by α, it suffices to check that the
element exp

(
ÎL/h̄

)
is itself closed. But being closed is equivalent to

saying that, for each parametrix Φ, the following equation holds:

(dL − α + h̄4Φ + {I[Φ],−}Φ) exp
(

ÎL/h̄
)
= 0.

This equation is equivalent to

(dL − α + h̄4Φ) exp
(

I[Φ]/h̄ + ÎL[Φ]/h̄
)
= 0,

which we have already verified. Thus, we have produced a cochain
map F(V) from Cα

∗(Lc(V)) to Obsq(V)[h̄−1].

Why the construction intertwines with structure maps

It remains to show that this cochain map defines a map of factorization
algebras. By construction the map F is a map of precosheaves, as it is
compatible with the maps coming from inclusions of open sets V ⊂
W. It remains to check that it is compatible with the structure maps
involving disjoint opens.

Let V1, V2 be two disjoint subsets of X, but contained in some open
W. We need to verify that the following diagram commutes:

Cα
∗(Lc(V1))× Cα

∗(Lc(V2))

F(V1)×F(V2)
��

// Cα
∗(Lc(W))F(W)

��
Obsq(V1)[h̄−1]×Obsq(V2)[h̄−1] // Obsq(W)[h̄−1]

,

where the horizontal arrows are the structure maps for the factorization
algebras. From hereon, we use simply F and suppress explicit depen-
dence on the open set.

Recall that if the Oi are observables for the open sets Vi, respectively,
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then the factorization product O1O2 ∈ Obsq(W) of these observables is
defined by

(O1O2)[Φ] = O1[Φ] ·O2[Φ]

for Φ sufficiently small, where · indicates the obvious product on the
space of functions on M(X)[1]. (Strictly speaking, we need to check
that for each Taylor term this identity holds for sufficiently small para-
metrices, but we have already discussed this technicality at length and
will not belabour it now.)

Let `i ∈ Cα
∗(Lc(Vi)) for i = 1, 2. Let · denote the factorization product

on the factorization algebra Cα
∗(Lc). It is simply the product in the sym-

metric algebra on each open set, coupled with the maps coming from
the inclusions of open sets. We need to verify that, for Φ sufficiently
small,

F(`1)[Φ] · F(`2)[Φ] = F(`1 · `2)[Φ]

in O(M(X)[1])((h̄)).

By choosing a sufficiently small parametrix, we can assume that ÎL[Φ]
is supported as close to the diagonal as we like. We can further assume,
without loss of generality, that each `i is a product of elements inLc(Vi).
Let us write `i = m1i · · ·mki i for i = 1, 2 and each mji ∈ Lc(Vi). (To ex-
tend from this special case to the case of general `i requires a small
functional analysis argument using the fact that F is a smooth map.
Since we restrict attention to this special case only for notational conve-
nience, we will not give more details on this point.)

We can explicitly write the map F applied to the elements `i by the
formula

F(`i)[Φ] =

{
∂

∂m1i
· · · ∂

∂mki i
exp

(
ÎL[Φ]/h̄

)} ∣∣∣∣
0×M(X)[1]

.

In other words, we apply the product of all partial derivatives by the
elements mji ∈ Lc(Vi) to the function exp

(
ÎL[Φ]/h̄

)
, which is a func-

tion on Lc(X)[1]⊕M(X)[1], and then restrict all the Lc(Vi) variables
to zero.

To show

F(`1 · `2)[Φ] = F(`1)[Φ] · F(`2)[Φ]



362 Noether’s theorem in quantum field theory

for sufficiently small Φ, it suffices to verify that{
∂

∂m11
· · · ∂

∂mk11
exp

(
ÎL[Φ]/h̄

)}{ ∂

∂m12
· · · ∂

∂mk22
exp

(
ÎL[Φ]/h̄

)}
=

∂

∂m11
· · · ∂

∂mk11

∂

∂m12
· · · ∂

∂mk22
exp

(
ÎL[Φ]/h̄

)
.

Since we are taking derivatives of an exponential, each side can be ex-
panded as a sum of terms, each term of which is a product of factors of
the form

∂

∂mj1i1
· · · ∂

∂mjr ir
ÎL[Φ], (†)

all multiplied by an overall factor of exp
(

ÎL[Φ]/h̄
)

. In the difference
between the two sides, all terms cancel except those which contain a
factor of the form expressed in equation (†) with i1 = 1 and i2 = 2.
Now, for sufficiently small parametrices,

∂

∂mj11

∂

∂mj22
ÎL[Φ] = 0

because ÎL[Φ] is supported as close as we like to the diagonal and
mj11 ∈ Lc(V1) and mj22 ∈ Lc(V2) have disjoint support.

Thus, we have constructed a map

F : UαL → Obsq[h̄−1]

of factorization algebras.

Finishing the proof

It remains to check the content of Theorem 13.5.1.1 and of Lemma 13.5.1.2.
Let be V any open subset X. For Theorem 13.5.1.1, we need to verify
that if ` ∈ Symk(Lc(V)), then F(`) ∈ h̄−k Obsq(V). That is, we need to
check that for each parametrix Φ, we have

F(`)[Φ] ∈ h̄−kO(M(X)[1])[[h̄]].

Let us assume, for simplicity, that ` = m1 · · ·mk where mi ∈ Lc(V).
Then the explicit formula

F(`)[Φ] =
{

∂m1 · · · ∂mk exp
(

ÎL[Φ]/h̄
)} ∣∣∣

M(X)[1]
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makes it clear that h̄−k is the largest negative power of h̄ to appear.
(Note that ÎL[Φ] is zero when restricted to a function of justM(X)[1].)

Finally, we need to check Lemma 13.5.1.2, which states that the clas-
sical limit of our quantum Noether map is the classical Noether map
we constructed earlier. Let ` ∈ Lc(V). Then the classical limit of our
quantum Noether map sends ` to the classical observable

lim
h̄→0

h̄F(`) = lim
Φ→0

lim
h̄→0

{
h̄∂` exp

(
ÎL[Φ]/h̄

)} ∣∣∣
M(X)[1]

= lim
Φ→0

{
∂` ILclassical [Φ]

} ∣∣∣
M(X)[1]

=
{

∂` ILclassical

} ∣∣∣
M(X)[1]

.

Note that ILclassical [Φ] means the scale Φ version of the functional on
L[1]⊕M[1] defining the inner action (at the classical level) of L on our
classical theory, and by ILclassical we mean the scale zero version. Hence,
our classical Noether map is the map appearing in the last line of the
above displayed equation.

13.6 Trivializing the action on factorization homology

Let X be a closed manifold and on it lives a field theory with an action
of a local L∞ algebra L. Suppose that some class α ∈ H1(C∗loc(L))[[h̄]]
encodes the obstruction to lifting this action to an inner action. Because
L acts on observables, its global sections L(X) have an L∞ action on
the global quantum observables Obsq(X). Moreover, the global sections
L(X) have an L∞ action on C[[h̄]] by the class α; we use Cα to denote
this representation of L(X).

13.6.0.1 Lemma. If L is elliptic, then the action of L(X) on Obsq(X)⊗C[[h̄]]
C−α is canonically trivial, once we invert h̄.

Proof Let Obsq(X)L(X) denote the equivariant observables. We need
to show that there is a quasi-isomorphism of C∗(L(X))-modules

Obsq(X)L(X) ⊗C−α ' Obsq(X)⊗ C∗(L(X)).

Note that issues of completion and topological tensor products are not
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so important here because the cohomology of L(X) is finite dimen-
sional. It is only at this point that we use the ellipticity of L.

Tensoring both sides by C−α, we see we need to show that

Obsq(X)L(X) ' Obsq(X)⊗ C∗(L(X))⊗Cα.

Choose a parametrix Φ with its associated BV bracket {−,−}Φ, BV
Laplacian 4Φ, interaction I[Φ], and equivariant interaction IL[Φ] (re-
taining only those terms that depend on L). The representative α[Φ]
of α computed using the parametrix Φ is the failure of I[Φ] + IL[Φ] to
satisfy the quantum master equation:

α[Φ] = (Q + dL)(I[Φ] + IL[Φ]) + 1
2{I[Φ] + IL[Φ], I[Φ] + IL[Φ]}Φ

+ h̄4Φ(I[Φ] + IL[Φ]).

Here Q is the term in the differential on Obsq(X) coming from the ki-
netic term in the Lagrangian, and dL is the Chevalley-Eilenberg differ-
ential for Lie algebra cochains of L.

Note that by assumption α[Φ] is a function only of elements of L(X).

In the desired quasi-isomorphism, the differential on the left hand
side is

Q + dL + {I[Φ],−}Φ + {IL[Φ],−}Φ +4Φ.

The differential on the right hand side is

Q + dL + {I[Φ],−}Φ +4Φ + α[φ],

where we are multiplying by α[φ] as part of the differential. The two
differentials are related by conjugating by eIL [φ]/h̄, which therefore pro-
vides a quasi-isomorphism of cochain complexes once we have inverted
h̄. Note that eIL [φ]/h̄ makes sense, because at order k as a function on
L(X), there are only finitely many negative powers of h̄. �

13.7 Noether’s theorem and the local index theorem

In this section we will explain how Noether’s theorem gives rise to a
definition of the local index of an elliptic complex with an action of a
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local L∞ algebra. Our analysis follows very closely the two beautiful
papers Rabinovich (2019, 2020), and we refer to these works for details
not presented here.

13.7.1 Rephrasing the local index

Let us explain what we mean by the local index. Suppose we have an
elliptic complex on a closed manifold X. Let E (U) denote the cochain
complex of sections of this elliptic complex on an open subset U ⊂ X.
The cohomology of E (X) is finite-dimensional, and the index of our
elliptic complex is defined to be the Euler characteristic of this coho-
mology. We write

Ind(E (X)) = STrH∗(E (X))(Id),

that is, the index is the super-trace (or graded trace) of the identity op-
erator on cohomology.

More generally, if g is a Lie algebra acting on global sections of our
elliptic complex E (X), then we can consider the character of g for this
representation H∗(E (X)). If x ∈ g is any element, the character is

Ind(x, E (X)) = STrH∗(E (X))(x).

The usual index is the special case when g is the one-dimensional Lie
algebra acting on E (X) by scaling: x ∈ C maps to x Id.

This approach admits a natural reformulation, relating a graded trace
to a graded determinant. Recall that the determinant of the cohomology
H∗(E (X)) means

det H∗(E (X)) =
⊗

i

{
det Hi(E (X))

}(−1)i

,

which is a super-line: it is even or odd depending on whether the Euler
characteristic of H∗(E (X)) is even or odd.

For any endomorphism T of H∗(E (X)), the super-trace of T is the
same as the super-trace of T acting on the determinant of H∗(E (X)).
It follows that the character of E (X)) as a representation of a Lie alge-
bra g is encoded entirely in the natural action of g on the determinant
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det H∗(E (X)). In other words, the character of the g action on E (X) is
the same data as the one-dimensional g-representation det H∗(E (X)).

Now suppose that g is global sections of a sheaf L of dg Lie algebras
(or L∞ algebras) on X. We will further assume that L is a local L∞ alge-
bra and that the action of g = L(X) on E (X) arises from a local action
of the sheaf L of L∞ algebras on the sheaf E of cochain complexes.

One can then ask the following question: can the character of the
L(X) action on E (X) be expressed in a local way on the manifold?
Given that the character of thisL(X)-representation is entirely expressed
in the L(X)-action on its determinant, this question is equivalent to the
following one: can we express the determinant det H∗(E (X)) in a local
way on the manifold X, indeed, in an L-equivariant way?

As E (X) is a sheaf, we can certainly describe E (X) in a way local on
X. Informally, we might imagine E (X) as a direct sum of its fibres over
the points in X. More formally, if we choose a cover U of X, then the
Čech double complex for Uwith coefficients in the sheaf E produces for
us a cochain complex quasi-isomorphic to E (X). This double complex
is an additive expression describing E (X) in terms of sections of E in
the open cover U of X. Heuristically, the Čech double complex gives a
formula of the form

E (X) ∼∑
i

E (Ui)−∑
i,j

E (Ui ∩Uj) + ∑
i,j,k

E (Ui ∩Uj ∩Uk)− · · · ,

which we can view as the analog of the inclusion-exclusion formula
from combinatorics. If U is a finite cover and each E (U) has finite-
dimensional cohomology, this formula becomes an identity upon tak-
ing Euler characteristics.

Since X is compact, one can also view E (X) as the global sections
of the cosheaf of compactly supported sections of E , and then Čech
homology gives us a similar expression.

The determinant functor on the category of graded vector spaces
sends direct sums to tensor products. We thus could imagine that the
determinant det H∗(E (X)) can likewise be expressed in a local way on
the manifold X, but where the direct sums that appear in sheaf theory
are replaced by tensor products.
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Factorization algebras have the feature that the value on a disjoint
union is a tensor product (rather than a direct sum as appears in sheaf
theory). That is, factorization algebras are multiplicative versions of
cosheaves. It is therefore natural to express that the determinant of the
cohomology of E (X) can be realized as global sections of a factorization
algebra, just as E (X) is global sections of a cosheaf.

It turns out that this is the case: we can indeed “factorize” the deter-
minant.

13.7.1.1 Lemma. Let E be any elliptic complex on a closed manifold X. Con-
sider the free cotangent theory to the Abelian elliptic Lie algebra E [−1], whose
elliptic complex of fields is E ⊕ E ![−1]. Let Obsq

E denote the factorization
algebra of observables of this theory.

There is an isomorphism

H∗(Obsq
E (X)) � det H∗(E (X))[d]

where d is equal to the Euler characteristic of H∗(E (X)) modulo 2.

This lemma states that the cohomology of global observables of the
theory is the determinant of the cohomology of E (X), with its natural
Z/2 grading. The proof of this lemma, although easy, will be given at
the end of this section. A more refined version of this statement has
been proved in Rabinovich (2020): Rabinovich shows that for any fam-
ily of Dirac operators over a smooth base B, this construction yields a
dg vector bundle quasi-isomorphic to the Quillen determinant line of
that family.

This lemma shows that the factorization algebra Obsq
E provides a

local version of det H∗(E (X)), the determinant of the cohomology of
E (X). With this interpretation in hand, we can ask for a local version of
the index living in Obsq

E .

Let L be a local L∞ algebra on X that acts linearly on E . Then L acts
on the corresponding free field theory and hence on the factorization
algebra that localizes the determinant. This L-action may not be inner:
there is a class

α ∈ H1(C∗loc(L))

that captures the obstruction to having an inner action. (Note that here,
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we are setting h̄ = 1, which works because we are considering the ac-
tion on a free field theory.)

When X is compact, there is a map

C∗loc(L)→ C∗(L(X))

under which the class α gets sent to some element

α(X) ∈ H1(C∗(L(X))).

The class α(X) is the same as a rank one representation of L(X), up to
isomorphism.

13.7.1.2 Lemma. The class α(X) is represented by the action of L(X) on the
determinant of H∗(E (X)).

Proof This claim follows from lemma 13.7.1.1, which states that the co-
homology of Obsq

E is the determinant of E (X), and from lemma 13.6.0.1,
stating that the character of the action of L(X) on Obsq

E (X) is given
by α(X). �

This result justifies the following definition.

13.7.1.3 Definition. In this situation, the local index is the class α ∈ C∗loc(L)
that controls the central extension in Noether’s theorem.

13.7.2 The local index for a Dirac operator

So far, we have shown how the determinant line of an elliptic complex
can be expressed locally as a factorization algebra. Furthermore, the
action of the global sections of a sheaf of Lie algebras L on the deter-
minant is determined by the cocycle α giving the central extension. To
demonstrate how this approach relates to more traditional versions of
index theory, we turn to a setting where we can demonstrate the cocycle
α is the standard index density.

First, we need to recall the set-up of Berline et al. (1992), where a gen-
eral class of Dirac operators is defined. Let M be an oriented Rieman-
nian manifold of dimension 2n. Let ClM denote the Clifford algebra on
TM ⊗R C, and let E = E0 ⊕ E1 be a Z/2-graded ClM-module with a
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Clifford connection and compatible Hermitian structure. As in Berline
et al. (1992), this data defines a Dirac operator /∂ : E → E, which is odd
for the Z/2-grading. The square /∂2 is a generalized Laplacian.

We use E to denote the two-term elliptic complex

E 0 = C∞(X, E0)
/∂−→ C∞(X, E1) = E 1.

As before, we consider the free cotangent field theory whose fields
areF = E ⊕E ![−1]. In this theory, a field of degree 0 is a section of E0⊕
(E1)∨⊗ωX , while a field of degree 1 is a section of E1⊕ (E0)∨⊗ωX . We
use φ0 for an element of E 0(X) and φ1 for an element of (E 1)!(X), and
in degree 1 we use ψ0 for an element of (E 0)!(X) andψ1 for an element
of E 1(X). This free theory has∫

TrE φ1 /∂φ0

as its action functional.

We make the scaling symmetry on E local by working with L = Ω∗X ,
the de Rham resolution of the constant sheaf C of Abelian Lie algebras.
The scaling action of C determines a homotopy action of its resolution
L. We encode the action of L via an action functional that depends both
on the fields of our free theory as well as on an element ρ ∈ L[1].

Let ρ0 denote the 0-form component of ρ, and ρ1 the 1-form compo-
nent of ρ. The classical Lagrangian incorporating the background field
ρ is ∫

TrE φ1 /∂ρ1 φ0 +
∫

ρ0 TrE (φ0ψ0 + φ1ψ1)

where /∂ρ1 is the covariantized version of the Dirac operator. It is straight-
forward to show that this action solves the equivariant master equation
relevant for defining an action of L on the free theory. (It is important
to note that all Feynman diagrams that are not trees have the fields ρ on
their external lines. These Feynman diagrams do not contribute to the
master equation for an action, but they will when we ask if we have an
inner action.)

The obstruction to lifting this action to an inner action will be some
cocycle α ∈ C1

red,loc(L). That is, α will be a local functional of coho-
mological degree 1 depending solely on the field ρ ∈ Ω∗X [1]. Because
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we are dealing with an Abelian Lie algebra, the cocycle condition on α

simply means that α is closed under the de Rham operator.

Let α(1) denote the component of α that is linear as a function of ρ.
As α(1) is of cohomological degree 1, it is a functional only of ρ0, and
so we can interpret α(1) as an n-form. (The components of α that are
non-linear in ρ can be shown to vanish in cohomology.)

13.7.2.1 Theorem (Rabinovich (2020)). In this situation, the obstruction
cocycle α(1) is the index density defined using the heat kernel, as in Berline
et al. (1992).

Remark: One aspect of this story, and indeed of the local index theorem
in general, is that α(1) is most naturally viewed as a degree 1 element
of the cochain complex Ω∗(X)[n− 1]. As such, if X is non-compact, it
is possible to trivialize the obstruction. It remains true, however, that
computing the representative of α(1) that naturally arises from the field
theory analysis gives precisely the local index density. ♦

The proof follows that presented in Rabinovich (2020), and we refer
the reader there for further details. We will assume familiarity with the
techniques developed in Costello (2011b) and in the first volume of this
work, but we briefly review what we need before embarking on the
proof proper.

The differential on the space of fields is a sum of two terms:

Q : E 0 /∂−→ E 1

Q : (E 1)! /∂ !

−→ (E 0)!

where /∂ ! is the formal adjoint to the Dirac operator. We choose the
gauge fixing operator

QGF : E 1 /∂−→ E 0

QGF : (E 0)! /∂ !

−→ (E 1)!

The commutator [Q, QGF] is the generalized Laplacian D = (/∂)2 on E 0

and E 1, and its formal adjoint on (E 0)∨ and (E 1)∨.

Associated to the generalized Laplacian D is its heat kernel

Kt ∈ E 0⊗̂(E 0)! ⊕ E 1⊗̂(E 1)!.
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Letting F denote the total space of fields, we note that the heat kernel
Kt is an element in degree 1 in F⊗̂F . A parametrix for the Laplacian is
given by

∫ L
0 Ktdt. The corresponding propagator is

∫ L
0 (QGF ⊗ 1)Ktdt,

and the BV Laplacian associated to the parametrix is4L = KL.

Proof Our goal is to study the obstruction to quantizing this system
at linear order in ρ. First, we need to compute the effective interaction.
Since we are only interested in expressions linear in ρ, we need only
consider Feynman diagrams whose external lines contain exactly one
ρ. There are two kinds of these diagrams: the tree-level interactions ap-
pearing in the Lagrangian above, and a one-loop diagram with a single
external line labelled by ρ1.

Let I(1)[L] denote the effective interaction at scale L, to linear order
in the external fields ρ, and expand

I(1)[L] = I(1)0 [L] + h̄I(1)0 [L].

