Choose one of the following two problems:

1. Let M be a smooth manifold which is connected. Prove that the set of isomorphism classes of nontrivial rank 1 smooth vector bundles over M is in one to one correspondence with the set of nontrivial homomorphisms from $\pi_1(M)$ to \mathbb{Z}_2.

2. Let M be a connected, 2-dimensional smooth manifold. Prove that M is orientable if and only if M admits an almost complex structure, i.e., for any $p \in M$, there exists an automorphism $J_p : T_p M \to T_p M$, which depends smoothly on p, such that $J_p^2 = -Id$.