HOMEWORK 1

1. Let M be a topological manifold. Then
 (1) Every smooth atlas on M is contained in a unique maximal smooth atlas.
 (2) Two smooth atlases determine the same smooth structure if and only if their union is a smooth atlas.
 Part (1) is proved in J. Lee (Lemma 1.10). Prove part (2).

2. Let M be the subset of $M(3 \times 3, \mathbb{R})$ consisting of upper triangle 3×3 matrices with determinant 1, which is given with the subspace topology. Show that M is naturally a smooth manifold. Furthermore, what is the dimension of M? How many connected components does M have?

3. Show that the 1-dimensional complex projective space $\mathbb{C}P^1$, i.e., the set of complex lines in \mathbb{C}^2, is naturally a complex manifold. Show that as a smooth 2-manifold, it is the same as the 2-sphere S^2 with the standard smooth structure.

4. Show that the set of 2-planes in \mathbb{R}^4, denoted by $G_2(\mathbb{R}^4)$, is naturally a smooth 4-manifold.