Our goal is to calculate I(1)[L] explicitly, and check whether or not it
satisfies the quantum master equation. From the classical Lagrangian,
we see that the tree level part is

I(1)0 [L] =
∫

TrE φ1ρ1φ0 +
∫

ρ0 TrE (φ0ψ0 + φ1ψ1) ,

where we have implicitly used Clifford multiplication with the one-
form ρ1 to define TrE φ1ρ1φ0.

The one-loop term I(1)1 [L] is a little more tricky to compute. We need
to use the method of counter-terms as developed in Costello (2011b).
By introducing a cut-off at length scale ε, we can form a regularized
version of I(1)1 [L] by

I(1)1 [ε, L](ρ1) =
∫ L

t=ε

∫
x∈X

STrE ρ1(x) (/∂xKt(x, y))y=x dt.

As in Costello (2011b), we define a counter-term

ICT [ε](ρ1) = Singε I(1)1 [ε, L](ρ1)

to be the singular part as a function of ε. (An explicit expression for ICT

can in principle be derived from the asymptotic expansion of the heat
kernel, but the explicit form of the counter-term plays no role in our
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argument.) We then define

I(1)1 [L](ρ1) = lim
ε→0

(
I(1)1 [ε, L](ρ1)− ICT [ε](ρ1)

)
.

We now want to check whether the equivariant quantum master equa-
tion holds.

The relevant quantum master equation is

ddR I(1)1 [L] +4L I(1)0 = 0,

where ddR is the differential induced from the de Rham operator on
L = Ω∗X . Thanks to the compatibility between the BV Laplacian and
the RG flow,

ddR I(1)[ε, L] = 4ε I(1)0 −4L I(1)0 .

Therefore, the obstruction to solving the master equation is

α(1)(ρ0) = lim
ε→0

(
4ε I(1)0 (ρ0)− ICT [ε](dρ0)

)
.

Now,

4ε I(1)0 (ρ0) =
∫

x∈X
ρ0(x) STrE Kε(x, x).

According to results explained in Berline et al. (1992) (originally due
to Patodi (1971) and Gilkey (1995)), this expression has a well-defined
ε→ 0 limit known as the index density:

lim
ε→0
4ε I(1)0 (ρ0) = (2πı)−n/2

∫
ρ0 Â(M) ch(E/S).

Here we follow the notation of chapter 4 in Berline et al. (1992),: Â(M)
is the usual A-hat class, and ch(E/S) is the “relative” version of the
Chern character of the bundle E that appears in the index theorem.

We have almost finished identifying the obstruction with the local
index, except that we have an extra term ICT [ε](dρ0). Thankfully, this
term must vanish because it is a purely singular function of ε (in this
context, it is a linear combination of log ε and ε−k for k > 0). Further-
more, the ε → 0 limit appearing in the calculation of the obstruction
exists, as part of the general framework of Costello (2011b). Finally, the
results of Patodi and Gilkey tell us that limε→0 I(1)0 (ρ0) exists, which
completes the proof. �
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13.7.3 Proof of Lemma 13.7.1.1

Before we give the (simple) proof, we should clarify some small points.

Recall that for a free theory, there are two different versions of quan-
tum observables we can consider. We can take our observables to be
polynomial functions on the space of fields, and not introduce the for-
mal parameter h̄; or we can take our observables to be formal power
series on the space of fields, in which case one needs to introduce the
parameter h̄. These two objects encode the same information: the sec-
ond construction is obtained by applying the Rees construction to the
first construction. We will give the proof for the first (polynomial) ver-
sion of quantum observables. A similar statement holds for the second
(power series) version, but one needs to invert h̄ and tensor the deter-
minant of cohomology by C((h̄)).

Globally, polynomial quantum observables can be viewed as the space
P(E (X)) of polynomial functions on E (X), with a differential that is
the sum of the linear differential Q on E (X) with the BV operator. Let
us compute the cohomology by a spectral sequence associated to a fil-
tration of Obsq

E (X). The filtration is the obvious increasing filtration
obtained by declaring that

Fi Obsq
E (X) = Sym≤i(E (X)⊕ E !(X)[−1])∨.

The first page of this spectral sequence is cohomology of the associated
graded complex. This associated graded is simply the symmetric alge-
bra

H∗Gr Obsq
E (X) = Sym∗

(
H∗(E (X))∨ ⊕ H∗(E !(X)[−1])∨

)
.

The differential on this page of the spectral sequence comes from the BV
operator associated to the non-degenerate pairing between H∗(E (X))
and H∗(E !(X))[−1]. Note that H∗(E !(X)) is the dual to H∗(E (X)).

It remains to show that the cohomology of this secondary differential
yields the determinant of H∗(E (X)), with a shift.

We show this claim by treating a more general problem. Given any
finite-dimensional graded vector space V, we can give the algebra P(V⊕
V∗[−1]) of polynomial functions on V ⊕V∗[−1] a BV operator4 aris-
ing from the pairing between V and V∗[−1]. We want to produce an
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isomorphism

H∗(P(V ⊕V∗[−1]),4) � det(V)[d]

where the shift d is equal modulo 2 to the Euler characteristic of V.

Sending V to H∗(P(V ⊕ V∗[−1]),4) is a functor from the groupoid
of finite-dimensional graded vector spaces and isomorphisms between
them, to the category of graded vector spaces. It sends direct sums to
tensor products. It follows that to check whether or not this functor
recovers the determinant functor, one needs to check that it does in the
case that V is a graded line.

Thus, let us assume that V = C[k] for some k ∈ Z. We will check that
our functor returns V[1] if k is even and V∗ if k is odd. Thus, viewed as
a Z/2 graded line, our functor returns det V with a shift by the Euler
characteristic of V.

To check this, note that

P(V ⊕V∗[−1]) = C[x, y]

where x is of cohomological degree k and y is of degree −1− k. The BV
operator is

4 =
∂

∂x
∂

∂y
.

A simple calculation shows that the cohomology of this complex is 1
dimensional, spanned by x if k is odd and by y if k is even. Since x is a
basis of V∗ and y is a basis of V, this completes the proof.

Remark: It is possible to push this BV approach to the determinant func-
tor farther: Gwilliam and Haugseng (2018) lifts it to a natural level of
generality in derived algebraic geometry. ♦

13.8 The partition function and the quantum Noether
theorem

Our formulation of the quantum Noether theorem goes beyond a state-
ment just about symmetries, in the traditional sense of the word. It also
involves deformations, which are symmetries of cohomological degree
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1, as well as symmetries of other cohomological degree. Thus, it has
important applications when we consider families of field theories.

The first application we will explain is that the quantum Noether
theorem leads to a definition of the partition function of a perturbative
field theory.

Suppose we have a family of field theories that depends on a for-
mal parameter c, the coupling constant. (Everything we say below will
work when the family depends on a number of formal parameters, or
indeed on a pro-nilpotent dg algebra.) For example, we could start with
a free theory and deform it to an interacting theory. An example of such
a family of scalar field theories is given by the action functional

S(φ) =
∫

φ(4+ m2)φ + cφ4.

We can view such a family of theories as being a single theory — in
this case the free scalar field theory — with an action of the Abelian L∞
algebra C[1]. Indeed, by definition, an action of an L∞ algebra g on a
theory is a family of theories over the dg ring C∗(g) that specializes to
the original theory upon reduction by the maximal ideal C>0(g).

We have seen in Lemma 12.2.4.2 that actions of g on a theory are
the same thing as actions of the local Lie algebra Ω∗X ⊗ g. In this way,
we see that a family of theories over the base ring C[[c]] is the same
thing as a single field theory with an action of the local abelian L∞ al-
gebra Ω∗X [−1].

We will formulate our definition of the partition function in the quite
general context of a field theory acted on by a local L∞ algebra. Af-
terwards, we will analyze what it means for a family of field theories
depending on a formal parameter c.

A partition function is only defined for field theories with some spe-
cial properties. Geometrically, we need to be perturbing around an iso-
lated solution to the equations of motion on a closed manifold X. This
situation holds, for instance, with a massive scalar field theory. In the
setting of our book, given a classical theory described by a local L∞ al-
gebraM with an invariant pairing of degree −3, we require X to be a
closed manifold and that the global sections of the underlying elliptic
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complex have trivial cohomology, i.e., H∗(M(X)) = 0. (In other words,
the linearized equations of motion have an isolated solution.)

These assumptions imply that H∗(Obsq(X)) � C[[h̄]]. There is thus a
preferred C[[h̄]]-linear isomorphism that sends the identity observable
1 ∈ H0(Obsq(X)) to a basis vector of C[[h̄]]. These conditions hold, for
instance, if we have a free massive scalar field theory on closed mani-
fold X, which is a good example to bear in mind.

Now suppose that we also have an inner action of a local L∞ algebra
L on our theory. The Noether map gives us a cochain map

C∗(L(X))→ Obsq(X) ' C[[h̄]],

or, equivalently, an element of C∗(L(X))[[h̄]].

13.8.0.1 Definition. The partition function is the element in C∗(L(X))[[h̄]]
given by the Noether map.

Recall that an action of L on our theory is the same as a family of
theories over the sheaf of formal moduli problem BL. Functions on the
global sections of this sheaf of formal moduli problems are C∗(L(X)).
Thus, the partition function is, as we would expect, a function on the
moduli space BL of parameters of our theory. In our definition, the par-
tition function is normalized so that it takes value 1 at the base point of
the formal moduli problem BL(X).

The concept of partition function is most useful when the local L∞
algebra L is the Abelian Lie algebra Ω∗X [−1]. The corresponding formal
moduli problem is the sheaf of cochain complexes Ω∗X , which at the
level of global sections is equivalent to H∗(X). The partition function in
this case is a function on this formal moduli problem of cohomological
degree 0, and so a function on H0(X). Assuming that X is connected,
the partition function is then a series in a single variable c, which is the
coupling constant.



14
Examples of the Noether theorems

This chapter demonstrates with explicit examples how to use the fac-
torization Noether theorems developed in the preceding chapters. We
stick with free theories, where computations are much simpler, and ex-
amine how angular momentum appears in a one-dimensional theory
and how the Virasoro symmetry appears in a chiral conformal field the-
ory. Moving beyond ordinary Lie algebras, we also examine a kind of
extended, higher symmetry in a simple class of topological field theo-
ries.

More sophisticated examples of these constructions are also avail-
able in the literature. We have already mentioned Rabinovich (2019),
which analyzes systematically the axial anomaly for fermionic theo-
ries following the style of this book. Gwilliam et al. (2020) applies the
Noether theorems in the setting of Gelfand-Kazhdan geometry, show-
ing how these techniques recover chiral differential operators by a glob-
alization process pioneered by Kontsevich (2003) and Cattaneo et al.
(2002). Noether’s theorems admit interesting applications to higher-
dimensional holomorphic field theories Gwi (n.d.); Saberi and Williams
(2020, 2019).

377
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14.1 Examples from mechanics

We will focus here on a simple free theory to exhibit the basic tech-
niques, but we will comment along the way about how adding interac-
tions would affect the situation.

Consider a free scalar field living on the real line. Its fields consist of
smooth maps φ : R → V, where V is a real vector space with inner
product (−,−). A free theory is specified by the action functional

S0(φ) =
∫
(φ̇, φ̇)dt,

whose equation of motion is then φ̈ = 0. It is also natural to consider
adding a mass term to this scalar field

Sm(φ) =
∫
(φ̇, φ̇)dt + m2

∫
(φ, φ)dt,

which, in the language of mechanics, corresponds to a harmonic oscilla-
tor with equation φ̈ = m2φ. (Hence the mass m is a spring constant.) For
simplicity, we will restrict to the massless case, but it is straightforward
to modify our arguments to the massive case.

In Chapter I.4 we analyzed these theories and their observables, both
classical and quantum. There we used an equivalent action functional

S′(φ) = −
∫
(φ, φ̈)dt,

which has the same equation of motion. (Note that S′ can be obtained
from S0 by applying integration by parts and then disregarding the ir-
relevant boundary term.)

It is often more convenient to study this theory in its first-order for-
mulation, treats the position q and momentum p as independent fields,
both mapping from R to V. The first-order action functional is

S(q, p) =
∫
(p, q̇)dt +

1
2

∫
(p, p)dt,

whose equations of motion are ṗ = 0 and p = q̇.

This procedure is analogous to Hamilton’s maneuver in doubling the
variables to reduce Newton’s law to a first-order system of differential
equations. Indeed, one can interpret this field theory as a σ-model from
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R to the symplectic manifold T∗V = V ⊕ V∗. It is this functional that
we will use in the constructions below, but the reader might find it illu-
minating to convert our arguments into the more conventional, second-
order formulation, which often makes it easier to recognize well-known
formulas from physics.

There are two natural kinds of symmetries to consider here. There
are automorphisms of the target space V that preserve the theory, and
there are automorphisms of the source space R that preserve the theory.
The first lead to various kinds of momenta, and the second include the
energy function. In this section we will focus first on rotational sym-
metries of the target. In the next section we analyze time-translation
symmetry (a symmetry of the source) by a slightly different method.

Before starting, however, we emphasize that we will work with the
classical BV theory. Thus, the naive fields q ∈ C∞(R) ⊗ V and p ∈
C∞(R) ⊗ V are upgraded to elements Q, P ∈ Ω∗(R) ⊗ V. The zero-
form components Q0, P0 of these Z-graded fields are the fields q, p we
had before, and the one-form components provide the antifields. The
BV symplectic pairing is

〈Q, P〉 =
∫
(Q ∧ P),

which indicates that we use the wedge product on the differential form
component and use the inner product on the V-component. We thus
write

S(Q, P) =
∫
(P ∧ dQ) +

1
2

∫
(P ∧ P) ∧ dt,

which recovers the earlier first-order action when restricted to “naive”
fields in degree zero.

14.1.1 Classical symmetries on the target

The orthogonal group O(V), consisting of linear transformations that
preserve the inner product, manifestly acts as symmetries of the classi-
cal theory: for any T ∈ O(V),

S(TQ, TP) = S(Q, P)
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for any fields Q and P. Hence its Lie algebra o(V) acts by infinitesimal
symmetries.

This action is inner, via the Lie algebra map

Jcl : o(V)→ Oloc[−1] (14.1.1.1)

where

Jcl
a (Q) =

∫
(P, a ·Q) (14.1.1.2)

for a ∈ o(V). (In Section 14.1.1 we discuss where this formula comes
from.) We now unpack what this formula says, bearing in mind that Jcl

a
acts via the BV bracket.

At first, this notation may seem cryptic, because for q an ordinary
smooth function, the putative integrand is still a function and not a one-
form, and hence cannot be integrated. It is crucial to recall here that the
BV theory involves antifields as well, which for this theory are a copy
of densities Ω1(R)⊗V in cohomological degree one. When we expand
our fields Q, P into 0 and 1-form fields Q0, Q1, P0, P1, we have

Jcl
a (Q

0, Q1, P0, P1) =
∫
(P0, a ·Q1) +

∫
(P1, a ·Q0).

One consequence is that we can see Jcl
a has cohomological degree −1.

This feature is crucial, as we wish to understand the derivation {Jcl
a ,−}

acting on functionals. The bracket amounts to contracting the two func-
tionals using the δ-function along the diagonal R ⊂ R2, but this δ-
function is a distributional one-form on R2 and hence it plugs nicely
into the two-fold tensor representing Jcl

a . In particular, for F a functional
of cohomological degree zero, the bracket {Jcl

a , F} is again degree zero.

Symmetries acting on Obscl

Let us now consider how this formula defines an action of o(V) on the
factorization algebra Obscl , even before constructing a map of factor-
ization algebras. The key idea is encoded in the following very simple
lemma.

14.1.1.1 Lemma. For every a ∈ o(V), the operator {Jcl
a ,−} is a derivation

of the factorization algebra Obscl . In particular, we have a map

Jcl : o(V)→ Der(Obscl)
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of Lie algebras.

Proof First, we have seen that {Jcl
a ,−} acts as a derivation on the com-

mutative algebra of functionals. It is the derivation determined by the
action of a on the fields, which is the space on which the functionals are
functions. This action on fields is pointwise in the source manifold R,
and hence is manifestly local. In particular, it is a straightforward com-
putation to verify that the action of {Jcl

a ,−} intertwines with the struc-
ture maps of Obscl , since the structure maps are maps of commutative
algebras. Thus {Jcl

a ,−} is a derivation of the factorization algebra.

It remains to show that

{Jcl
[a,b],−} = {Jcl

a , {Jcl
b ,−}} − {Jcl

b , {Jcl
a ,−}}

for all a, b ∈ o(V). This property is a consequence of the fact that we’re
simply witnessing the action of o(V) on functionals induced by the ac-
tion of fields, where we know we have a Lie algebra action. But our
explicit formula for {Jcl

a ,−} can also be used to verify this property di-
rectly. �

This lemma says that we have an action of symmetries of the target
upon the observables of the classical theory, where we organize those
observables as experienced by the worldline itself. An immediate con-
sequence of this factorization algebra-level statement is a statement at
the level of Poisson algebras, since this action is invariant under time
translation (i.e., under shifting the worldline).

14.1.1.2 Corollary. The map Jcl induces a map of Lie algebras

Jcl,Lie : o(V)→ DerPoisson(Sym(V ⊕V∗))

such that Jcl,Lie
a is a derivation of Sym(V ⊕ V∗) that preserves the Poisson

bracket.

This map sends a ∈ o(V) to the symplectic vector field on T∗V induced by
the vector field on V itself determined by a.

Proof The first statement is immediate from the preceding lemma and
the results of Section I.4.3, where we showed that H0 Obscl for this sys-
tem is isomorphic to the locally constant factorization algebra arising
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from the Poisson algebra Sym(V ⊕V∗) of functions on solutions to the
equation of motion.

The second statement amounts to unraveling the consequences of Jcl

using the correspondence between the classical observables and Sym(V⊕
V∗). We have shown that Jcl is simply the action of o(V) on function-
als induced by the action on fields themselves. We know that this Lie
algebra preserves the subspace of solutions to the equation of motion,
and we know its action on solutions — the symplectic space T∗V — is
determined by its action on the underlying space of configurations, the
target space V. Hence, we obtain the claim. �

Making the symmetry local

The usual formulation of the current in a field theory is that it is an
operator of cohomological degree 0. The current Jcl we have built is
instead something of cohomological degree 1. In this section we explain
how, by making the symmetry local on the source (i.e. treating it as a
background gauge field) we can recover the standard current.

The local version of the symmetry algebra is given by the local Lie
algebra

L = Ω∗ ⊗ o(V),

for which the inclusion of constant functions into de Rham forms de-
termines a map of dg Lie algebras

i : o(V)→ L

that is a quasi-isomorphism on every open set in R. (We will examine
soon what happens when the source manifold is a circle.)

Like all local Lie algebras, this L can be viewed as a sheaf on R of
formal moduli spaces. The formal moduli space corresponding to L(U)
is the space of solutions to the Maurer-Cartan equation modulo gauge.
In this example, the formal moduli problem is that of principal o(V)-
bundles with a connection.

Giving an action of this local Lie algebra on a theory is the same as
giving a family of theories over the corresponding formal moduli prob-
lem, i.e., giving a theory that includes a o(V)-gauge field as a back-
ground field. To start, we introduce a background gauge field A ∈



14.1 Examples from mechanics 383

Ω1(R, o(V)) into our mechanical system in a natural way, via the ac-
tion functional

SA(q, p) =
∫
(p, dAq) +

1
2

∫
(p, p)dt,

where dA = d + A is the associated connection. This action is known
as the minimal coupling, since it does the minimum necessary: it just
promotes d to the connection dA. (The reader might enjoy verifying it is
equivalent to the theory determined by the minimally coupled second-
order action.) Everything here makes sense viewing q and p as “naive”
fields, concentrated in degree zero.

The action SA encodes the idea that this particle is charged, because
it couples to this gauge field, and this coupling changes the particle’s
notion of a “straight line” (i.e., parallel transport). Alternatively but
equivalently, we can view A as picking out a point in the base space
BLc, which parametrizes a space of equations of motion. The fiber over
each point is a one-dimensional field theory.

This functional is invariant under o(V)-gauge symmetries that act
on q, p, and A. To encode the gauge symmetry in an action functional,
we use the BV formalism. Again, we lift q and p to elements Q and P
of Ω∗(R, V), and we now let α ∈ L(R)[1] denote a background field
living in the dg Lie algebra of symmetries. Then the equivariant action
functional is

Seq(Q, P, α) =
∫
(P, dQ) +

∫
(P, α ·Q) +

1
2

∫
(P, P)dt (14.1.1.3)

This action Seq satisfies the equivariant classical master equation

dLSeq + 1
2{S

eq, Seq} = 0, (14.1.1.4)

where dL is the differential on L(R)[1].

