1. Let R be a domain with the field of fractions K. Let F/K be an algebraic extension and let S be the integral closure of R in F. For any $\alpha \in F$, show that there exists $r \in R$ such that $r\alpha \in S$.

2. Suppose $n, m \geq 2$ are coprime positive integers. Show that $C[x, y]/(x^n - y^m)$ is a domain and find its normalization.

3. Let A be an integrally closed domain with the field of fractions K. Let F/K be a Galois extension with the Galois group G. Let B be the integral closure of A in F. Show that G preserves B and that $B^G = A$.
Suppose that there exist rational functions \(\theta_1(x), \ldots, \theta_n(x) \in K(x) \) such that \(\alpha_i = \theta_i(\alpha) \) for any \(i \). Suppose also that

\[\theta_i(\theta_j(\alpha)) = \theta_j(\theta_i(\alpha)) \]

for any \(i, j \). Show that the Galois group of the splitting field of \(f(x) \) is Abelian\(^1\). (b) Give an example of the situation as in part (a) with \(K = \mathbb{Q} \) and such that the Galois group of \(f(x) \) is not cyclic. Give a specific polynomial \(f(x) \), and compute its roots and functions \(\theta_i \).

10. Let \(K = \mathbb{C}[z^{-1}, z] \) be the field of Laurent series (series in \(z \), polynomials in \(z^{-1} \)). Let \(K_m = \mathbb{C}[z^{-m}, z^m] \supset K \). (a) Show that \(K_m/K \) is Galois with a Galois group \(\mathbb{Z}/m\mathbb{Z} \). (b) Show that any Galois extension \(F/K \) with a Galois group \(\mathbb{Z}/m\mathbb{Z} \) is isomorphic to \(K_m \). (c) Show that \(K^{ab} = \bigcup_{m \geq 1} K_m \), the field of Puiseux series\(^2 \) (\(K^{ab} \) is defined in the previous worksheet).

11. Suppose \(D_4 \) acts on \(F = \mathbb{C}(x_1, \ldots, x_4) \) by permutations of variables (here we identify variables with vertices of the square). Show that \(F^{D_4} \) is generated over \(\mathbb{C} \) by 4 functions and find them.

12. Let \(F/K \) be a Galois extension with a cyclic Galois group \(G \) of order \(p \), where \(\text{char } K = p \). Let \(\sigma \) be a generator of \(G \). (a) Show that there exists \(\alpha \in F \) such that \(\sigma(\alpha) = \alpha + 1 \). (b) Show that \(F = K(\alpha) \), where \(\alpha \) is a root of \(x^p - x - a \) for some \(a \in K \).

13. Suppose that \(\text{char } K = p \) and let \(a \in K \). Show that the polynomial \(x^p - x - a \) either splits in \(K \) or is irreducible. Show that in the latter case its Galois group is cyclic of order \(p \).

14. (a) Show that

\[
\begin{vmatrix}
1 & 1 & \ldots & 1 \\
\alpha_1 & \alpha_2 & \ldots & \alpha_n \\
\alpha_1^2 & \alpha_2^2 & \ldots & \alpha_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1^{n-1} & \alpha_2^{n-1} & \ldots & \alpha_n^{n-1}
\end{vmatrix} = \prod_{i > j} (\alpha_i - \alpha_j).
\]

(b) For any \(k \geq 0 \), let \(p_k = \sum_{i=1}^n \alpha_i^k \). Show that

\[
\begin{vmatrix}
p_0 & p_1 & \ldots & p_{n-1} \\
p_1 & p_2 & \ldots & p_n \\
p_2 & p_3 & \ldots & p_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n-1} & p_n & \ldots & p_{2n-2}
\end{vmatrix} = \prod_{i > j} (\alpha_i - \alpha_j)^2.
\]

15. (continuation of the previous problem). (a) Let \(p \) be an odd prime number. Show that the discriminant of the cyclotomic polynomial \(\Phi_p(x) \) is equal to \((-1)^{\frac{p+1}{2}} p^{p-2} \). (b) Use (a) to give a different proof of the Kronecker–Weber theorem for quadratic extensions.

\(^1\)This was proved by Abel himself.

\(^2\)Isaac Newton proved that the field of Puiseux series in fact algebraically closed.