1. Show that the image of $F : \mathbb{S}^2 \rightarrow \mathbb{R}^4$, $(x, y, z) \mapsto (x^2 - y^2, xy, xz, yz)$ is an embedded submanifold of dimension 2, which is diffeomorphic to $\mathbb{R}P^2$.

2. Show that in the definition of a Lie group G, the assumption $i : G \rightarrow G$, where $i : g \mapsto g^{-1}$, is smooth can be derived from the assumption that $m : G \times G \rightarrow G$ is smooth, where $m : (g, h) \mapsto gh$.

3. Let \mathbb{HP}^n be the set of quaternion lines in the quaternion space \mathbb{H}^{n+1}. Use Quotient Manifold Theorem to show that \mathbb{HP}^n is naturally a compact smooth manifold. What’s its dimension?

4. Let M be the set of oriented 2-planes in \mathbb{R}^4. Prove (1) $G = SO(4)$ acts transitively on M; (2) let $p \in M$ be the oriented 2-plane $\mathbb{R}^2 \times \{0\}$, determine G_p as a subgroup of G and show it is closed. With (1) and (2) one concludes that M has a unique smooth manifold structure with respect to which M is a homogenous space.