Note that when α is a one-form A, we recover SA from above. When α

is a zero-form, it encodes the gauge symmetry action of Ω0(R, o(V)) on
the fields q, p of the original mechanical system. If the zero-form com-
ponent is constant with value a ∈ o(V), then Seq(Q, P, a) is precisely
the current Jcl

a we introduced above.
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Via the functional Seq of (14.1.1.3), we obtain a map

Jcl : L(R) → Oloc[−1]
α 7→ ∂

∂α (S
eq).

(We continue to use the notation Jcl for this map, because on H0(L(R)) =
o(V) it is the map (14.1.1.1).) It is a map of dg Lie algebras because Seq

satisfies the equivariant classical master equation (14.1.1.4). That is, we
have an inner action of L(R) on our theory. In particular, restricting to
o(V) ⊂ L(R) gives us the inner action of o(V) on Oloc[−1].

One can see immediately that if we restrict Jcl to compactly-supported
sections, we obtain a map of precosheaves of dg Lie algebras

Jcl : Lc → Obscl [−1]
α 7→

∫
〈P, α ·Q〉 .

We must be a little careful when defining the dg Lie algebra structure
on the right hand side. The BV bracket, which is the relevant Lie bracket
on the right hand side, is well-defined on the image of this map, but not
on all of Obscl [−1]. It is, however, well-defined on the quasi-isomorphic

sub-factorization algebra Õbs
cl

whose elements are observables with
smooth first derivative. We will suppress this minor issue, as it is ex-
amined in detail in Chapter 5.

Note that for any interval I ⊂ R, the Poincaré lemma for compactly
supported forms tells us that the cohomology of Lc(I) is o(V) concen-
trated in degree 1. A basis for this cohomology is given by an element
of o(V) multiplied by f (t)dt, where f (t) is a function of compact sup-
port on the interval whose integral is 1. It follows that at the level of
cohomology, the map Jcl determines a map

Jcl : H1(Lc(I)) = o(V) → H0(Obscl(I)
a 7→

∫
(P, a ·Q) f (t)dt.

The observable on the right hand side only depends on the 0-form com-
ponents q = Q0, p = P0 of the BV fields Q, P. Hence, we can write it
as

Jcl(a) =
∫
(p, a · q) f (t)dt.

By using more singular observables, we can also represent the image of
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an element a ∈ o(V) by

Jcl(a) = 〈p(t0), a · q(t0)〉

by taking f (t)dt = δt=t0 .

Recovering angular momentum

Let us now quickly indicate how the formula (14.1.1) relates to the con-
ventional approach to rotational symmetry. Consider a solution to the
equation of motion (i.e., an on-shell field):

q(t) = tv + x and p(t) = v

where v in V denotes the velocity vector of the particle and x in V de-
notes the position at time t = 0. (As before, we take q = Q0 and p = P0

to be the 0-form components of our fields.) This solution encodes a par-
ticle moving in a straight line.

The observable Jcl(a) in these terms, measured at time t, is

Jcl(a, t)(q, p) = (v, t(a · v)) + (v, a · x) = t(v, a · v) + (v, a · x)

for each solution. Note that (v, a · v) = 0 since by the definition of o(V),
(w, a · w′) = −(a · w, w′) for all w, w′ ∈ V. Hence

Jcl(a, t)(q, p) = (v, a · x),

which is manifestly independent of time and hence a conserved quan-
tity.

Note that this observable is the a-component of the usual angular
momentum. It may help here to specialize to the case V = R3, and to
use the standard identification of the Lie algebra o(3) = so(3) with the
cross product on R3. In that case, we see

(v, a · x) = (v, a× x) = (a, x× v)

by the scalar triple product identity. That last expression is precisely the
a-component of the angular momentum x× v.
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Obtaining the moment map

By taking the enveloping P0 factorization algebra of L, we obtain a map
of factorization algebras

Jcl, f act : UP0L = Sym(Lc[1])→ Obscl .

By the universal property of a enveloping P0 factorization algebra, this
map is determined by its restriction to the generators Lc[1], where it
is simply a shift of the map Jcl just defined. It is, in particular, a map
of commutative algebras. At the level of the cohomology, this map be-
comes familiar.

14.1.1.3 Lemma. The map Jcl, f act induces a map of (unshifted) Poisson alge-
bras

JPois : Sym(o(V))→ Sym(V ⊕V∗).

This map is compatible with the map Jcl,Lie of Lie algebras: for every a ∈ o(V),

{JPois
a ,−} = Jcl,Lie

a ,

i.e., the Hamiltonian vector field of the function JPois
a recovers the Poisson

derivation Jcl,Lie
a .

This lemma says that we have lifted Jcl,Lie to an inner action of o(V)
on the algebra of functions on the space of solutions to the equations of
motion. But it admits a description in more traditional terms as well.

Note that Sym(o(V)) is the enveloping Poisson algebra of o(V), which
is the Poisson algebra on the coadjoint space o(V)∗. Hence the map JPois

is the pull back of functions along the moment map µ : T∗V → o(V).

Proof The first statement is a consequence of the fact that both factor-
ization algebras are locally constant and hence correspond to associa-
tive algebras. The factorization algebra map thus determines a map of
associative algebras, indeed of commutative algebras in this case.

It remains to verify the compatibility with the Poisson structures.
One conceptual way to see it is to rely on the analysis of Noether’s
theorem at the quantum level. At the quantum level, Sym(o(V)) is
deformed into the Rees algebra of the universal enveloping algebra
U(o(V)), and Sym(V ⊕ V∗) is deformed into the Rees algebra for the
Weyl algebra on V ⊕ V∗. The quantum version of Noether’s theorem
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says that we have a map from one algebra to the other lifting the map
present at the classical level. Working modulo h̄2 then implies that the
map at the classical level is compatible with Poisson brackets. �

Generalizations

There are natural variants of this situation, which we briefly discuss.

First, one might imagine adding a potential, so that we have an inter-
acting theory. That is, we fix a function U : V → R and work with the
action functional

SU(q, p) =
∫
(p, q̇)dt +

1
2

∫
(p, p)dt +

∫
U(q(t))dt,

whose equations of motion are

p = −∂tq (14.1.1.5)

∂t p = ∇U(q), (14.1.1.6)

where ∇U denotes the gradient of U as a function on the target mani-
fold V.

In this case the relevant symmetries are the vector fields on the space
V that fix U (i.e., whose Lie derivative of U vanishes). The massive free
theory gave an example using

U(v) = −m2(v, v) = −m2|v|2,

which manifestly has the orthogonal Lie algebra as symmetries, but
there are many other potentials with interesting Lie algebras of sym-
metries. If one works through a process modeled on the case we have
just analyzed, then one will recover familiar constructions from classi-
cal mechanics.

A more sophisticated variation is to consider nonlinear σ-models, so
that V is a manifold or even something somewhat exotic, like a Lie alge-
broid. Here it is convenient to use Gelfand-Kazhdan formal geometry,
which means that one begins by letting V be a formal disk and one
allows formal vector fields as the symmetries. In essence, Fedosov in-
troduced the procedure in his work on deformation quantization. (This
viewpoint is highlighted, however, by Kontsevich in his work on de-
formation quantization Kontsevich (2003) and explained in clarifying
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Q P

Figure 14.1 The propagator as directed from Q to P

detail by Cattaneo et al. (2002), although those works focus on a two-
dimensional σ-model.) For a treatment compatible with the discussion
here, see Grady et al. (2017).

14.1.2 Quantized symmetries on the target

We wish now to quantize the example just developed. Our approach
is to view the classical theory as living over the base ring C∗(o(V))
(equivalently, as living over the formal moduli space Bo(V)), and then
to attempt to BV quantize over that base ring. To enforce locality in a
technically convenient way, we can work with C∗(L), where L is the
local Lie algebra Ω∗ ⊗ o(V) on the real line.

The Feynman diagrams

Before worrying about any issues of analysis (which will not arise here),
let us examine the structure of the diagrammatics.

Recall that action functional in the presence of a background field
α ∈ L[1] is

Seq(Q, P, α) =
∫
(P, dQ) +

∫
(P, α ·Q) +

1
2

∫
(P, P)dt (14.1.2.1)

Here Q is the fundamental field of the model, and P is an auxiliary field.

The first and third term of the equivariant action functional Seq are
quadratic and provides the propagator and hence the label for edges.
See Figure 14.1. Note that the ends of the edge are labeled by Q and P
and do not involve α in any way (i.e., α is a background or “nonpropa-
gating” field). The second term is cubic and provides a trivalent vertex.
The α-leg is undirected. See Figure 14.2.

We now ask what kind of graphs can be built from this data; we focus
on connected graphs.
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Q α

P

Figure 14.2 The trivalent vertex

Q

α α

· · ·

α

P

Figure 14.3 The tree with n incoming α-legs

The answer is attractively simple. The only possible trees have two
Q, P-legs and arbitrarily many α-legs. These are constructed by joining
together trivalent vertices with the edges. See Figure 14.3. Note that the
propagator cannot attach to α-legs, because we treat α as a background
field.

The only possible graphs that are connected but not simply connected
are given by wheels whose external legs are all labelled by α. See Fig-
ure 14.4. Because α does not propagate, we can not build any graphs
with more loops by gluing these wheels together.

In consequence, the naive form of the quantized equivariant action

α

α α

α

Figure 14.4 A wheel with four vertices
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functional is

Sq
naive[Ψ] = ∑

trees Υ
IΥ[Ψ](Q, P, α) + h̄ ∑

wheels 	
I	[Ψ](α),

where Ψ denotes some parametrix.

Remark: This functional is naive in the sense that it arises via the dia-
grams determined by the classical action functional, but it may not sat-
isfy the quantum master equation and hence not define a quantum field
theory in the sense of this book. We will investigate shortly whether
Sq

naive satisfies the quantum master equation. Further, in general dimen-
sion larger than 1, an expression like the one defining Sq

naive[Ψ] might be
ill-defined, and would need to be renormalized using the techniques of
Costello (2011b). In the case of quantum mechanics, as we will carefully
check below, there are no such difficulties. ♦

The points we wish to emphasize are that

(i) there are no powers of h̄ beyond the first, and
(ii) the h̄-dependent term is independent of the fields P, Q and simply a

function of the background field α.

For these reasons, the situation is particularly accessible.

Recall that, in our context, we have two separate notions of an action
of a local Lie algebra on a field theory: an action versus an inner action.
To give an action, we require a solution Sq[Ψ](P, Q, α) to the quantum
master equation that has no terms which depend only on α. If we drop
the terms from Sq

naive[Ψ] which depend only on α, we are left with only
diagrams which are trees. In that case, the quantum master equation
reduces to the classical master equation, which will hold automatically,
because it holds for Scl(P, Q, α). Thus, we find immediately that we
have an action of L on our theory.

The more interesting question is whether we can lift this to an inner
action. To check, we need to determine whether the quantum master
equation holds for Sq[Ψ](P, Q, α). Applying the BV Laplacian to the
one-loop term I	[Ψ] gives zero, because this quantity only depends
on α and the BV Laplacian contracts a Q leg with a P leg. Similarly,
{I	[Ψ],−}Ψ is zero. The only term in the quantum master equation
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that is not already captured by the classical master equation is

O[Ψ] = ∑
trees Υ

4Ψ IΥ + dL I	[Ψ].

Note that this expression depends only on α, and is an element of C1(L).
As is always true for obstructions to solving the quantum master equa-
tion, this expression is independent of Ψ so that we can take Ψ to be
arbitrarily small, giving us a cohomology class in H1(Cloc(L)).

To sum up, we have found that

(i) We automatically have an action of L on the quantum theory.
(ii) The obstruction to finding an inner action is a quantity described by

one-loop Feynman diagrams, and lives in H1(Cloc(L).

As we have seen, an element of H1(Cloc(L) gives rise to a shifted central
extension, of L, which we can in turn use to form the twisted envelop-
ing factorization algebra.

In the case at hand, however, the class in H1(Cloc(L)) usually van-
ishes for cohomological reasons. Indeed, the local Lie algebra cohomol-
ogy of L coincides with the Lie algebra cohomology of o(V), by the re-
sults of section 12.2.4. By Whitehead’s lemma, assuming that dim V >
2, the Lie algebra cohomology of o(V) has vanishing H1.

Now let us explain why there are no analytic difficulties. The key
point is that there exists a parametrix whose corresponding propagator
is a continuous function with bounded derivative. In this context, as
usual, we mean a parametrix for the Laplacian ∂2

t . For any choice of
a smooth function f (t) with f (t) = 0 for |t| � 0 and f (t) = 1 in a
neighbourhood of t = 0, then the parametrix is simply

1
2 |t1 − t2| f (t1 − t2). (14.1.2.2)

(It is an excercise to check that applying ∂2
t1

to this expression gives
δt1=t2 plus a smooth function). The corresponding propagator is the
derivative of this parametrix:

|t1 − t2| f ′(t1 − t2) + f (t1 − t2)(δt1>t2 − δt1<t2). (14.1.2.3)

Clearly, this function is bounded, even if not continuous.
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Remark: The fact that the parametrix for the Laplacian in one dimen-
sion is continuous is closely related to the fact that the Wiener measure
for random paths is supported on continuous paths. In higher dimen-
sions, the analog of the Wiener measure — known as the Gaussian free
field measure — has the feature that continuous functions have mea-
sure zero. Correspondingly, the parametrix is a distribution, and not
continuous. ♦

Given this propagator, when our interaction contains no derivatives
(as in our example), the amplitude of the Feynman diagram is given
by an absolutely convergent integral, and no regularization is required.
Thanks to this feature, our expression for Sq

naive makes sense, and the
cohomological argument given above shows that in this case there is
an inner action of L on our theory.

The quantum Noether theorem applies immediately.

14.1.2.1 Corollary. There is a map of factorization algebras

Jq, f act : UBDL = Ch̄
∗(Lc)→ Obsq,

since no twisting cocycle is required as the obstruction for an inner action
vanished.

Both factorization algebras are locally constant, as is the map. Hence by
taking cohomology, we obtain a map of associative algebras

Jalg : Uh̄
o(V)→Weyl(V ⊕V∗)

such that modulo h̄, it recovers JPois.

This map Jalg is a quantum moment map, as it is a deformation quanti-
zation of the moment map described in Lemma 14.1.1.3.

Remark: Since Obsq is locally constant and corresponds to the Weyl al-
gebra, the locally constant derivations (including the image of Jq,Lie)
correspond to derivations of Weyl algebras. All such derivations are
inner as HH1(Weyl) = 0, which implies that up to the ambiguity of
constants, there is a lift of Jq,Lie to a map into the Weyl algebra. The
map Jalg is such a map.

Direct computation shows that JPois sends an element of o(V) to a
quadratic function on T∗V, asseen already in the quadratic nature of Jcl

x .
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Something similar holds at the quantum level. Jalg will be an expression
of degree at most 2 in the generators of the Weyl algebra. If we equip
the Weyl algebra Weyl(T∗V) = Diff(V) with the filtration where the
generators in V⊕V∗ have weight 1, then Jalg sits in F2 Weyl. Hence the
associatied graded of Jalg in F2 Weyl /F1 Weyl is the classical moment
map.

In many situations, the constant term of the quantum moment map
(sitting in F0 Weyl(V)) is ambiguous; we can add the identity to Jalg(a)
without changing the commutator [Jalg(a),−]. In the case at hand, how-
ever, there is no such ambiguity because Jalg : o(V)→ F2 Weyl(V) must
be an o(V)-equivariant map. If dim V > 2, then o(V) has no rank 1 rep-
resentations, which tells us that we cannot adjust the constant term in
Jalg(a) in an o(V)-equivariant way.

This result is closely related to the cohomological argument for van-
ishing of the obstruction to an inner action. That anomaly is a cocycle
in C2(o(V)), and it can by eliminated by choosing a bounding cochain
in C1(o(V)). Equivalence classes of bounding cochains are a torsor for
H1(o(V)), which vanishes precisely because o(V) has no rank one rep-
resentations. ♦

14.1.3 Noether’s theorem and partition functions

We have seen in section 13.8 how Noether’s theorem allows us to define
and compute partition functions. In this section, we will examine how
this procedure works for the harmonic oscillator.

The harmonic oscillator is the deformation of the topological quan-
tum mechanics analyzed above, and it is obtained by adding the term∫
(P2 + Q2)dt to the Lagrangian. Noether’s theorem provides a nice in-

terpretation where we give topological quantum mechanics an inner
action of the Abelian local Lie algebra L = Ω∗ via the coupled action∫

PdQ + (P2 + Q2)α

with background field α ∈ Ω∗[1]. That is, we are making the one-
dimensional Abelian Lie algebra C act by the current P2 +Q2. The Pois-
son bracket with this current is 2P∂Q − 2Q∂P, so that the symmetry is
associated to this vector field on the target.
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Just as in the case of the o(V) action on topological quantum mechan-
ics discussed above, this action lifts to an inner action at the quantum
level. Indeed, as we saw above, the propagator is a bounded function,
so that there are no analytical difficulties. There is no cohomological ob-
struction to the quantum master equation for an inner action holding
because H2(C∗loc(L)) = 0. As H1(C∗loc(L)) = C, there is not, however,
a unique way to solve the quantum master equation. Different ways of
doing so are related by adding on the one-loop term

∫
α.

Let us recall how Noether’s theorem allows us to analyze the parti-
tion function. We replace the real line by a circle, a natural compactifi-
cation of the line. The global Noether current is a map

Jglobal : C∗(L(S1))→ Obsq(S1).

On the left hand side, we have the Lie algebra chain complex of the
global sections of the Lie algebra L of symmetries. Dually, we can view
the global Noether current as an elemen

Jglobal ∈ C∗(L(S1), Obsq(S1)).

Let us make the assumption that the identity operator gives us a quasi-
isomorphism

Id : C→ Obsq(S1).

It is convenient here to set h̄ = 1, which we can do because only one-
loop Feynman diagrams appear in our analysis.

When our assumption is true, then we can replace Obsq(S1) with C,
so that

Jglobal ∈ C∗(L(S1))

In the case of interest, there is a quasi-isomorphism

H∗(L(S1)) � H∗(S1)

where both sides are Abelian Lie algebras, and so

H0(C∗(L(S1))) = C[[c]]

for a formal variable c.

By this isomorphism, we can interpret Jglobal as a function of a single
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variable c. This function can be understood as the partition function of
the quantum mechanical system with Lagrangian∫

PdQ + c
∫
(P2 + Q2)dt.

Our goal in this section is thus to compute this partition function, both
via our approach with Noether’s theorem and Feynman diagrams but
also via the standard Hamiltonian approach. We will find that the an-
swers coincide, but only after deploying some fun number-theoretic
identities.

Before we turn to the computation, we first need to deal with a prob-
lem: for topological quantum mechanics with Lagrangian

∫
PdQ, the

map

Id : C→ Obsq(S1) (14.1.3.1)

is not a quasi-isomorphism. Indeed, the right hand side is the Hochschild
homology of the Weyl algebra, which is concentrated in a non-zero de-
gree.

We can fix this problem, however, by asking that the fields p, q are
not sections of the trivial flat bundle on S1, but sections of a flat bundle
with nontrivial monodromy. Here we will consider the case where the
monodromy is −1, which means that p, q are anti-periodic.

Remark: Studying topological mechanics when p, q are anti-periodic is
equivalent to studying the harmonic oscillator when p, q are periodic
but where the coefficient of the (p2 + q2)dt term is near π/2. The Hamil-
tonian flow generated by p2 + q2 sends p→ −p, q→ −q after time π/2.
For discussion, see Section I.8.1.2, where we examined the quantum
harmonic oscillator and computed the quantum observables over a cir-
cle; there is an interesting dependence on the mass and the circumfer-
ence of the circle. ♦

For the BV theory, the fields P and Q live in the de Rham complex
with coefficients in this flat bundle with monodromy −1. This twisted
de Rham cohomology over S1 is trivial, and so for this theory, the space
of classical observables Obscl(S1) has cohomology C in degree 0, spanned
by the identity operator. A spectral sequence then tells us that the co-
homology of Obsq(S1) is also spanned by the identity operator.

We want something more explicit than a spectral sequence, though.
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Recall that a quantum observable O ∈ Obsq(S1) is a functional O[Ψ](P, Q)
of the fields P, Q, for every parametrix Ψ. The differential is a sum of
two terms: the first term is induced by the de Rham operator acting on
P, Q, and the second is the BV Laplacian4Ψ associated to the matrix.

There is a special parametrix at length scale ∞, which is the Green’s
function on the circle for an anti-periodic scalar field. With this parametrix,
the BV operator 4∞ is zero. Indeed, the BV operator is the harmonic
representative of the delta-function on the diagonal in S1 × S1, and
there are no harmonic forms with coefficients in the flat bundle of mon-
odromy −1. Thus, the differential on observables at scale ∞ arises sim-
ply from the de Rham operator. There is then an explicit quasi-isomorphism

〈−〉 : Obsq(S1) → C

O 7→ O[∞](0)

obtained by evaluating O[∞] at P = Q = 0.

