Poisson Limit Theorems and Poisson Approximation

In Theorems 1 and 2 we fix \(\lambda > 0 \) and obtain the Poisson distribution for \(\lambda \).

As a limit of the binomial distribution of \(S_n, p_n \), where \(p_n = \lambda/n \),
in Theorem 1 and \(n p_n \rightarrow \lambda \) in Theorem 2. In Theorems 3 and 4 we fix \(n \) and \(p \) and obtain an approximation to the Poisson distribution for \(\lambda = n p \) by the binomial distribution of \(S_n, p \).

Theorem 1. Given \(\lambda > 0 \) let \(S_n, p_n \) be a sequence of binomial rv's with parameters \(n \) and \(\lambda/n \). Let \(N \) be a Poisson rv with parameter \(\lambda \).

Then for any \(i \in \mathbb{N} \cup \{0\} \)

\[
\lim_{n \to \infty} P(S_n = \lambda/n i) = e^{-\lambda} \frac{\lambda^i}{i!} = P(N = i). \quad \text{[Proved in class]}
\]

Theorem 2. Same notation as in Theorem 1 with \(\lambda/n \) replaced by \(p_n \),

where \(n p_n \rightarrow \lambda \). Then for any \(i \in \mathbb{N} \cup \{0\} \)

\[
\lim_{n \to \infty} P(S_n = \lambda/n i) = e^{-\lambda} \frac{\lambda^i}{i!} = P(N = i). \quad \text{[If \(p_n = \lambda/n \), then get Thm 1]}
\]

Theorem 3. Given \(n \in \mathbb{N} \) and \(0 < p \leq 1 \), let \(S_n, p \) be a binomial rv with parameter \(n \) and \(p \). Let \(N_{np} \) be a Poisson rv with parameter \(\lambda = np \). Then for any \(i \in \mathbb{N} \cup \{0\} \)

\[
|P(S_{np} = i) - P(N_{np} = i)| \leq np^2. \quad \text{[Proved in 58.6 of text]}
\]

If \(p = \lambda/n \), then Thm 3 yields Thm 1 because \(np^2 = \frac{\lambda^2}{n} \rightarrow 0 \).

In general, this approximation is useful if \(np^2 \) is small;
similarly in Theorem 4.

Theorem 4. Same notation as in Theorem 3. Then for any

subset \(A \subset \mathbb{N} \cup \{0\} \)

\[
|P(S_{np} \in A) - P(N_{np} \in A)| = \left| \sum_{i \in A} P(S_{np} = i) - \sum_{i \in A} P(N_{np} = i) \right| \leq np^2.
\]

[Proved in 58.6 of text]