1. Let G be a Lie group. Prove that (1) the pushforward of the inversion map $i : G \to G$ at $e \in G$, $i_* : T_eG \to T_eG$, is equal to $-Id$, (2) the Lie algebra of G is Abelian if G is Abelian.

2. Classify k-dimensional Lie algebras up to isomorphisms for $k = 1, 2$, and find examples of Lie groups whose Lie algebras realize the k-dimensional Lie algebras with $k = 1, 2$.

3. (optional) Let G be the Lie group of non-zero quaternions. Let $X_i, i = 0, 1, 2, 3$ be the left invariant vector fields on G such that at $1 \in G$, $X_0 = 1$, $X_1 = i$, $X_2 = j$, $X_3 = k$. Compute the Lie bracket in terms of the basis $\{X_i\}$. Observing S^3 is a Lie subgroup of G and i, j, k is a basis of T_1S^3, use the above computation to show that the Lie algebra of S^3 is isomorphic to R^3 with the cross product as the Lie bracket.