The global Noether current can be expressed in terms of Feynman di-
agrams, once we choose a parametrix Ψ. The quantum effective action
that couples the fields P, Q with the background field α is

Sq[Ψ](P, Q, α) = ∑
trees Υ

IΥ[Ψ](Q, P, α) + ∑
wheels 	

I	[Ψ](α).

The global Noether current, as a function of α ∈ Ω∗(S1)[1], is the ex-
pression

Jglobal(α, P, Q)[Ψ] = exp(Sq[Ψ](P, Q, α)).

(We view this expression as a formal series in α.) If α is a one-form, so
that α is closed, this current automatically satisfies the RG flow equation
and the quantum master equation that defines a quantum observable.

We are interested in the expectation value of this observable, when
α = c dθ is a harmonic one-form. This expectation value is the parti-
tion function ZN(c) of the harmonic oscillator, defined using Noether’s
theorem.

From the definition of the expectation value, we find

log ZN(c) = log
〈

Jglobal(cdθ)
〉
= ∑

wheels 	
I	[∞](cdθ).

Now, following Gwilliam and Grady (2014), we can express it in terms
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of a trace on the space of anti-periodic functions on S1. We call this
space C∞

odd(S
1). The operator ∂θ is invertible on this space. The ampli-

tude for a wheel with n external lines is proportional to

TrC∞
odd(S

1) ∂−n
θ = ∑

k

1
((2k + 1)πi)n .

When n is odd, we view this putative sum as vanishing; the transfor-
mation k 7→ −k− 1 pairs off terms that cancel. (This kind of maneuver
is familiar when dealing with series like this one.) We thus only con-
sider even n even. We need to carefully calculate the coefficient of each
such diagram.

Each vertex in the wheel must come from the cP2 or cQ2 interaction.
The Feynman rules tell us that contribution at each vertex involves the
derivatives of the quantity P2 or Q2 at the vertex. Thus, we get an extra
factor of 2 for each vertex, giving us an overall factor of 2n.

Because the propagator connects P to Q, the vertices labelled by P2

and those labelled by Q2 alternate. The propagator connecting P to Q
is ∂−1

θ , whereas that connecting Q to P is−∂−1
θ . This pattern gives us an

overall sign of (−1)n/2 = in.

Finally, each such expression comes with a fractional weight count-
ing the number of automorphisms of the diagram. The symmetry group
of our wheel diagram, preserving the labelling of each vertex by P2 or
Q2, is the dihedral group Dn/2, which has order n. The overall factor
for each diagram is then (2ic)n/n. In sum, we find

log ZN(c) = ∑
n even

(2ic)n

n ∑
k

1
((2k + 1)πi)n ,

expressing the partition function of this system in terms of diagrams.

Let us compare this formula to the Hamiltonian computation of the
partition function of the harmonic oscillator that one finds in standard
quantum mechanics textbooks. The Hamiltonian is c(P2 + Q2) where
[P, Q] = 1. We can write

c(P2 + Q2) = c
2

(
ρρ† + ρ†ρ

)
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where

ρ = P + iQ,

ρ† = P− iQ.

These satisfy the relations

[P2 + Q2, ρ] = 2iρ,

[P2 + Q2, ρ†] = −2iρ†.

A basis for the Hilbert space H of the system is obtained by applying
the raising operator ρ repeatedly to the vacuum vector |0〉. If we rep-
resent P, Q as the operators ∂x, x on the space of functions of a single
variable, then the vacuum vector is eix/2, which is an eigenfunction of
eigenvalue i.

The commutation relations between the Hamiltonian c(P2 + Q2) and
ρ tells us that the eigenvalue of ρn |0〉 is 2i(n + 1

2 )c. For our purposes,
it is convenient to assume that Im c < 0, so that the real part of the
eigenvalues of the Hamiltonian are negative. The partition function, as
obtained in the Hamiltonian framework, is then the twisted trace of eH

in the Hilbert space, where “twisted trace” means we count states ρn |0〉
with a sign of (−1)n. In formulae, if R denotes the operator which acts
as (−1)n on ρn |0〉, the partition function is

ZH(c) = TrH ReH

= ∑
n≥0

(−1)ne(2n+1)ic =
eic

1 + e2ic .

This formula uses the operator-theoretic approach.

To check that these partition functions agree, we need to know that

log
eic

1 + e2ic = ∑
n even

(2ic)n

n ∑
k

1
((2k + 1)πi)n .

This identity turns out to be true, but it is nontrivial (although amus-
ing) to prove. (This identity holds only up to a constant: the Noether’s
theorem approach recovers the partition function up to a multiplicative
constant, and so its logarithm up to an additive constant).
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We outline one approach. First, recall the identity

∑
k odd

1
kn = (1− 2−n)2ζ(n)

where ζ is the Riemann zeta function (see e.g. Gould and Shonhiwa
(2008)). In terms of the zeta function we have

log ZN(c) = ∑
n even

(2ic)n(1− 2−n)

n(πi)n 2ζ(n).

There is then an equivalence of power series

log
(

x
1− e−x

)
− x

2
= ∑

n even
2ζ(n)

xn

n(2iπ)n ,

which gives

log ZN(c) = − log
(

2ic
1− e−2ic

)
+ log

(
4ic

1− e−4ic

)
− ic

= log
(

2(1− e−2ic)

1− e−4ic

)
− ic

= log 2 + log
(

1
1 + e−2ic

)
− ic.

The log 2 is irrelevant, as log ZN(c) is only defined up to an additive
constant. We find

ZN(c) =
e−ic

1 + e−2ic

=
eic

1 + e2ic

= ZH(c),

proving that the diagrammatic partition function via Noether’s theo-
rem and the Hamiltonian partition function coincide.

14.2 Examples from chiral conformal field theory

We will consider here a chiral analogue of the one-dimensional theory
just considered, namely the free βγ system on a Riemann surface Σ,
which we examined in Example 12.6.2. Fix a complex vector space V.
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The fields consist of γ : Σ → V and β ∈ Ω1,0(Σ) ⊗ V∗. The action
functional is

S(β, γ) =
∫
〈β, ∂γ〉

where 〈−,−〉 denotes the evaluation pairing between V and its dual V∗

extended linearly over the Dolbeault complex Ω0,∗(Σ). In Section I.5.4,
we examined the factorization algebra of this theory and computed its
associated vertex algebra.

In this section, we will apply our formulation of Noether’s theorem
to show that the Virasoro vertex algebra, at a particular level, embeds
into the vertex algebra of the βγ system. We will also explain how the
Kac-Moody vertex algebra associated to gl(V), again at a particular
level, embeds into the factorization algebra of the βγ system. Both of
these computations are standard in the physics literature. The novelty
of our presentation is that the Virasoro and Kac-Moody factorization
algebras are presented in quite a geometric way. (These arguments are
easily applied to the chiral fermion, which provided a running example
in Chapter 12, starting with Example 12.2.2.)

Remark: The examples developed here are explored in a more sophisti-
cated way in Gwilliam et al. (2020), where it is shown that one can re-
cover the sheaf of vertex algebras known as chiral differential operators
(CDOs) from a sheaf of factorization algebras. The classical field theory
is known as the curved βγ system, and it amounts to replacing the vec-
tor space V here by a complex manifold X. The Noether theorems play
a key role in constructing the sheaves, as one must understand how
diffeomorphisms of the target X act as symmetries of the curved βγ

system. In this example, the obstruction element is nontrivial and cor-
responds to the second Chern character ch2(TX) of the target X. ♦

14.2.1 Some useful analytic facts

Our goal is to explain the structure of these computations, not to un-
ravel the intricacies of various graph integrals. We thus depend upon
general, and very helpful, results about graph integrals for chiral theo-
ries on C, due to Li (2012). These results show that if we deform the βγ

term as a holomorphic theory, by adding an appropriate interaction,
then we will not need counterterms in producing a quantized action.
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Further, Li’s results allow one to compute the obstruction completely
explicitly. Hence, the analytical challenges to quantizing a symmetry
are at a relative minimum, and we can focus on structural aspects.

Li’s results apply for Feynman diagrams at all loops. However, the
calculations we will need only involve Feynman diagrams of at most
one loop, so we will not need the full power of Li’s results.

To state the relevant version of Li’s result, we will introduce some
notation that is needed to discuss the graph integrals relevant to our
situations.

Let

4 = −4
∂

∂z
∂

∂z
denote the Laplacian with which we are concerned, let

Kt(z, z) =
1

4πt
e−|z|

2/4t

denote the associated heat kernel, and let

Hε<L(z, z) =
∫ L

ε
dt Kt(z, z).

The propagator Pε<L for the βγ system has integral kernel ∂
∗

Hε<L.

Given a graph Γ, let V(Γ) denote the set of vertices and let E(Γ) de-
note the set of edges. Each edge e has a head h(e) and tail t(e) vertex
(which are possibly the same). The graph is allowed to have a collection
of external legs (or “half-edges”), and we will say there are nΓ of them.
Let ν : E(Γ)→ Z>0 assign a positive integer to each edge. We define

WΓ,ν(Hε<L, Φ) = ∏
v∈V(Γ)

∫
Z

d2zv

 ∏
e∈E(Γ)

∂
ν(e)
ze Hε<L(ze, ze)

Φ

where ze = zh(e) − zt(e) and Φ ∈ C∞
c (Cnγ) is a function of nΓ variables.

This formula specifies a family of distributions on CnΓ , depending on
the parameters ε and L.

14.2.1.1 Proposition (Prop. B.1, Li (2012)). The limit

lim
ε→0

WΓ,ν(Hε<L, Φ)

exists for any L > 0 and any Φ.
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It should be clear to those familiar with Feynman diagrams that this
kind of integral shows up naturally in questions about the βγ system.
(Consider the case of ν ≡ 1. Proposition 9.5 of Gwilliam et al. (2020)
examines this case for one-loop graphs in great detail, without invoking
Li’s general result.)

This result will ensure that no counterterms are necessary in the con-
structions we pursue below.

There is closely related result, first articulated in Costello (2011a) at
one-loop and proved in general in Li (2012).

14.2.1.2 Proposition. Only diagrams with two vertices contribute to ob-
structions.

All the computations we perform in this section will involve Feyn-
man diagrams with at most one loop, and we will need only analyze
one-loop obstructions.

14.2.2 Symmetries on the target

We let B ∈ Ω1,∗(Σ, KΣ ⊗ V) and Γ ∈ Ω0,∗(Σ, V) be the fields of the
βγ system in the BV formalism. The components of cohomological de-
gree 0 will be β, γ. The BV symplectic pairing is

∫
〈B, Γ〉 and the action

functional is
∫ 〈

B, ∂Γ
〉

.

Linear symmetries of the target space V lift to symmetries of the βγ

system. It then extends naturally to an action of the local Lie algebra
L = Ω0,∗⊗ gl(V), which acts on the fields B, Γ by combining the natural
action of gl(V) on V and V∗ with the wedge product of forms.

When we unravel the Noether theorems for this case, there are com-
pelling chiral analogues to the one-dimensional situations analyzed ear-
lier, where we obtained maps of algebras Ug→ A. Here, by Section I.5.4,
we know that the twisted enveloping factorization algebra of L recov-
ers a Kac-Moody vertex algebra. Hence the quantized symmetry will
lead to map of vertex algebras

KMλ → Vβγ
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for some level λ. The factorization algebra-level statement gives global
versions of this situation, explaining how chiral currents determine ob-
servables and yield Ward identities.

The action of L on Obscl is encoded by the local functional

Jcl
α (B, Γ) =

∫
〈B, α · Γ〉

with α ∈ Lc and α · Γ means the pointwise action. By the same argu-
ment as for Lemma 14.1.1.1, we see that for {Jcl

α ,−} is a derivation of
the factorization algebra Obscl .

The equivariant action functional is

Seq(B, Γ, α) = S(B, Γ) + Jcl
α (Γ, B),

which satisfies the classical master equation over C and hence deter-
mines an inner action.

The anomaly to a quantized inner action

The form of this equivariant action functional is similar to that in the
one-dimensional case. We can ask if this action can be lifted to the quan-
tum level. As in the one-dimensional case, the only Feynman diagrams
that can appear are

• trees with a single Γ-leg, a single B-leg, and arbitrarily many α-legs,
• wheels, with only α-legs,

just as in Section 14.1.2. By Proposition 14.2.1.1, we find that the graph
integrals associated to these wheels have no divergences in the ε → 0
limit, which is analogous to the fact that no divergences appear in the
mechanical system.

We can ask whether, at the quantum level, we have an action of the
local Lie algebra or an inner action. Because all the diagrams at one loop
have only α-legs, they do not contribute to the action of L, only to the
inner action. In consequence, we know the following.

14.2.2.1 Lemma. The equivariant classical βγ system admits an equivariant
quantization at the quantum level, given an action of L on the βγ system.
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To determine whether the quantized action of L on Obsq is inner, we
need to identify the obstruction element. Thanks to Lemma 14.2.1.2, we
only need to examine the wheel with two vertices. The obstruction will
be a local cocycle on L of degree 1.

14.2.2.2 Proposition. The obstruction to the action of L becoming an inner
action is the cocycle ∫

Σ
TrV α∂α.

Here we view cochains of L as the space of functions on L[1] =
Ω0,∗

Σ ⊗ gl(V)[1], and we view α as an element of L[1]. This local cocycle
is of degree 1, as it eats one (0, 1)-form and one (0, 0)-form, which are
in degrees 0 and −1, respectively.

Proof One can derive this claim from the general results of Li (2012)
or Costello (2011a), but it is instructive to calculate it directly. Since this
computation is well-documented elsewhere, we will not present every
detail.

We work on flat space Σ = C. Let us choose a basis for V, and view α

as a matrix αi
j of (0, ∗)-forms. The propagator is

PL
ε =

∫ L

t=ε
∂z

1
4πt

e−|z−z′ |2/4t.

(Here, we have implicitly trivialized the canonical bundle on C so that
we can treat both B and Γ as (0, ∗)-forms.) The amplitude for the wheel
with two vertices, with external lines labelled by α, α̃ is

lim
ε→0

∫
z,z′

PL
ε (z, z′)2αi

j(z)α̃
j
i(z
′).

This expression is a linear map (Ω0,∗(C) ⊗ glN)⊗2 → C. It is a tensor
product of an algebraic factor Tr : gl⊗2

N → C, with an algebraic factor

Wan[L](α, α′) = lim
ε→0

∫
z,z′

PL
ε (z, z′)2α(z)α̃(z′),

where α means here as an element of Ω0,∗(C). This expression is a sym-
metric linear functional on (Ω0,∗(C)[1])⊗2. We can ask if it is a cochain
map. Integration by parts shows this functional fails to be a cochain
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map by applying ∂ to P(z, z′):

(∂Wan[L])(α, α̃) = lim
ε→0

∫
z,z′

∂PL
ε (z, z′)2α(z)α̃(z′).

Since we have

∂P(ε, L) = KL − Kε,

we have

(∂Wan[L])(α, α̃) = 2 lim
ε→0

∫
z,z′

PL
ε (z, z′)(KL(z, z′)− Kε(z, z′))α(z)α̃(z′).

One of the terms in the quantum master equation for one-loop diagr-
mas applies 4L to a graph that is a tree. Since 4L is obtained by con-
tracting with KL, it will not be surprising that this term cancels with the
term in ∂Wan that involves KL. We find that the anomaly — the failure
to satisfy the equivariant quantum master equation — is

O[L](α, α̃) = −2 lim
ε→0

∫
z,z′

PL
ε (z, z′)Kε(z, z′)α(z)α̃(z′).

We will calculate this anomaly up to an overall factor, into which we
will absorb the factor of−2. Inserting the explicit expressions for P(ε, L)
and Kε, we find the anomaly is computed by the integral

−
∫ L

t=ε

∫
z,z′

(z− z′).
1

16πt2 e−|z−z′ |2/4t 1
4πε

e−|z−z′ |2/4εα(z)α̃(z′)dzdz′.

Changing variables to u = (z − z′)/2, v = (z + z′)/2, and dropping
some multiplicative factors, we obtain∫ L

t=ε

∫
v

∫
u

1
t2ε

e−|u|
2( 1

t +
1
ε )uα(u + v)α̃(v− u)dudv.

The integral over the u-plane is a Gaussian integral, and so can be com-
puted in series in the parameter (t−1 + ε−1)−1, according to Wick’s
lemma. The leading order term in this expansion gives us the value of
the integrand at u = 0, multiplied by (t−1 + ε−1)−2. This term vanishes,
because the integrand has a factor of u. The next term in the expansion
gives us ∂u∂u applied to uα(u + v)α̃(v− u) and evaluated at zero:∫

u

1
t2ε

e−|u|
2( 1

t +
1
ε )uα(u + v)α̃(v− u)du

' 1
t2ε

(t−1 + ε−1)−2∂u∂u (uα(v + u)α̃(v− u))

=
t2ε2

t2ε(t + ε)2 (∂vα(v)α̃(v)− α(v)∂vα̃(v)) .
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It turns out that the remaining terms in the expansion in the parameter
(t−1 + ε−1)−1 do not contribute to the ε→ 0 limit. It is easy to see that

lim
ε→0

∫ L

t=ε

t2ε2

t2ε(t + ε)2 dt = 1
2

so that, up to a non-zero constant, the anomaly is

O[L] =
∫

z
∂zα(z)α̃(z)dz−

∫
z

α(z)∂zα̃(z)dz

= 2
∫

α(z)∂α̃(z)

as desired. �

14.2.3 Symmetries on the source

In this section we use the formalism to identify how the Virasoro alge-
bra acts on the observables of the free βγ system. The arguments are
borrowed from Williams (2017), where Williams provides a systematic
analysis of the Virasoro algebra from the perspective developed in these
books.

The Virasoro factorization algebra

Consider the local Lie algebra on a Riemann surface Σ given by

T = Ω0,∗(−, T1,0),

which is how one describes holomorphic vector fields in a manner con-
venient for complex differential geometry. It has a direct relationship
with polynomial vector fields on the circle: for any annulus A = {r <
|z| < R}, there is a natural dense inclusion

C[z, z−1]∂z ↪→ H∗(T (A)) � O(A)∂z,

since Laurent polynomials are dense in the holomorphic functionsO(A)
on an annulus and hence the same applies to vector fields. It is through
this relationship that we will recognize more standard approaches to
the Virasoro algebra.

Remark: This local Lie algebra also admits a nice interpretation as a for-
mal moduli space. Consider global sections T (Σ) over a closed Rie-
mann surface Σ. It is well-known that H1(Σ, T1,0) describes first-order
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deformations of complex structure, and more generally that T (Σ) de-
scribes the formal neighborhood in the moduli of curves of the point
represented by Σ. That is, the Maurer-Cartan functor of this dg Lie alge-
bra corresponds to the formal moduli functor obtained by completing
the stack of curves there. Hence, T is a local-to-global object encoding
deformations of complex structure. Compare to our discussion in the
first remark of section I.5.5.1. ♦

There is a well-known Gelfand-Fuks cocycle for these polynomial
vector fields

ωGF( f (z)∂z, g(z)∂z) =
1
12

Resz=0( f ′′′g dz),

which determines a central extension

0→ Cc→ Vir→ C[z, z−1]∂z → 0

known as the Virasoro Lie algebra. One often studies representations of
this Lie algebra where the action of the center is fixed to some scalar
value λ called the central charge.

There is an analogous central extension T̃c of the cosheaf Tc using the
cocycle

ω( f0 + f1dz, g0 + g1dz) =
1

12
1

2πi

∫
d2z (∂3

z f0)g1 + (∂3
z f1)g0

where the fi and gi denote compactly-supported smooth functions. This
object has a naturally associated factorization algebra.

14.2.3.1 Definition (2.5.1, Williams (2017)). The Virasoro factorization
algebra V ir is the twisted enveloping factorization algebra

UωT = C∗(T̃c).

It is a factorization algebra with values in modules over C[c], where the central
element c has cohomological degree 0.

We use V irc=λ to denote the factorization algebra obtained by specializing
c to λ ∈ C.

The main theorem of Williams (2017) is that this factorization algebra
recovers the vertex algebra Vir typically known as the Virasoro vertex
algebra. (See Section 2.5 of Frenkel and Ben-Zvi (2004) or 4.1 of Williams
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(2017) for more on this vertex algebra.) It is a natural analogue of the
results of Chapter I.5, where other vertex algebras are recovered from
holomorphic factorization algebras via the functorial construction of
Theorem I.5.3.3.

14.2.3.2 Theorem (Thm 9, Williams (2017)). The vertex algebra recovered
from the factorization algebra V ir is isomorphic to the Virasoro vertex algebra
Vir. Moreover, this isomorphism specializes to any choice of central charge, so
that the vertex algebra for V irc=λ is isomorphic to Virc=λ.

Remark: This construction and theorem is for the Riemann surface Σ =
C, so it is an interesting to ask what the analogous result would be on
an arbitrary Riemann surface. The cocycle ω explicitly uses the choice
of coordinate z and hence does not admit an immediate extension. In-
stead, there is a somewhat subtle construction of a cocycle depending
upon a choice of projective connection. In the end this choice is irrele-
vant, as changing the projective connection changes the cocycle but not
its cohomology class. See Section 5 of Williams (2017) or Section 8.2 of
Frenkel and Ben-Zvi (2004) for detailed discussions. ♦

Virasoro symmetry of the βγ system

We now turn to examining how the Lie algebra of holomorphic vector
fields acts on the free βγ system. The action on the fields themselves is
simple: given a vector field x = f (z)∂z and a field γ(z), we have

x · γ = f ∂zγ,

and similarly for the field β. This action is realized by the local func-
tional

Jcl
α (β, γ) =

∫
〈β, α · γ〉

where

α ∈ Tc = Ω0,∗
c (T1,0).

This formula determines a map of local Lie algebras

Jcl : Tc → Obscl [−1].

We now examine how it interacts with the BV quantization of the free
βγ system.
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14.2.3.3 Lemma (Lemma 4, Williams (2017)). The obstruction cocycle has
the form

Ob( f ∂z, g dz ∂z) = dim(V)
1

2π

1
12

∫
d2z (∂3

z f )g

= dim(V)ω( f ∂z, g dz ∂z)

where f , g are smooth, compactly supported functions on C.

We follow Williams’ proof.

Proof The obstruction cocycle is the limit limL→0 Ob[L] of a scale-dependent
obstruction cocycle, which is determined by the two-vertex wheel.

Before examining the explicit integral, we note that the linear depen-
dence on dim(V) is simple: the vector fields f ∂z and g ∂z act diagonally
on the fields and so the obstruction cocycle is given by dim(V) copies of
the case with V � C. (More explicitly, if we fix a basis for V, we get fields
γi and βi, which are γ and β in coordinates. The obstruction cocycle is
just a sum over the index for the basis.) Hence, assume dim(V) = 1 for
the rest of the argument.

Fix L > 0. Then Ob[L] corresponds to the two-edge wheel with one
edge labeled by a propagator P and the other edge labeled by the heat
kernel K. More accurately, we take the ε→ 0 limit with the propagator
Pε<L and heat kernel Kε inserted:

Ob[L]( f ∂z, g dz ∂z) =
∫

C2
d2z d2w f (z, z) (∂zPε<L(z, w)) g(w, w) (∂wKε(w, z)) .

To obtain this integral, we are expressing the contraction of tensors im-
plicit in the diagram in terms of the description of the tensors via inte-
gral kernels. Hence each vertex corresponds to a copy of C over which
we integrate. Note that we label the vertex receiving the g input with
the variable w and, perhaps abusively, use z for the vertex receiving f
as an input.

Now

∂wKε(w, z) =
1

4πε

z− w
4ε

e−|z−w|2/4ε

and so

∂zPε<L(z, w) =
∫ L

ε
dt

1
4πt

z− w
4t

e−|z−w|2/4t.



410 Examples of the Noether theorems

We change coordinates by shearing: set y = z− w. Then

Ob[L] =
∫

C2
d2y d2w f g

1
(16π)2

∫ L

ε
dt

1
(εt)2 y3 exp

(
−1

4

(
1
ε
+

1
t

)
|y|2
)

.

By integration by parts, one knows that for any compactly supported φ

and a > 0,∫
C

d2y φ(y)yke−a|y|2 =
(−1)k

ak

∫
C

d2y
(

∂k
yφ
)

e−a|y|2 .

Hence we find

Ob[L] =
1

16π2

∫
C2

d2y d2w ∂3
y( f g)

∫ L

ε
dt

εt
(ε + t)3 exp

(
−1

4

(
1
ε
+

1
t

)
|y|2
)

.

Now consider taking the integral over y, but replacing ∂3
y( f g) with its

partial Taylor expansion. The constant term of the Taylor expansion
contributes

1
2π

(∫
C

d2w (∂3
w f )g

) ∫ L

ε
dt

ε2t
(ε + t)4 ,

and this integral over t converges in the ε → 0 limit to 1/12. (Note the
surprising fact that this integral is independent of L.) The higher order
Taylor terms contribute extra factors of εt/(ε + t), which means their
ε→ 0 limit is zero. �

As an immediate consequence of this obstruction computation and
Theorem 14.2.3.2, one obtains the following result.

14.2.3.4 Proposition (Prop. 14, Williams (2017)). The obstruction to an
inner action is given by dim(V)ω, so that we obtain a map of factorization
algebras

V irc=dim(V) → Obsq .

This map induces a map of vertex algebras

Virc=dim(V) → Vβγ,

and this map is given by the usual conformal vector for the βγ vertex algebra.

Remark: There are natural consequences of this map at the level of global
sections on a closed Riemann surface. Williams explains a general re-
cursion formula for n-point functions, and he unpacks the consequences
with explicit examples for Σ = CP1. The map of factorization algebras
thus identifies these formulas with certain computations of observables
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for the βγ system, which can be computed using Wick’s lemma and a
propagator. ♦

14.3 An example from topological field theory

A particularly pleasant class of topological field theories are of BF-type,
which we now describe. Let M be an orientable smooth manifold M
of dimension n and without boundary. Let g be a Lie algebra. The A-
fields are elements of Ω∗(M) ⊗ g[1] and the B-fields are elements of
Ω∗(M) ⊗ g∗[n − 2], where g∗ denotes the linear dual to g. The action
functional is

S(A, B) =
∫
〈B, dA +

1
2
[A, A]〉 =

∫
〈B, F〉,

where F denotes the curvature of the connection ∇A = d + A on the
trivial g-bundle. Here 〈−,−〉 denotes the evaluation pairing between g
and its linear dual g∗ extended to forms with valued therein, and hence
is a pairing on the fields with values in de Rham forms. (To work with
non-orientable manifolds, we let the B-fields be de Rham forms twisted
by the orientation line bundle, so that we have a version of Poincaré
duality.)

One can view BF theory as the cotangent theory for the moduli space
of flat g-connections, which is encoded in the dg Lie algebra Ω∗(M)⊗ g
associated to the A-fields. The equations of motion, after all, are

F = dA +
1
2
[A, A] = 0

and

∇AB = dB + [A, B] = 0.

Hence, in the classical theory, we are looking for a flat connection and a
horizontal section in the coadjoint bundle. As no metric plays a role in
this classical theory, it is natural to view a BF theory as a nice example
of a classical topological field theory and to expect it quantizes to a
topological field theory as well.

Remark: There is an extensive literature on BF theories, among which
we point out Cattaneo and Rossi (2001); Baez (1996); Cattaneo et al.
(1998a) as places to start that we found particularly helpful. We focus
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here on quite elementary facets of the theory and hence do what we
need from scratch. ♦

For simplicity, we will stick to g an Abelian Lie algebra, as the theory
is then free and hence easy to quantize. To emphasize that A and B are
forms with values in vector spaces, we use V and V∗: A ∈ Ω∗(M) ⊗
V[1] and B ∈ Ω∗(M)⊗V∗[n− 2]. Hence, the equations of motion pick
out closed V-valued one-forms and closed V∗-valued n− 2-forms.

We will enliven the situation, however, by letting V be a representa-
tion of a non-Abelian Lie algebra g and viewing V∗ as the dual repre-
sentation. This extra structure puts us into a situation where the Noether
framework is applicable. As usual we promote g to the local Lie algebra

L = Ω∗ ⊗ g,

and work with the current

Jcl : Ω∗c (M)⊗ g→ Obscl(M)

where

Jcl
α =

∫
〈B, αA〉.

The equivariant action functional is

Seq(A, B, α) = S(A, B) + Jcl
α (A, B)

=
∫
〈B, dA + αA〉.

In other words, the fields are charged with respect to a background
gauge field α.

Our goal is to analyze the quantization of this system. Let ω denote
the obstruction cocycle, which may be trivial. The outcome of equivari-
ant quantization will be a map of factorization algebras

Jq : UBD
ω L → Obsq

BF,

where UBD
ω L is the locally constant factorization algebra given by tak-

ing the ω-twisted BD envelope of L. Since this factorization algebra is
locally constant, it corresponds to an En algebra. In fact, it corresponds
to the h̄-filtered En enveloping algebra of g, and hence is a natural gener-
alization of the universal enveloping algebra of g. (See Chapter I.3 and
Knudsen (2018) for further discussion.) The observables of this free BF
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theory are the enveloping factorization algebra of another local Lie al-
gebra, in this case a Heisenberg Lie algebra, as explained in Chapter I.4.
Hence, Obsq

BF can be interpreted as an En algebra analogue of the Weyl
algebra. In this sense the map Jq determines an En algebra map from a
twisted En enveloping algebra of g to a Weyl En algebra.

Remark: When n = 1, this construction is a close cousin of the construc-
tion in Section 14.1.2, where g = o(V) and we found a map of associa-
tive algebras from Ug to the ordinary Weyl algebra for V ⊕V∗. Indeed,
if one modifies the action there to

Sc(φ, ψ) =
∫
(ψ, dφ) + c

∫
(ψ, ψ)dt

with c a constant, then we obtain a one-parameter family of theories
such that at c = 1, we have the massless free field (in first-order formu-
lation) and at c = 0, we get Abelian BF theory by viewing φ as A and φ

as B. ♦

14.3.1 The diagrammatics

When one constructs the Feynman diagrams arising from this classical
action functional, only trees and wheels appear. The naive quantized
action is thus

Sq
naive[Ψ] = ∑

trees Υ
IΥ[Ψ](φ, α) + h̄ ∑

wheels 	
I	[Ψ](α),

where a tree interaction IΥ has an A-leg, a B-leg, and the remainder are
α-legs and where a wheel interaction I	 only depends on background
α-fields.

No counterterms are necessary for this theory. We will sketch the ar-
gument, which relies on the configuration space method introduced by
Axelrod and Singer (1992, 1994) and Kontsevich (1994). A discussion
compatible with our definitions here is seen in Costello (2007).

14.3.1.1 Proposition. The naive action Sq
naive is well-defined without coun-

terterms.

Proof sketch The main idea is a kind of point-splitting regularization.
A propagator behaves as a partial inverse d−1, and its integral kernel P
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would be smooth away from the diagonal

∆ : M ↪→ M×M.

We now explain the crucial property of this situation.

Consider the real blowup along the diagonal, which replaces the di-
agonal by the sphere bundle associated to the normal bundle. It is a
manifold with boundary, where the boundary is the sphere bundle. The
complement of this boundary is just M2 \∆(M), and so the integral ker-
nel defines a smooth section on this open set. The important property is
that this integral kernel has a natural smooth extension P to the bound-
ary.

This property ensures that we can avoid divergences: instead of us-
ing the propagator with its singularity along the diagonal, use P instead
and integrate over the real blowup.

The configuration space method allows one to do this systematically
and prove that no divergences appear. For each Feynman diagram Γ,
the putative integral over M|V(Γ)| is replaced by a blowup along di-
agonals, so that the singular support of the putative distributions is
avoided. �

14.3.2 The obstruction cocycle

We now turn to analyzing the obstruction cocycle, which has degree
one in C∗loc,red(L). As we have seen,

C∗loc,red(L) ' Ω∗(M)[n]⊗ C∗red(g).

We can examine this obstruction locally, i.e., take M = Rn. In that case,
the obstruction cocycle determines a cohomology class in Hn+1(g).

This observation has immediate consequences, by exploiting facts
about Lie algebra cohomology. Note that we assume here that g is a
finite-dimensional Lie algebra. For dg Lie and L∞ algebras, one must
use more sophisticated arguments.

14.3.2.1 Lemma. The obstruction group vanishes if

• n = dim(M) > dim(g), or
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• g is semisimple and n + 1 = 1, 2, or 4, or
• n + 1 = 5 if g is semisimple and contains no factors sld for d > 2.

We will not compute any explicit obstruction cocycles in the cases
where it need not vanish. (It would be interesting to explore these cases.)
Our focus here is on examining the map of factorization algebras and
understanding its basic behavior. A nontrivial obstruction cocycle cre-
ates a central extension but the flavor of the enveloping factorization
algebra is similar, and so we will proceed as if the obstruction vanishes.

14.3.3 The local situation

Let us consider M = Rn and examine the factorization algebras UBD
ω g

and Obsq
BF. As a first pass at getting a feel for them, consider their co-

homology when evaluated on a disk.

14.3.3.1 Lemma. We have

H∗UBD
ω g(R

n) � Sym(g[1− n])[h̄]

and

H∗Obsq
BF(R

n) � Sym(V∗[−1]⊕V[2− n])[h̄]

as isomorphisms of graded vector spaces.

Proof These are both enveloping factorization algebras and hence are
given by a Lie algebra chain complex (or rather the h̄-weighted version
that is the enveloping BD algebra). Consider the filtration by symmet-
ric powers. The first page is computed by using the differentials that
preserve the symmetric powers. In this case that means the de Rham
differential d acting on compactly supported de Rham forms. Hence
the first page is

Sym(g[1− n])[h̄]

and

Sym(V∗[−1]⊕V[2− n])[h̄].

In the first case, there are no further differentials because the Lie bracket
on

H∗(Ω∗c (R))⊗ g = g[−n]
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is trivial. In the second case, the induced BV Laplacian is trivial as the
linear generators V∗[−1]⊕V[2− n] bracket together trivially. �

We emphasize the the cohomology in degree zero is simply C[h̄].
Hence there are no nontrivial currents or observables with support in a
disk.

Nonetheless, there is interesting information in this situation. Non-
trivial currents and observables appear in degree zero if one works
with the dimensional reduction of the theory along a closed manifold
of dimension n− 1. In other words, if M has interesting topology, then
interesting phenomena appears with a more traditional flavor. Com-
pare with section I.4.5, which examines the dimensional reduction of
Abelian Chern-Simons theory and where cycles in a surface correspond
to meaningful observables.

We remark that, from the perspective of homotopical algebra, there is
interesting information even on a disk. These graded vector spaces are
equipped with the structure of algebras over the operad H∗En, since
they are the cohomology of En-algebras. Recall that the operad H∗En
describes shifted Poisson algebras with a degree 1− n Poisson bracket.
Hence both H∗UBD

ω g(R
n) and H∗Obsq

BF(R
n) are shifted Poisson alge-

bras, and the current map induces a map H∗ Jq of such shifted Poisson
algebras.

Remark: The case n = 2 may be the most familiar: a −1-shifted Pois-
son algebra is often known as a Gerstenhaber algebra. Our construction
thus produces a map of Gerstenhaber algebras for two-dimensional BF
theory.

We note that the topological B-model can be viewed as a two-dimensional
BF theory, if one encodes the target space as a kind of Lie algebra ob-
ject. See Li and Li (2016) for an extensive treatment of this theory in
such terms. Our methods here indicate what happens when the target
admits an action of g as symmetries: one will obtain a map of Gersten-
haber algebras from Sym(g[−1]) into the polyvector fields of the target,
as a shadow of the more refined construction using factorization alge-
bras. ♦



Appendix A
Background

Lie algebras, and their homotopical generalization L∞ algebras, appear
throughout this book in a variety of contexts. It might surprise the
reader that we never use their representation theory or almost any as-
pects emphasized in textbooks on Lie theory. Instead, we primarily use
dg Lie algebras as a convenient language for formal derived geometry.
In the first section of this appendix, we overview homological construc-
tions with dg Lie algebras, and in the following section, we overview
deformation theory, its relationship with derived geometry, and the use
of dg Lie algebras in modeling deformations.

A.1 Lie algebras and L∞ algebras

We use these ideas in the following settings.

• We use the Chevalley-Eilenberg complex to construct a large class of
factorization algebras, via the factorization envelope of a sheaf of dg Lie
algebras. This class includes the observables of free field theories and
the Kac-Moody vertex algebras.
• We use the Lie-theoretic approach to deformation functors to moti-

vate our approach to classical field theory.
• We introduce the notion of a local Lie algebra to capture the symme-

tries of a field theory and prove generalizations of Noether’s theo-
rem.

417
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We also use Lie algebras in the construction of gauge theories in the
usual way.

A.1.1 Differential graded Lie algebras and L∞ algebras

We now quickly extend and generalize homologically the notion of a
Lie algebra. Our base ring will now be a commutative algebra R over a
characteristic zero field K, and we encourage the reader to keep in mind
the simplest case: where R = R or C. Of course, one can generalize
the setting considerably, with a little care, by working in a symmetric
monoidal category (with a linear flavor); the cleanest approach is to use
operads.

Before introducing L∞ algebras, we treat the simplest homological
generalization.

A.1.1.1 Definition. A dg Lie algebra over R is a Z-graded R-module g such
that

(1) there is a differential

· · · d→ g−1 d→ g0 d→ g1 → · · ·

making (g, d) into a dg R-module;
(2) there is a bilinear bracket [−,−] : g⊗R g→ g such that

• [x, y] = −(−1)|x||y|[y, x] (graded antisymmetry),
• d[x, y] = [dx, y] + (−1)|x|[x, dy] (graded Leibniz rule),
• [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, z]] (graded Jacobi rule),

where |x| denotes the cohomological degree of x ∈ g.

In other words, a dg Lie algebra is an algebra over the operad Lie
in the category of dg R-modules. In practice — and for the rest of the
section — we require the graded pieces gk to be projective R-modules so
that we do not need to worry about the tensor product or taking duals.

Here are several examples.

(a) We construct the dg analog of gln. Let (V, dV) be a cochain complex
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over K. Let End(V) = ⊕n Homn(V, V) denote the graded vector
space where Homn consists of the linear maps that shift degree by n,
equipped with the differential

dEnd V = [dV ,−] : f 7→ dV ◦ f − (−1)| f | f ◦ dV .

The commutator bracket makes End(V) a dg Lie algebra over K.
(b) For M a smooth manifold and g an ordinary Lie algebra (such as

su(2)), the tensor product Ω∗(M)⊗R g is a dg Lie algebra where the
differential is simply the exterior derivative and the bracket is

[α⊗ x, β⊗ y] = α ∧ β⊗ [x, y].

We can view this dg Lie algebra as living over K or over the com-
mutative dg algebra Ω∗(M). This example appears naturally in the
context of gauge theory.

(c) For X a simply-connected topological space, let g−n
X = π1+n(X)⊗Z

Q and use the Whitehead product to provide the bracket. Then gX is
a dg Lie algebra with zero differential. This example appears natu-
rally in rational homotopy theory.

We now introduce a generalization where we weaken the Jacobi rule
on the brackets in a systematic way. After providing the (rather convo-
luted) definition, we sketch some motivations.

A.1.1.2 Definition. An L∞ algebra over R is a Z-graded, projective R-
module g equipped with a sequence of multilinear maps of cohomological degree
2− n

`n : g⊗R · · · ⊗R g︸              ︷︷              ︸
n times

→ g,

with n = 1, 2, . . ., satisfying the following properties.

(i) Each bracket `n is graded-antisymmetric, so that

`n(x1, . . . , xi, xi+1, . . . , xn) = −(−1)|xi ||xi+1|`n(x1, . . . , xi+1, xi, . . . , xn)

for every n-tuple of elements and for every i between 1 and n− 1.
(ii) Each bracket `n satisfies the n-Jacobi rule, so that

0 =
n

∑
k=1

(−1)k ∑
i1<···<ik

jk+1<···<jn
{i1,...,jn}={1,...,n}

(−1)ε`n−k+1(`k(xi1 , . . . , xik ), xjk+1
, . . . , xjn).
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Here (−1)ε denotes the sign for the permutation(
1 · · · k k + 1 · · · n
i1 · · · ik jk+1 · · · jn

)
acting on the element x1 ⊗ · · · ⊗ xn given by the alternating-Koszul sign
rule, where the transposition ab 7→ ba acquires sign −(−1)|a||b|.

For small values of n, we recover familiar relations. For example, the
1-Jacobi rule says that `1 ◦ `1 = 0. In other words, `1 is a differential!
Momentarily, let’s denote `1 by d and `2 by the bracket [−,−]. The 2-
Jacobi rule then says that

−[dx1, x2] + [dx2, x1] + d[x1, x2] = 0,

which encodes the graded Leibniz rule. Finally, the 3-Jacobi rule rear-
ranges to

[[x1, x2],x3] + [[x2, x3], x1] + [[x3, x1], x2]

= d`3(x1, x2, x3) + `3(dx1, x2, x3) + `3(dx2, x3, x1) + `3(dx3, x1, x2).

In short, g does not satisfy the usual Jacobi rule on the nose but the failure
is described by the other brackets. In particular, at the level of cohomol-
ogy, the usual Jacobi rule is satisfied.

Example: There are numerous examples of L∞ algebras throughout the
book, but many are simply dg Lie algebras spiced with analysis. We
describe here a small, algebraic example of interest in topology and
elsewhere. (See, for instance, Henriques (2008), Baez and Crans (2004),
Baez and Rogers (2010).) The String Lie 2-algebra string(n) is the graded
vector space so(n) ⊕Rβ, where β has degree −1, equipped with two
nontrivial brackets:

`2(x, y) =
{

[x, y], x, y ∈ so(n)
0, x = β

`3(x, y, z) = µ(x, y, z)β x, y, z ∈ so(n),

where µ denotes 〈−, [−,−]〉, the canonical (up to scale) 3-cocycle on
so(n) arising from the Killing form. This L∞ algebra arises as a model
for the “Lie algebra” of String(n), which itself appears in various guises
(as a topological group, as a smooth 2-group, or as a more sophisticated
object in derived geometry). ♦
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There are two important cochain complexes associated to an L∞ al-
gebra, which generalize the two Chevalley-Eilenberg complexes we de-
fined earlier.

A.1.1.3 Definition. For g an L∞ algebra, the Chevalley-Eilenberg com-
plex for homology C∗g is the dg cocommutative coalgebra

SymR(g[1]) =
∞⊕

n=0

(
(g[1])⊗n)

Sn

equipped with the coderivation d whose restriction to cogenerators dn : Symn(g[1])→
g[1] are precisely the higher brackets `n.

We sometimes call this complex C∗g the Lie algebra chains of g as it
models Lie algebra homology.

Remark: The coproduct ∆ : C∗g → C∗g ⊗R C∗g is given by running
over the natural ways that one can “break a monomial into two smaller
monomials.” Namely,

∆(x1 · · · xn) = ∑
σ∈Sn

∑
1≤k≤n−1

(xσ(1) · · · xσ(k)⊗ (xσ(k+1) · · · xσ(n)).

A coderivation respects the coalgebra analog of the Leibniz property,
and so it is determined by its behavior on cogenerators. ♦

This coalgebra C∗g conveniently encodes all the data of the L∞ alge-
bra g. The coderivation d puts all the brackets together into one opera-
tor, and the equation d2 = 0 encodes all the higher Jacobi relations. It
also allows for a concise definition of a map between L∞ algebras.

A.1.1.4 Definition. A map of L∞ algebras F : g  h is given by a map of
dg cocommutative coalgebras F : C∗g→ C∗h.

This definition encodes a homotopy-coherent map of Lie algebras. Note
that a map of L∞ algebras is not determined just by its behavior on g,
which is why we use  to denote such a morphism. Unwinding the
definition above, one discovers that such a morphism consists of a lin-
ear map Symn(g[1])→ h for each n, satisfying compatibility conditions
ensuring that we get a map of coalgebras.

To define the other Chevalley-Eilenberg complex C∗g, we use the
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graded linear dual of g,

g
∨ =

⊕
n∈Z

HomR(g
n, R)[n],

which is the natural notion of dual in this context.

A.1.1.5 Definition. For g an L∞ algebra, the Chevalley-Eilenberg com-
plex for cohomology C∗g is the dg commutative algebra

ŜymR(g[1]
∨) =

∞

∏
n=0

(
(g[1]∨)⊗n)

Sn

equipped with the derivation d whose Taylor coefficients dn : g[1]∨ → Symn(g[1]∨)
are dual to the higher brackets `n.

We sometimes call this complex C∗g the Lie algebra cochains of g as it
models Lie algebra cohomology.

We emphasize that this dg algebra is completed with respect to the
filtration by powers of the ideal generated by g[1]∨. This filtration will
play a crucial role in the setting of deformation theory.

Now that we have a dg commutative algebra C∗g, we can ask about
derivations. In other words, if we view C∗g as the ring of functions on
some space, we want to describe the vector fields on that space. For a
free commutative algebra Sym(V∗), the derivations are Sym(V∗)⊗ V,
where an element v ∈ V determines a constant-coefficient differential
operator ∂v by extending the evaluation pairing Sym1(V∗)⊗V → k by
the Leibniz rule. Since the underlying graded commutative algebra of
C∗g is free, it is easy to do this in our situation, and the definition is the
homotopically correct answer.

A.1.1.6 Definition. For g an L∞ algebra, its derivations are

Der(g) = C∗(g, g[1])

where we view g[1] as a g-module by a shift of the adjoint action.

Note that this complex is naturally a dg Lie algebra and acts canoni-
cally on C∗g by the Lie derivative.
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A.1.2 References

We highly recommend Getzler (2009) for an elegant and efficient treat-
ment of L∞ algebras, as well as simplicial sets and how these construc-
tions fit together with deformation theory. The book Kontsevich and
Soibelman (n.d.) provides a wealth of examples, motivation, and con-
text.

A.2 Derived deformation theory

In physics, one often studies very small perturbations of a well-understood
system, wiggling an input infinitesimally or deforming an operator by
a small amount. Asking questions about how a system behaves under
small changes is ubiquitous in mathematics, too, and there is an ele-
gant formalism for such problems in the setting of algebraic geometry,
known as deformation theory. Here we will give a very brief sketch of
derived deformation theory, where homological ideas are mixed with
classical deformation theory.

A major theme of this book is that perturbative aspects of field the-
ory — both classical and quantum — are expressed cleanly and natu-
rally in the language of derived deformation theory. In particular, many
constructions from physics, like the the Batalin-Vilkovisky formalism,
obtain straightforward interpretations. Moreover, derived deformation
theory suggests how to rephrase standard results in concise, algebraic
terms and also suggests how to generalize these results substantially
(see, for instance, the discussion on Noether’s theorem).

In this section, we begin with a quick overview of formal deforma-
tion theory in algebraic geometry. We then discuss its generalization in
derived algebraic geometry. Finally, we explain the powerful relation-
ship between deformation theory and L∞ algebras, which we exploit
throughout the book.
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A.2.1 The formal neighborhood of a point

Let S denote some category of spaces, such as smooth manifolds or
complex manifolds or schemes. The Yoneda lemma implies we can un-
derstand any particular space X ∈ S by understanding how other
spaces Y ∈ S map into X. That is, the functor represented by X, namely

hX : Sop → Sets
Y 7→ S(Y, X)

knows everything about X as a space of type S . We call hX the functor of
points of X, and this functorial perspective on geometry will guide our
work below. Although abstract at first acquaintance, this perspective is
especially useful for thinking about general features of geometry.

Suppose we want to describe what X looks like near some point
p ∈ X. Motivated by the perspective of functor of points, we might
imagine describing “X near p” by some kind of functor. The input cat-
egory ought to capture all possible “small neighborhoods of a point”
permitted in S , so that we can see how such models map into X near p.
We now make this idea precise in the setting of algebraic geometry.

Let S = SchC denote the category of schemes over C. Every such
scheme X consists of a topological space Xtop equipped with a sheaf of
commutative C-algebras OX (satisfying various conditions we will not
specify). We interpret the algebra OX(U) on the open set U as the “al-
gebra of functions on U.” Every commutative C-algebra R determines
a scheme Spec R where the prime ideals of R provide the set of points
of the topological space (Spec R)top and where the stalk of O at a prime
ideal P is precisely the localization of R with respect to R−P. We call
such a scheme Spec R an affine scheme. By definition, every scheme ad-
mits an open cover by affine schemes.

It is a useful fact that the functor of points hX of a scheme X is de-
termined by its behavior on the subcategory Aff C of affine schemes.
By construction, Aff C is the opposite category to CAlgC, the category
of commutative C-algebras. Putting these facts together, we know that
every scheme X provides a functor from CAlgC to Sets. Here are two
examples.
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Example: Consider the polynomial q(x, y) = x2 + y2 − 1. The functor

hX : CAlgC → Sets
R 7→ {(a, b) ∈ R2 | 0 = q(a, b) = a2 + b2 − 1}

corresponds to the affine scheme Spec S for the algebra S = C[x, y]/(q).
This functor simply picks out solutions to the equation q(x, y) = 0 in
the algebra R, which we might call the “unit circle” in R2. Generalizing,
we see that any system of polynomials (or ideal in an algebra) defines
a similar functor of “solutions to the system of equations.” ♦

Example: Consider the scheme SL2, viewed as the functor

SL2 : CAlgC → Sets

R 7→
{

M =

(
a b
c d

) ∣∣∣∣∣ a, b, c, d ∈ R such
that 1 = ad− bc

}
.

Note that SL2(C) is precisely the set that we usually mean. One can
check as well that this functor factors through the category of groups.
♦

The notion of “point” in this category is given by Spec C, which is
the locally ringed space given by a one-point space {∗} equipped with
C as its algebra of functions. A point in the scheme X is then a map
p : Spec C → X. Every point is contained in some affine patch U �

Spec R ⊂ X, so it suffices to understand points in affine schemes. It is
now possible to provide an answer to the question, “What are the affine
schemes that look like small thickenings of a point?”

A.2.1.1 Definition. A commutative C-algebra A is artinian if A is finite-
dimensional as a C-vector space. A local algebra A with unique maximal
ideal m is artinian if and only if there is some integer n such that mn = 0.

Any local artinian algebra (A,m) provides a scheme Spec A whose
underlying topological space is a point but whose scheme structure
has “infinitesimal directions” in the sense that every function f ∈ m
is “small” because f n = 0 for some n. Let ArtC denote the category of
local artinian algebras, which we will view as the category encoding
“small neighborhoods of a point.”

Remark: Hopefully it seems reasonable to choose ArtC as a model for
“small neighborhoods of a point.” There are other approaches imag-
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inable but this choice is quite useful. In particular, the most obvious
topology for schemes — the Zariski topology — is quite coarse, so that
open sets are large and hence do not reflect the idea of “zooming in
near the point.” Instead, we use schemes whose space is just a point
but have interesting but tractable algebra. ♦

A point p : Spec C → Spec R corresponds to a map of algebras P :
R → C. Every local artinian algebra (A,m) has a distinguished map
Q : A→ A/m � C. Given a point p in Spec R, we obtain a functor

hp : ArtC → Sets
(A,m) 7→ {F : R→ A | P = Q ◦ F} .

Geometrically, this condition on φ means p is the composition Spec C→
Spec A

Spec F→ Spec R. The map F thus describes some way to “extend
infinitesimally” away from the point p in X. A concrete example is in
order.

Example: Our favorite point in SL2 is given by the identity element 1.
Let h1 denote the associated functor of artinian algebras. We can de-
scribe the tangent space T1SL2 using it, as follows. Consider the artinian
algebra D = C[ε]/(ε2), often called the dual numbers. Then a matrix in
h1(D) has the form

M =

(
1 + sε tε

uε 1 + vε

)
and it must satisfy

det(M) = (1 + sε)(1 + vε)− tuε2

= 1 + (s + v)ε = 1

so that s+ v = 0. In other words, writing M = 1+ εN, we see det(M) =
1 if and only if Tr(N) = 0. Thus,

h1(D) =

{
M = 1 + ε

(
s t
u v

) ∣∣∣∣∣ s, t, u, v ∈ C and
0 = s + v

}
� {N ∈ M2(C) | Tr N = 0}
= sl2(C).

where the isomorphism is given by M = 1 + εN. Thus, we have recov-
ered the underlying set of the Lie algebra. ♦
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For any point p in a scheme X, the set hp(D) is the tangent space to p
in X. By considering more complicated artinian algebras, one can study
the “higher order jets” at p. We say that hp describes the formal neighbor-
hood of p in X. The following proposition motivates this terminology.

A.2.1.2 Proposition. Let P : R → C be a map of algebras (i.e., we have a
point p : Spec C→ Spec R). Then

hp(A) = CAlgC(R̂p, A),

where

R̂p = lim←− R/mn
p

is the completed local ring given by the inverse limit over powers of mp =
ker P, the maximal ideal given by the functions vanishing at p.

In other words, the functor hp is not represented by a local artinian
algebra (unless R is artinian), but it is represented inside the larger cat-
egory CAlgC. When R is noetherian, the ring R̂p is given by an inverse
system of local artinian algebras, so we say hp is pro-represented. When
R is a regular ring (such as a polynomial ring over C), R̂p is isomorphic
to formal power series. This important example motivates the termi-
nology of formal neighborhood.

There are several properties of such a functor hp that we want to em-
phasize, as they guide our generalization in the next section. First, by
definition, hp(C) is simply a point, namely the point p. Second, we can
study hp in stages, by a process we call artinian induction. Observe that
every local artinian algebra (A,m) is equipped with a natural filtration

A ⊃ m ⊃ m2 ⊃ · · · ⊃ mn = 0.

Thus, every local artinian algebra can be constructed iteratively by a
sequence of small extensions, namely a short exact sequence of vector
spaces

0→ I ↪→ B
f→ A→ 0

where f : B → A is a surjective map of algebras and I is an ideal in
B such that mB I = 0. We can thus focus on understanding the maps
hp( f ) : hp(B) → hp(A), which are simpler to analyze. In summary,
hp is completely determined by how it behaves with respect to small
extensions.
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A third property is categorical in nature. Consider a pullback of local
artinian algebras

B×A C

��

// B

��
C // A

and note that B×A C is local artinian as well. Then the natural map

hp(B×A C)→ hp(B)×hp(A) hp(C)

is surjective — in fact, it is an isomorphism. (This property will guide
us in the next subsection.)

As an example, we describe how to study small extensions for the
model case. Let (R,mR) be a complete local ring with residue field
R/mR � C and with finite-dimensional tangent space TR = (mR/m2

R)
∨.

Consider the functor hR : A 7→ CAlg(R, A), which describes the formal
neighborhood of the closed point in Spec R. The following proposition
provides a tool for understanding the behavior of hR on small exten-
sions.

A.2.1.3 Proposition. For every small extension

0→ I ↪→ B
f→ A→ 0,

there is a natural exact sequence of sets

0→ TR ⊗C I → hR(B)
f ◦−→ hR(A)

ob→ OR ⊗ I,

where exact means that a map φ ∈ hR(A) lifts to a map φ̃ ∈ hR(B) if and
only if ob(φ) = 0 and the space of liftings is an affine space for the vector space
TR ⊗C I.

Here ob denotes the obstruction to lifting maps, and OR is a set where
an obstruction lives. An obstruction space OR only depends on the al-
gebra R, not on the small extension. One can construct an obstruction
space as follows. If d = dimC TR, there is a surjection of algebras

r : S = C[[x1, . . . , xd]]→ R

such that J = ker r satisfies J ⊂ m2
S, where mS = (x1, . . . , xd) is the

maximal ideal of S. In other words, Spec R can be embedded into the
formal neighborhood of the origin in Ad, and minimally, in some sense.
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Then OR is (J/mS J)∨. For a proof of the proposition, see Theorem 6.1.19
of Fantechi et al. (2005).

This proposition hints that something homotopical lurks behind the
scenes, and that the exact sequence of sets is the truncation of a longer
sequence. For a discussion of these ideas and the modern approach
to deformation theory, we highly recommend the 2010 ICM talk Lurie
(2010).

References

The textbook Eisenbud and Harris (2000) is a lovely introduction to the
theory of schemes, full of examples and motivation. There is an exten-
sive discussion of the functor of points approach to geometry, carefully
compared to the locally ringed space approach. For an introduction to
deformation theory, we recommend the article of Fantechi and Göttsche
in Fantechi et al. (2005). Both texts provide extensive references to the
literature.

A.2.2 Formal moduli spaces

The functorial perspective on algebraic geometry suggests natural gen-
eralizations of the notion of a scheme by changing the source and target
categories. For instance, stacks arise as functors from CAlgC to the cat-
egory of groupoids, allowing one to capture the idea of a space “with
internal symmetries.” It is fruitful to generalize even further, by en-
hancing the source category from commutative algebras to dg commu-
tative algebras (or simplicial commutative algebras) and by enhancing
the target category from sets to simplicial sets. (Of course, one needs
to simultaneously adopt a more sophisticated version of category the-
ory, namely ∞-category theory.) This generalization is the subject of de-
rived algebraic geometry, and much of its power arises from the fact
that it conceptually integrates geometry, commutative algebra, and ho-
motopical algebra. As we try to show in this book, the viewpoint of
derived geometry provides conceptual interpretations of constructions
like Batalin-Vilkovisky quantization.

We now outline the derived geometry version of studying the formal
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neighborhood of a point. Our aim to pick out a class of functors that
capture our notion of a formal derived neighborhood.

A.2.2.1 Definition. An artinian dg algebra A is a dg commutative algebra
over C such that

(1) each component Ak is finite-dimensional, dimC Ak = 0 for k << 0 and
for k > 0, and

(2) A has a unique maximal idealm, closed under the differential, and A/m = C.

Let dgArtC denote the category of artinian algebras, where morphisms are
simply maps of dg commutative algebras.

Note that, as we only want to work with local rings, we simply in-
cluded it as part of the definition. Note as well that we require A to be
concentrated in nonpositive degrees. (This second condition is related
to the Dold-Kan correspondence: we want A to correspond to a simpli-
cial commutative algebra.)

We now provide an abstract characterization of a functor that be-
haves like the formal neighborhood of a point, motivated by our earlier
discussion of functors hp.

A.2.2.2 Definition. A formal moduli problem is a functor

F : dgArtC → sSet

such that

(i) F(C) is a contractible Kan complex,
(ii) F sends a surjection of dg artinian algebras to a fibration of simplicial

sets, and
(iii) for every pullback diagram in dgArt

B×A C //

��

B

��
C // A

the map F(B×A C)→ F(B)×F(A) F(C) is a weak homotopy equivalence.
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Note that since surjections go to fibrations, the strict pullback F(B)×F(A)

F(C) agrees with the homotopy pullback F(B)×h
F(A)

F(C).

We now describe a large class of examples. Let R be a commutative
dg algebra over C whose underlying graded algebra is ŜymV, where
V is a Z-graded vector space, and whose differential dR is a degree 1
derivation. It has a unique maximal ideal generated by V. Let hR denote
the functor into simplicial sets whose n-simplices are

hR(A)n = { f : R→ A⊗Ω∗(4n) | f a map of unital dg commutative algebras}

and whose structure maps arise from those between the de Rham com-
plexes of simplices. Then hR is a formal moduli problem.

References

We are modeling our approach on Lurie’s, as explained in Lurie (2010)
and chapter 13 of Lurie (n.d.). For a discussion of these ideas in our
context of field theory, see Costello (2013a).

A.2.3 The role of L∞ algebras in deformation theory

There is another algebraic source of formal moduli functors — L∞ al-
gebras — and, perhaps surprisingly, formal moduli functors arising in
geometry often manifest themselves in this form. We begin by intro-
ducing the Maurer-Cartan equation for an L∞ algebra g and explaining
how it provides a formal moduli functor. This construction is at the heart
of our approach to classical field theory. We then describe several examples
from geometry and algebra.

A.2.3.1 Definition. Let g be an L∞ algebra. The Maurer-Cartan equation
(or MC equation) is

∞

∑
n=1

1
n!
`n(α

⊗n) = 0,

where α denotes a degree 1 element of g.

Note that when we consider the dg Lie algebra Ω∗(M)⊗ g, with M
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a smooth manifold and g an ordinary Lie algebra, the MC equation be-
comes the equation

dα +
1
2
[α, α] = 0.

A g-connection α ∈ Ω1 ⊗ g on the trivial principal G-bundle on M is
flat if and only if it satisfies the MC equation. (This is the source of the
name Maurer-Cartan.)

There are two other perspectives on the MC equation. First, observe
that a map of commutative dg algebras α : C∗g → C is determined
by its behavior on the generators g∨[−1] of the algebra C∗g. Hence α is
a linear functional of degree 0 on g∨[−1] — or, equivalently, a degree
1 element α of g — that commutes with differentials. This condition
α ◦ d = 0 is precisely the MC equation for α. The second perspective
uses the coalgebra C∗g, rather than the algebra C∗g. A solution to the
MC equation α is equivalent to giving a map of cocommutative dg coal-
gebras α̃ : C→ C∗g.

Now observe that L∞ algebras behave nicely under base change: if
g is an L∞ algebra over C and A is a commutative dg algebra over C,
then g⊗ A is an L∞ algebra (over A and, of course, C). Solutions to the
MC equation go along for the ride as well. For instance, a solution α to
the MC equation of g⊗ A is equivalent to both a map of commutative
dg algebras α : C∗g → A and a map of cocommutative dg coalgebras
α̃ : A∨ → C∗g. Again, we simply unravel the conditions of such a map
restricted to (co)generators. As maps of algebras compose, solutions
play nicely with base change. Thus, we can construct a functor out of
the MC solutions.

A.2.3.2 Definition. For an L∞ algebra g, its Maurer-Cartan functor

MCg : dgArtC → sSet

sends (A,m) to the simplicial set whose n-simplices are solutions to the MC
equation in g⊗m⊗Ω∗(4n).

We remark that tensoring with the nilpotent ideal m makes g⊗m is
nilpotent. This condition then ensures that the simplicial set MCg(A)
is a Kan complex, by Hinich (2001); Getzler (2009). In fact, their work
shows the following.
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A.2.3.3 Theorem. The Maurer-Cartan functor MCg is a formal moduli prob-
lem.

In fact, every formal moduli problem is represented — up to a natural
notion of weak equivalence — by the MC functor of an L∞ algebra.

References

For a clear, systematic introduction with an expository emphasis, we
highly recommend the lecture Manetti (2009), which carefully explains
how dg Lie algebras relate to deformation theory and how to use them
in algebraic geometry. The unpublished book Kontsevich and Soibel-
man (n.d.) contains a wealth of ideas and examples; it also connects
these ideas to many other facets of mathematics. The article Hinich
(2001) is the original published treatment of derived deformation the-
ory, and it provides one approach to necessary higher category theory.
For the relation with L∞ algebras, we recommend Getzler (2009), which
contains elegant arguments for many of the ingredients, too. Finally, see
Lurie (n.d.) for a proof that every formal moduli functor is described by
a dg Lie algebra (equivalently, L∞ algebra).



Appendix B
Functions on spaces of sections

Our focus throughout the book is on the “observables of a field the-
ory,” where for us the fields of a field theory are sections of a vector
bundle and the observables are polynomial (or power series) functions
on these fields. In this appendix, we will use the setting introduced in
appendix I.B to give a precise meaning to this notion of observable.

B.1 Classes of functions on the space of sections of a
vector bundle

Let M be a manifold and E a graded vector bundle on M. Let U ⊂
M be an open subset. In this section we will introduce some notation
for various classes of functionals on sections E (U) of E on U. These
spaces of functionals will all be differentiable cochain complexes (or
pro-cochain complexes) as described in appendix I.C. (In this appendix,
however, the differential will always be trivial, so that it is natural to
think of these spaces of functionals as differentiable pro-graded vector
spaces.)

Recall the following notations:

• E (M) denotes the vector space of smooth sections of E over M,
• Ec(M) denotes the vector space of compactly supported smooth sec-

tions of E over M,
• E (M) denotes the vector space of distributional sections of E over M,
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• E c(M) denotes the vector space of compactly supported distribu-
tional sections of E over M.

We can view these spaces as living in LCTVS, BVS, CVS, or DVS, as
suits us, thanks to the discussion in appendix I.B. In LCTVS, there is
a standard isomorphism between the continuous linear dual E (M)∗,
equipped with the strong topology, and E

!
c(M), the compactly sup-

ported distributional sections of the bundle E! = E∨ ⊗ DensM. Like-
wise, there is an isomorphism between Ec(M)∗ and E

!
(M).

One goal of this section to explain and justify our notation O(E (U))
for a graded commutative algebra of functions on E (U), and various
variants. As seen in Lemma B.1.1.1, one finds the same answer whether
working with topological or convenient vector spaces.

B.1.1 Functions

Given an ordinary vector space V, the symmetric algebra Sym V∗ on the
dual space V∗ provides a natural class of functions on V. Similarly, the
completed symmetric algebra Ŝym V∗ describes the formal power se-
ries centered at the origin, which is interpreted as functions on the for-
mal neighborhood of the origin in V. We wish to describe the analogs of
these constructions when the vector space is E (U), and hence we need
to be careful in our choice of tensor products and ambient category. In
the end, we will show that two natural approaches coincide and thus
provide our definition.

From the point of view of topological vector spaces, a natural ap-
proach is use the completed projective tensor product ⊗̂π and follow
the general recipe for constructing symmetric algebras. Because we will
consider other approaches as well, we will call this construction the π-
symmetric powers and define it as

Symn
π E !

c (U) =
(
E !

c (U)⊗̂πn
)

Sn
,

Symn
π E

!
c(U) =

(
E

!
c(U)⊗̂πn

)
Sn

,

where the subscript Sn denotes the coinvariants with respect to the
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action of this symmetric group. Then we define the uncompleted π-
symmetric algebra as

Symπ E !
c (U) =

∞⊕
n=0

Symn
π E !

c (U)

and the completed π-symmetric algebra

ŜymπE !
c (U) =

∞

∏
n=0

Symn
π E !

c (U).

Using the same formulas, one defines Symπ E
!
c(U) and ŜymπE

!
c(U).

If one views E !
c (U) and E

!
c(U) as convenient vector spaces, the natu-

ral choice is to work with the tensor product ⊗̂β and then to follow the
standard procedure for constructing symmetric algebras. In short, we
define the uncompleted β-symmetric algebra as

Symβ E !
c (U) =

∞⊕
n=0

(
E !

c (U)⊗̂β n
)

Sn

and the completed β-symmetric algebra

ŜymβE !
c (U) =

∞

∏
n=0

(
E

!
c(U)⊗̂β n

)
Sn

.

Using the same formulas, one defines Symβ E
!
c(U) and ŜymβE

!
c(U).

Thankfully, these two constructions provide the same differentiable
vector spaces, via proposition I.B.7.3.

B.1.1.1 Lemma. As graded differentiable vector spaces, there are isomorphisms

Symπ E !
c (U) � Symβ E !

c (U),

Symπ E
!
c(U) � Symβ E

!
c(U),

ŜymπE !
c (U) � ŜymβE !

c (U),

ŜymπE
!
c(U) � ŜymβE

!
c(U).

In light of this lemma, we can write O(E (U)) for ŜymπE
!
c(U), as it

is naturally interpreted as the algebra of formal power series on E (U).
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(This notation emphasizes the role of the construction rather than its
inner workings.) Similarly, we write O(E (U)) for ŜymπE !

c (U) and so
on for O(Ec(U)) and O(E c(U)).

These completed spaces of functionals are all products of the differ-
entiable vector spaces of symmetric powers, and so they are themselves
differentiable vector spaces. We will equip all of these spaces of func-
tionals with the structure of a differentiable pro-vector space, induced
by the filtration

FiO(E (U)) = ∏
n≥i

Symi E
!
c(U)

(and similarly for O(Ec(U)), O(E (U)) and O(E c(U))).

The natural product O(E (U)) is compatible with the differentiable
structure, making O(E (U)) into a commutative algebra in the multi-
category of differentiable graded pro-vector spaces. The same holds for
the spaces of functionals O(Ec(U)), O(E (U)) and O(E c(U)).

B.1.2 One-forms

Recall that for V is a vector space, we view the formal neighborhood of
the origin as having the ring of functions O(V) = Ŝym(V∨). Then we
likewise define the space of one-forms on this formal scheme as

Ω1(V) = O(V)⊗V∨.

There is a universal derivation, called the exterior derivative map,

d : O(V)→ Ω1(V).

In components the exterior derivative is just the composition

Symn+1 V∨ → (V∨)⊗n+1 → Symn(V∨)⊗V∨,

where the maps are the inclusion followed by the natural projection, up
to an overall combinatorial constant. (As a concrete example, note that
d(xy) = ydx + xdy can be computed by taking the tensor representa-
tive (x⊗ y + y⊗ x)/2 for xy and then projecting off the last factor.)

This construction extends naturally to our context. We define

Ω1(E (U)) = O(E (U))⊗̂β E
!
c(U),
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where we take the associated differentiable vector space. In concrete
terms,

Ω1(E (U)) = ∏
n

Symn(E
!
c(U))⊗̂β E

!
c(U).

In this way, Ω1(E (U)) becomes a differentiable pro-cochain complex,
where the filtration is defined by

FiΩ1(E (U)) = ∏
n≥i−1

Symn(E
!
c(U))⊗̂β E

!
c(U).

Further, Ω1(E (U)) is a module for the commutative algebra O(E (U)),
where the module structure is defined in the multicategory of differen-
tiable pro-vector spaces.

In a similar way, define the exterior derivative

d : O(E (U))→ Ω1(E (U))

by saying that on components it is given by the same formula as in the
finite-dimensional case.

B.1.3 Other classes of sections of a vector bundle

Before we introduce our next class of functionals — those with proper
support — we need to introduce some further notation concerning classes
of sections of a vector bundle.

Let f : M → N be a smooth fibration between two manifolds. Let
E be a vector bundle on M. We say a section s ∈ Γ(M, E) has compact
support over f if the map

f : Supp(s)→ N

is proper. We let Γc/ f (M, E) denote the space of sections with compact
support over f . It is a differentiable vector space: if X is an auxiliary
manifold, a smooth map X → Γc/ f (M, E) is a section of the bundle
π∗ME on X×M that has compact support relative to the map

M× X → N × X.

(It is straightforward to write down a flat connection on C∞(X, Γc/ f (M, E)),
using arguments of the type described in section I.B.5.1.)
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Next, we need to consider spaces of the form E (M)⊗̂β F (N), where
M and N are manifolds and E, F are vector bundles on the manifolds
M, N, respectively. We want a more geometric interpretation of this ten-
sor product.

We will view E (M)⊗̂β F (N) as a subspace

E (M)⊗̂β F (N) ⊂ E (M)⊗̂β F (N).

It consists of those elements D with the property that, if φ ∈ E !
c (M),

then map

D(φ) : F !
c(N) → R

ψ 7→ D(φ⊗ ψ)

comes from an element of F (N). Alternatively, E (M)⊗̂β F (N) is the
space of continuous linear maps from E !

c (M) to F (N).

We can similarly define E c(M)⊗̂β F (N) as the subspace of those el-
ements of E (M)⊗̂β F (N) that have compact support relative to the
projection M× N → N.

These spaces form differentiable vector spaces in a natural way: a
smooth map from an auxiliary manifold X to E (M)⊗̂β F (N) is an ele-
ment of E (N)⊗̂β F (N)⊗̂β C∞(X). Similarly, a smooth map to E c(M)⊗̂β F (N)

is an element of E (M)⊗̂β F (N)⊗̂β C∞(X) whose support is compact
relative to the map M× N × X → N × X.

B.1.4 Functions with proper support

Recall that

Ω1(Ec(U)) = O(Ec(U))⊗̂β E
!
(U).

We can thus define a subspace

O(E (U))⊗̂β E
!
(U) ⊂ Ω1(Ec(U)).

The Taylor components of elements of this subspace are in the space

Symn(E
!
c(U))⊗̂β E

!
(U),

which in concrete terms is the Sn-coinvariants of

E
!
c(U)⊗̂β n⊗̂β E

!
(U).
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B.1.4.1 Definition. A function Φ ∈ O(Ec(U)) has proper support if

dΦ ∈ O(E (U))⊗̂β E
!
(U) ⊂ O(Ec(U))⊗̂β E

!
(U).

The reason for the terminology is as follows. Let Φ ∈ O(Ec(U)) and
let

Φn ∈ Hom(Ec(U)⊗̂β n, R)

be the nth term in the Taylor expansion of Φ. Then Φ has proper sup-
port if and only if, for all n, the composition with any projection map

Supp(Φn) ⊂ Un → Un−1

is proper.

We will let

OP(Ec(U)) ⊂ O(Ec(U))

be the subspace of functions with proper support. Note that functions
with proper support are not a subalgebra.

Because OP(Ec(U)) fits into a fiber square

OP(Ec(U)) → O(E (U))⊗̂β Ec(U)∨

↓ ↓
O(Ec(U)) → O(Ec(U))⊗̂β Ec(U)∨

it has a natural structure of a differentiable pro-vector space.

B.1.5 Functions with smooth first derivative

B.1.5.1 Definition. A function Φ ∈ O(Ec(U)) has smooth first derivative
if dΦ, which is a priori an element of

Ω1(Ec(U)) = O(Ec(U))⊗̂β E
!
(U),

is an element of the subspace

O(Ec(U))⊗̂β E !(U).

In other words, the 1-form dΦ can be evaluated on a distributional
tangent vectors from E , and not just smooth tangent vectors.
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Note that we can identify, concretely, O(Ec(U))⊗̂β E !(U) with the
space

∏
n

Symn E
!
(U)⊗̂β E !(U)

and

Symn E
!
(U)⊗̂β E !(U) ⊂ E

!
(U)⊗̂β n⊗̂β E !(U).

(Spaces of the form E (U)⊗̂β E (U) were described concretely above.)

Thus O(Ec(U))⊗̂β E !(U) is a differentiable pro-vector space. It fol-
lows that the space of functionals with smooth first derivative is a dif-
ferentiable pro-vector space, since it is defined by a fiber diagram of
such objects.

An even more concrete description of the space O sm(Ec(U)) of func-
tionals with smooth first derivative is as follows.

B.1.5.2 Lemma. A functional Φ ∈ O(Ec(U)) has smooth first derivative if
each of its Taylor components

DnΦ ∈ Symn E
!
(U) ⊂ E

!
(U)⊗̂β n

lies in the intersection of all the subspaces

E
!
(U)⊗̂β k⊗̂β E !(U)⊗̂β E

!
(U)⊗̂β n−k−1

for 0 ≤ k ≤ n− 1.

The proof is a simple calculation.

Note that the space of functions with smooth first derivative is a sub-
algebra of O(Ec(U)). We will denote this subalgebra by O sm(Ec(U)).
Again, the space of functions with smooth first derivative is a differen-
tiable pro-vector space, as it is defined as a fiber product.

Similarly, we can define the space of functions on E (U) with smooth
first derivative, O sm(E (U)) as those functions whose exterior deriva-
tive lies in O(E (U))⊗̂β E !

c (U) ⊂ Ω1(E (U)).
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B.1.6 Functions with smooth first derivative and proper
support

We are particularly interested in those functions which have both smooth
first derivative and proper support. We will refer to this subspace as
OP,sm(Ec(U)). The differentiable structure on OP,sm(Ec(U)) is, again,
given by viewing it as defined by the fiber diagram

OP,sm(Ec(U)) → O(E (U))⊗̂β E !(U)

↓ ↓
O(Ec(U)) → O(Ec(U))⊗̂β E

!
(U).

We have inclusions

O sm(E (U)) ⊂ OP,sm(Ec(U)) ⊂ O sm(Ec(U)),

where each inclusion has dense image.

B.2 Derivations

As before, let M be a manifold, E a graded vector bundle on M, and
U an open subset of M. In this section we will define derivations of
algebras of functions on E (U).

To start with, recall that for V a finite dimensional vector space, which
we treat as a formal scheme, the algebra of function is O(V) = ∏ Symn V∨,
the formal power series on V. We then identify the space of continuous
derivations of O(V) with O(V)⊗ V. We view these derivations as the
space of vector fields on V and use the notation Vect(V).

In a similar way, we define the space of vector fields Vect(E (U)) of
vector fields on E (U) as

Vect(E (U)) = O(E (U))⊗̂β E (U) = ∏
n

(
Symn(E

!
c(U))⊗̂β E (U)

)
.

We have already seen (section B.1) how to define the structure of differ-
entiable pro-vector space on spaces of this nature.

In this section we will show the following.
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B.2.0.1 Proposition. Vect(E (U)) has a natural structure of Lie algebra in
the multicategory of differentiable pro-vector spaces. Further, O(E (U)) has
an action of the Lie algebra Vect(E (U)) by derivations, where the structure
map Vect(E (U))×O(E (U))→ O(E (U)) is smooth.

Proof To start with, let’s look at the case of a finite-dimensional vector
space V, to get an explicit formula for the Lie bracket on Vect(V), and
the action of Vect(V) on O(V). Then, we will see that these formulae
make sense when V = E (U).

Let X ∈ Vect(V), and let us consider the Taylor components DnX,
which are multilinear maps

V × · · · ×V → V.

Our conventions are such that

Dn(X)(v1, . . . , vn) =

(
∂

∂v1
. . .

∂

∂vn
X
)
(0) ∈ V

Here, we are differentiating vector fields on V using the trivialization of
the tangent bundle to this formal scheme arising from the linear struc-
ture.

Thus, we can view DnX as living in the endomorphism operad of the
vector space V.

If A : V×n → V and B : V×m → V, let us define

A ◦i B(v1, . . . , vn+m−1) = A(v1, . . . , vi−1, B(vi, . . . , vi+m−1), vi+m, . . . , vn+m−1).

If A, B are symmetric (under Sn and Sm, respectively), then define

A ◦ B =
n

∑
i=1

A ◦i B.

Then, if X, Y are vector fields, the Taylor components of [X, Y] satisfy

Dn([X, Y]) = ∑
k+l=n+1

ck,l (DkX ◦ DlY− DlY ◦ DkX)

where ck,l are combinatorial constants whose values are irrelevant for
our purposes.

Similarly, if f ∈ O(V), the Taylor components of f are multilinear
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maps

Dn f : V×n → C.

In a similar way, if X is a vector field, we have

Dn(X f ) = ∑
k+l=n+1

c′k,l Dk(X) ◦ Dk( f ).

Thus, we see that in order to define the Lie bracket on Vect(E (U)),
we need to give maps of differentiable vector spaces

◦i : Hom(E (U)⊗̂β n, E (U))×Hom(E (U)⊗̂β m, E (U))→ Hom(E (U)⊗̂β (n+m−1), E (U))

where here Hom indicates the space of continuous linear maps, treated
as a differentiable vector space. Similarly, to define the action of Vect(E (U))
on O(E (U)), we need to define a composition map

◦i : Hom(E (U)⊗̂β n, E (U))×Hom(E (U)⊗̂β m)→ Hom(E (U)⊗̂βn+m−1).

We will treat the first case; the second is similar.

Now, if X is an auxiliary manifold, a smooth map

X → Hom(E (U)⊗̂β m, E (U))

is the same as a continuous multilinear map

E (U)×m → E (U)⊗̂β C∞(X).

Here, “continuous” means for the product topology.

This is the same thing as a continuous C∞(X)-multilinear map

Φ : (E (U)⊗̂β C∞(X))×m → E (U)⊗̂β C∞(X).

If

Ψ : (E (U)⊗̂β C∞(X))×n → E (U)⊗̂β C∞(X).

is another such map, then it is easy to define Φ ◦i Ψ by the usual for-
mula:

Φ ◦i Ψ(v1, . . . , vn+m−1) = Φ(v1, . . . vi−1, Ψi(vi, . . . , vm+i−1), . . . , vn+m−1)

if vi ∈ E (U)⊗̂β C∞(X). This map is C∞(X)-linear. �



Appendix C
A formal Darboux lemma

Our goal here is to articulate and prove a kind of Darboux lemma for
formal moduli spaces equipped with a shifted symplectic structure in
the sense of Pantev et al. (2013b). Recall that the Darboux lemma in
symplectic geometry says that for any point in a symplectic manifold
of dimension 2n, there exists a local coordinate patch exhibiting a sym-
plectomorphism with an open in the standard symplectic space T∗Rn.
It is not possible to make such a statement in formal derived geome-
try (e.g., coordinate patches make little sense), but one can formulate a
close analogue as follows.

First, note that every formal space X admits a closely related linear
space, namely the fiber of the tangent complex TX over the basepoint
x of X . Second, as discussed in Appendix A.2.3, every formal space
is equivalent to the formal space Bg associated to some L∞ algebra,
with the underlying cochain complex of g is equivalent to TX ,x[−1].
In other words, any “nonlinearity” of X is encoded in the nontrivial
bracket structure of g. This relationship can be understood as a replace-
ment for a local coordinate patch. We can then ask how to rephrase a
shifted symplectic structure onX in terms of g, so that it looks like a lin-
ear structure, much as the model symplectic space is determines by a
symplectic pairing on a vector space. Thus, as a third step, we consider
invariant bilinear pairings on g and ask which correspond to shifted
symplectic forms. Loosely speaking, our Darboux lemma says there is
an equivalence between

(i) non-degenerate invariant pairings on g of degree k, and

445
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(ii) symplectic forms of degree k + 2 on the formal derived space Bg.

We now turn to introducing the terminology needed to state and prove
a precise version.

C.1 Shifted symplectic structures

We will assume throughout that g is an L∞ algebra whose underlying
graded vector space is bounded and of total finite dimension. One can
work around this constraint, but it makes the arguments simpler and
clearer.

This L∞ algebra has an associated formal derived space denoted by
Bg, and we interpret its Chevalley-Eilenberg cochains C∗(g) as the com-
pleted dg commutative algebra of functions O(Bg) on Bg. Hence, the k-
forms Ωk(Bg) are identified with the dg C∗(g)-module C∗(g, Symk(g∗[−1])).
A 2-form means a cocycle in Ω2(Bg), which can have cohomological de-
gree k. (Compare with ordinary differential geometry, where a 2-form
always lives in degree 0.) Such a cocycle ω corresponds to a cocycle
in C∗(g, Hom(g, g∗)), and hence determines a map ω] from the tangent
complex of Bg to its cotangent complex. We call a 2-form nondegenerate
if the map ω] is a quasi-isomorphism.

We now turn to explaining what the condition closed means in this
setting, which requires us to explain the de Rham differential. As in
ordinary geometry, the universal derivation

C∗(g) = O(Bg)
ddR−−→ Ω1(Bg) = C∗(g, g∗[−1])

extends to higher forms in a natural way and hence yields a de Rham
complex Ω∗(Bg), obtained by totalizing the double complex

Ω0(Bg)
ddR−−→ Ω1(Bg)

ddR−−→ Ω2(Bg)
ddR−−→ · · · .

We define the closed 2-forms to be the truncated de Rham complex

Ω2
cl(Bg) = Tot

(
Ω2(Bg)

ddR−−→ Ω3(Bg)
ddR−−→ · · ·

)
.

A closed 2-form on Bg then means a cocycle in this complex, which can
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have cohomological degree k. There is natural projection map τ : Ω2
cl(Bg)→

Ω2(Bg) by discarding the rest of the truncated de Rham complex.

We can now describe one side of our correspondence.

C.1.0.1 Definition. A k-shifted symplectic structure on a formal derived
space Bg is a closed 2-form ω of cohomological degree k such that the underly-
ing 2-form τ(ω) is nondegenerate.

C.2 Rephrasing the problem

We discussed in section 4.2 what we mean by an invariant pairing,
namely a bilinear form such that if one postcomposes it with an L∞
bracket, the composite is antisymmetric in the appropriate sense. It is
straightforward to relate this notion to shifted symplectic structures.

C.2.0.1 Lemma. A degree k − 2 invariant pairing b naturally defines a k-
shifted symplectic structure ωb.

Proof Observe that the pairing b is an element of Sym2(g∗[−1]) and
hence of Ω2(Bg) by the map of graded vector spaces

Sym2(g∗[−1]) 1⊗id−−→ Sym(g∗[−1])⊗ Sym2(g∗[−1])

As it is invariant, it is annihilated by the Chevalley-Eilenberg differen-
tial and hence determines a 2-form. This element is also annihilated by
the de Rham differential, since it is a constant-coefficient 2-form. Hence
this element determines a cocycle ωb in Ω2

cl(Bg). (Its “underlying k-
form” is zero for k > 2.) �

This construction is at the level of explicit cocycles and hence is not
particularly homotopically meaningful as stated. We want an identifi-
cation of ∞-groupoids between invariant pairings and shifted symplec-
tic structures. In fact, we will show something a little stronger. Given an
L∞ algebra g with invariant pairing b, there is a natural formal moduli
spaceMg,b describing deformations of it as L∞ algebra with invariant
pairings. There is also a natural formal moduli space MBg,ωb describ-
ing deformations of the pair (Bg, ωb) as a shifted symplectic formal
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space. We will exhibit an equivalence between these two formal moduli
spaces.

Thus, we need to describe these spaces precisely.

C.2.1 Deformations of L∞ algebras with pairings

For an L∞ algebra g, there are two distinct kinds of deformations to
consider:

• deformations as a possibly-curved L∞ algebra, which is described
by the dg Lie algebra of derivations C∗(g, g[1]), equipped with the
commutator bracket, or
• deformations as an (uncurved) L∞ algebra, which is described by the

sub-dg Lie algebra C∗(g, g[1])/g[1] of derivations that preserve the
augmentation of the algebra C∗(g).

In both cases, the point is that all the brackets of an L∞ algebra are
encoded in the differential of the dg commutative algebra C∗(g), so it
suffices to study how to deform that derivation, and the dg Lie algebra
of derivations is hence the natural model for that formal moduli space.
Moreover, the key difference between the two cases is whether one pre-
serves the augmentation of C∗(g), which encodes the basepoint of the
formal space Bg. To start, we will focus on the first class of deforma-
tions, as it is mildly easier to analyze.

When g is equipped with a pairing b, it is natural to restrict to the
derivations that preserve the pairing. Since we will use the pairing to
produce a shifted symplectic structure, this condition amounts to work-
ing with the symplectic derivations. In the setting of ordinary sym-
plectic geometry, every symplectic derivation is locally equivalent to a
Hamiltonian vector field, which is unique up to a constant. This identi-
fication uses the fact that the map ω] can be inverted. If we try to mimic
this approach in our setting, we run into the issue that we only have a
quasi-isomorphism

ω]
b : C∗(g, g[1])→ C∗(g, g∗[−1])[k]

at the cochain level between derivations and (shifted) 1-forms.



C.2 Rephrasing the problem 449

Here it is convenient to restrict to minimal L∞ algebras, namely those
L∞ algebras whose `1 bracket (i.e., differential) are zero. This restriction
is no constraint for us, since one can transfer the L∞ structure of an
L∞ algebra h to the graded vector space H∗(h, `1) of its cohomology
and thus obtain a minimal model for h. (Indeed, for this reason, our
arguments in this appendix can be amended to encompass L∞ algebras
with finite-dimensional cohomology.) Hence, up to homotopy, we may
as well assume g is minimal.

When g is minimal, however, the nondegeneracy condition on the
pairing b implies that it is nondegenerate on the underlying graded
vector space of g. Hence the map ω]

b is an isomorphism and not just
a quasi-isomorphism, and it admits a unique inverse. In consequence,
we see that we have a natural cochain map

Hamb : C∗(g)[k]→ C∗(g, g[1])

sending a function on Bg to its Hamiltonian vector field by the compo-
sition

Hamb = (ω]
b)
−1 ◦ ddR,

just as in ordinary symplectic geometry. This map determines a −k-
shifted Poisson bracket on C∗(g), so that C∗(g)[k] is a dg Lie algebra.

Direct inspection shows that any derivation that (strictly) preserves
b is Hamiltonian. (This claim is analogous to the familiar fact that in
ordinary symplectic geometry, a symplectic vector field is represented
locally by a Hamiltonian function). On the other hand, the kernel of
Hamb consists of the constant functions. Hence we see that the dg Lie
algebra C∗red(g)[k] models the symplectic derivations, where the depen-
dence on b is wrapped up in the shifted Poisson bracket.

So far we have described deformations as a possibly-curved L∞ al-
gebra with pairing. To eliminate the appearance of curving, we need to
restrict to basepoint-preserving symplectic derivations. These are given
by the intersection of all symplectic derivations with C∗(g, g[1])/g[1],
the Lie algebra of basepoint-preserving derivations. Using the map Hamb,
one can see straightforwardly that it is equivalent to work with the sub-
space

C∗bpp(g) = (Sym≥2(g∗[−1]), dCE)
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of C∗(g), as it is the linear term of a Hamiltonian function that produces
the constant term of the Hamiltonian vector field.

C.2.2 Deformations of shifted symplectic formal spaces

We know that deformations of Bg as a formal derived space are equiva-
lent to deformations of g as an L∞ algebra, by the fundamental theorem
of derived deformation theory. Hence we know that the derivations
C∗(g, g[1]) model deformations as an unpointed formal space, and that
basepoint-preserving derivations model deformations as a pointed for-
mal space. We will focus on unpointed deformations here, as it should
be clear in light of our preceding example how to modify our argument
to deal with pointed deformations.

On the other hand, if we fix the space Bg, we can ask how to model
deformations of the k-shifted symplectic structure around a shifted sym-
plectic structure ω. It should be clear that Ω2

cl(Bg)[k − 1] models such
deformations: for any dg Artinian algebra (R,m), we consider deform-
ing ω to ω +ω′, where ω′ is a degree 1 element ofm⊗Ω2

cl(Bg), and ask
whether it satisfies the conditions of being a shifted symplectic form
over the base algebra R. Nondegeneracy holds automatically, since we
only modify ω in a nilpotent direction. Hence the condition of being
shifted symplectic is simply that ω′ is closed in m⊗Ω2

cl(Bg)[k− 1].

If we ask about deforming the space and its symplectic structure si-
multaneously, then we are deforming g as well as the symplectic form.
Deforming g modifies the differential on C∗(g) — and hence also on
Ω2

cl(Bg)[k − 1] — and this modified differential determines the rele-
vant condition on the symplectic form. To be explicit, for any dg Ar-
tinian algebra (R,m), we ask for a derivation D ∈ m⊗ C∗(g, g[1]) and
ω′ ∈ m⊗Ω2

cl(Bg)[k− 1] such that D satisfies the Maurer-Cartan equa-
tion and ω′ satisfies

dtotω
′ + LD(ω + ω′) = 0, (†)

where dtot denotes the total differential in m⊗Ω2
cl(Bg)[k − 1] and LD

denotes the Lie derivative.

Cartan’s formula tells us that

LDα = [dΩ, ιD]α,
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where we are using dΩ to denote the total differential of the de Rham
complex. We know dΩω = 0, so equation (†) becomes

dtotω
′ + LDω′ + dΩ(ιDω) = 0. (‡)

This new equation makes clear how a deformation D of the space Bg
affects the condition of deforming the symplectic structure, namely one
modifies the differential on Ω2

cl by both the deformation of the space
and by a term depending on the symplectic form, namely dΩ(ιDω),
which is an exact 1-form, loosely speaking.

In sum, we have identified the dg Lie algebra describing deforma-
tions of the shifted symplectic formal space (Bg, ω) as

Ω2
cl(Bg)[k− 1]oω C∗(g, g[1]),

where equation (‡) describes the action of derivations on Ω2
cl(Bg). We

use the notation oω to indicate how the extension depends on the sym-
plectic form ω.

Under the assumption that g is minimal, we know that the map τ(ω)]

is an isomorphism. (Recall that τ(ω) is the underlying 2-form, which is
what provides the identification of derivations and k-shifted 1-forms.)
Hence, we can replace the dg Lie algebra C∗(g, g[1]) with the k-shifted
1-forms Ω1(Bg)[k] and transfer the Lie bracket. The dg Lie algebra de-
scribing deformations of the shifted symplectic formal space (Bg, ω) is
then the cochain complex

Ω1
cl(Bg)[k]

equipped with a nontrivial Lie bracket depending on ω. (For the basepoint-
preserving case, replace the component Ω1(Bg)[k] by the image of the
basepoint-preserving derivations under the map τ(ω)].)

C.3 Relating the two formal moduli spaces

In light of these descriptions of the formal moduli spaces, it should be
clear that there is a natural map: the de Rham differential

ddR : C∗(g) = O(Bg)→ Ω1
cl(Bg)



452 A formal Darboux lemma

defines a map of cochain complexes, so we take the k-fold shift to obtain
a map

ddR[k] : C∗red(g)[k]→ Ω1
cl(Bg)[k]

between the underlying cochain complexes of the relevant dg Lie alge-
bras.

Note that we took the reduced cochains on the left hand side, which
is fine since the de Rham differential annihilates constants. This is the
correct thing to do because Hamiltonian vector fields taken up to an
additive constant match with symplectic vector fields, and so define
deformations of the L∞ algebra with an invariant pairing.

The map (with reduced cochains) is a quasi-isomorphism, since the
cone of this map is a shift of the reduced de Rham complex Ω∗red(Bg),
which is acyclic.

For g a minimal L∞ algebra and b a nondegenerate invariant pairing
of degree k, it is a direct computation to verify that this map preserves
the Lie bracket. Hence, we have obtained the following.

C.3.0.1 Proposition. There is an equivalence of formal moduli spaces be-
tweenMg,b andMBg,ωb realized by the dg Lie algebra map

ddR[k] : C∗red(g)[k]→ Ω1
cl(Bg)[k],

when g is a minimal L∞ algebra whose underlying graded vector space has
finite total dimension.

This result implies that if we start with a shifted symplectic structure
on Bg that comes from an invariant pairing on g, then infinitesimally
nearby symplectic structures can also be modeled by invariant pairings.

Now let us consider a small variant of this result. Suppose that g is
minimal. Consider the two variants of the concept of shifted symplectic
structure, both of which preserve a framing on the tangent space of the
base point (which is g[1]), as well as the symplectic form on this graded
vector space. For the strict version (modelled by L∞ algebras with an
invariant pairing), the Lie algebra controlling deformations that pre-
serve the framing on the tangent space is C≥3(g)[k] = Sym≥3(g[−1])[k],
which consists of Hamiltonian functions that are at least cubic. (They
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are at least cubic because quadratic Hamiltonians can rotate the tan-
gent space at the origin.)

For the lax version of shifted symplectic structure, this constraint is
implemented by asking that the component in Ω1 has coefficients that
are at least quadratic (corresponding to a vector field that has quadratic
coefficients and so does not rotate the tangent space at the origin), and
the component in Ω2 has at least linear coefficients (so that we do not
change the symplectic form on the tangent space). We will let Ω1

+,cl(Bg)
denote this sub-complex of Ω1

cl(Bg). As before, the map

C≥3(g)[k]→ Ω1
+,cl(Bg)[k] (C.1)

is a quasi-isomorphism of dg Lie algebras.

Now, each of the two dg Lie algebras appearing in this equation is
pro-nilpotent, so that the Maurer-Cartan equation makes sense without
inputting a nilpotent Artinian ring.

C.3.1 Completing the proof

Suppose that g is a minimal L∞ algebra with an invariant pairing b.
We let (g0, b0) be the underlying Lie algebra with invariant pairing (ob-
tained by dropping the higher terms of the L∞ algebra). The deforma-
tion of (g0, b0) to (g, b) is then given by a a Maurer-Cartan elements
of C≥3(g)[k].

Similarly, suppose we have a minimal L∞ algebra gwith a non-degenerate
and homotopically closed two-form ω. We can drop the higher terms in
the L∞ structure to get a Lie algebra g0,and the constant-coefficient part
of the two-form ω gives an invariant pairing b0 on g0. The deforma-
tion from (g0, b0) to (g, ω) is represented by a Maurer-Cartan element
in Ω1

+,cl(Bg).

Because the map in equation C.1 is a quasi-isomorphism, and be-
cause both Lie algebras appearing in equation C.1 are pro-nilpotent,
we conclude that every Maurer-Cartan element in Ω1

+,cl(Bg) is equiva-
lent (in a way canonical up to contractible choice) to one in the image
of C≥3(g)[k]. The latter represents an L∞ structure on g with invariant
pairing, as desired.
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C×-equivariant, 198
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Φ-quantum master equation, 112
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E , 433
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action
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quantum inner, 346

algebra
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Artinian, 24
BD, 133
Heisenberg, 129

algebra of functions on sections of a vector
bundle, 434

derivations of, 441
with proper support, 439
with smooth first derivative, 439

background field method, 115
Batalin-Vilkovisky formalism

see BV formalism, 50
BD algebra, 133

filtered, 199
BV bracket, 111
BV Laplacian, 111
BV quantization

equivariant, 195
relationship of volume forms with

cotangent theories, 195

central extension, 129
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central extensions
see local L∞ algebra

central extensions of, 44
classical BV formalism, 50

finite-dimensional examples, 50
infinite-dimensional aspects of, 53

classical BV theory, 56
classical field theory

a succinct definition of, 63
as elliptic moduli space, 56
cotangent, 195
equivariant, 288
from action functional, 59
holomorphic, 171
in classical BV formalism, 56
renormalizable, 183
translation-invariant, 167

classical master equation
equivariant, 295

classical observables, 73
equivariant, 300
homotopy P0 structure on, 75
of free field theory, 76
shifted Poisson structure on, 75
support, 73

cochains of a local L∞ algebra, 38
conserved current, 311

quantum, 339
correlation function, 205
cotangent field theory, 67
current, 310

classical, 310, 311
quantum, 339

Darboux lemma, 54, 444
derived critical locus, 51

in infinite dimensions, 56
in the language of L∞ algebras, 59
of a local functional, 61
of an action functional, 62
symplectic structures on, 62

determinant, 365
determinant of cohomology

see determinant, 365
dg manifold, 115

examples, 116
nilpotent, 115

duality, Koszul, see Koszul duality

effective field theory, 100
elliptic moduli problem, 23, 28, 29

free scalar field theory as an example, 29

interacting scalar field theory as an
example, 31

invariant pairing on, 55
shifted symplectic, 56

enveloping BD factorization algebra
twisted, 338

enveloping P0 factorization algebra
twisted, 336

factorization algebra
local RG flow on, 181

Feynman diagram, 149
field theory

effective, 100
free BV, 103, 128
quantum, 103

flat bundle, 33
formal moduli problem, 25, 26, 422, 429

dictionary with Lie-theoretic objects, 54
shifted symplectic structures on, 53

free BV theory, 103, 128
free scalar field theory

as an elliptic moduli problem, 29
functional, 101

important classes of, 109
local, 43, 102
with smooth first derivative, 79, 439

gauge fix, 103
gauge-fixing, 118

a simplicial set of gauge-fixes, 122
holomorphic, 174

gauge-fixing operator, 103
Gaussian measure, 91
global quantum observable, 145

heat kernel, 105
Heisenberg algebra, 130
Heisenberg algebra construction, 129
holomorphic bundle, 37
homotopy P0 algebra, 336

I. notation, 1
inner action

classical, 293
quantum, 346

integral kernel, 104
interacting scalar field theory

as an elliptic moduli problem, 31
invariant pairing, 55

Kac-Moody algebra, 45
Koszul duality, 247, 270

and quantum groups, 247, 258
symmetries, 270
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Lie algebroid, 197
projective volume form on, 198

local L∞ algebra
central extensions of, 44, 44
cochains of, 38
cochains with coefficient in a local

module, 48, 49
connection with D-modules, 40
local action by, 39
local cochains of, 43, 44
reduced cochains of, 38

local action functional, 59, 101
local action of a local L∞ algebra, 39
local functional, 43, 43
local index, 364, 368
local operator, see point observable

Noether’s theorem
classical, 284, 285, 305, 309
quantum, 335, 337, 338
the OPE version, 332

observable
quantum, 143

observables
equivariant classical, 300
equivariant quantum, 351
quantum, see quantum observables, 128
support for classical, 73

one-forms on sections of a vector bundle,
436

OPE, 215, see operator product expansion
operator

integral kernel of an, 104
smoothing, 106

operator product expansion, 215, 217
example from φ4 theory, 229
example related to quantum groups, 243
holomorphic, 234
on L, 326
on symmetries, 326
semi-classical, 220
semi-classical as Poisson bracket, 228
singular part, 217

parametrix, 105, 106
BD algebra structure associated to, 111
holomorphically translation-invariant,

175
partial order on, 108
propagator associated to, 108
relationship with BD algebra structure,

134

role in quantum observables, 138
the simplicial set P of parametrices, 137

partition function, 376
point observable, 209
point observables

see quantum observables
point-supported, 208

propagator, 108
proper support, 106, 439

QME
see quantum master equation, 112

quantum BV formalism
finite-dimensional models, 89
Gaussian measure as encoded by, 91
operadic perspective on, 94

quantum field theory, 87, 103, 112
a simplicial set of theories, 121
background field method, 115
comparison of parametrix and heat

kernel descriptions, 107
cotangent, 195
equivariant, 344, 344
existence theorem, 126
holomorphic, 171
in families, 117
in families over dg manifolds, 115
local RG flow, 189
local RG flow on, 186
perturbatively renormalizable, 180, 190
renormalizable, 180
role of obstruction theory in

construction of, 126
translation-invariant, 167

quantum group, 243
quantum master equation, 112

equivariant, 343
with respect to parametrix Φ, 112

quantum observables, 128
as first-order deformation of the action

functional, 144
BD algebra structure on global, 133
definition of a global observable, 145
dependence on parametrix, 137
equivariant, 351
existence theorem, 143
global, 143
local, 145
motivation of definition via the path

integral, 144
point-supported, 208
prefactorization structure of, 148
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product map for, 148
relationship with P0 structure on

classical observables, 138
role of RG flow, 137
support, 136, 146
the factorization algebra structure of,

152

Reference to Volume 1, 1
renormalizability, 179
renormalization group flow

see RG flow, 110
RG flow, 110

at level of observables, 144
graphical expansion, 149
linearized, 144
local, 179
local RG flow on factorization algebras,

181
local RG flow on quantum field

theories, 186
on quantum observables, 137
role of Feynman diagrams, 149

scaling, 179
self-dual bundle, 36
shifted symplectic geometry, 53
shifted symplectic structure, 56, 62
singular part, 217
smooth first derivative

see functional
with smooth first derivative, 79, 439

support
of quantum observables, 136
proper, 106, 439

symplectic structure, 56

translation invariance, 167
translation invariant

holomorphically, 171

volume form, 195
on a Lie algebroid, 198
projective, 197
relationship with cotangent theories,

195

Wick’s lemma, 93
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