Chasles’ Theorem: Let C_1, C_2, C_3 be cubic curves in \mathbb{P}^2. Assume that $C_1 \cap C_2$ is a set of 9 distinct points $\Gamma = \{P_1, \ldots, P_9\}$. If C_3 passes through 8 of these, then C_3 passes through the ninth point.

Terminology. If V is a subspace of a finite dimensional vector space W, then the codimension of V in W is $\dim(W) - \dim(V)$. Let S_d denote the space of homogeneous polynomials on \mathbb{P}^2 of degree d. If Γ in a set of m points in \mathbb{P}^2, we say it imposes l conditions on S_d, if the subspace of S_d consisting of forms vanishing on Γ has codimension l in S_d.

We can restate Chasles’ Theorem as:
Let $\Gamma = \{P_1, \ldots, P_9\}$ be the intersection of two cubics and let $\Gamma' = \{P_1, \ldots, P_8\}$. Then Γ and Γ' impose the same number of conditions on S_3, the space of cubic forms on \mathbb{P}^2.

We actually prove a stronger statement:
The sets Γ and Γ' both impose 8 conditions on S_3.

Remark: The space of homogeneous forms in X, Y, Z of degree 3 has dimension 10.

Exercise: Give a basis for this space.
Let $\Gamma = \{P_1, \ldots, P_9\} = C_1 \cap C_2$ as above. I claim that Γ fails to impose 9 conditions on S_3. Let C_1, C_2 be the zero loci of homogeneous forms F_1 and F_2 of degree 3. Then $\alpha F_1 + \beta F_2, \alpha, \beta \in \mathbb{C}$ forms a two dimensional subspace of S_3 of forms that vanish on Γ. Hence the codimension of the space of forms vanishing on Γ is ≤ 8.

Terminology: A set of m points in \mathbb{P}^2 fails to impose independent conditions on S_d if the space of forms in S_d vanishing on the set of m points has codimension strictly less than m.

We investigate what it means for a set of points to fail to impose independent conditions on homogeneous forms of degree 1, 2, 3.

Lemma 1: Let Ω be a set of $n \leq 4$ points. Then Ω fails to impose linearly independent conditions on forms of degree 1 if and only if 3 of the points are collinear or $n = 4$.

Proof: If $n = 1$, then the condition that a form $aX + bY + cZ$ vanish at a given point is non-trivial, hence the space of triples (a, b, c) so that the corresponding form vanishes at the given point in codimension 1.

Note that the space of homogeneous forms in X, Y, Z of degree 1 has dimension 3. If $n = 2$, then there is a unique line passing through two points. Hence the space
of forms vanishing on Ω has codimension 2.

If $n = 3$, then one of two things can occur:
a: The points are collinear. In this case there is a 1 dimensional family of forms of degree 1 vanishing on Ω. This has codimension 2 and hence Ω fails to impose linearly independent conditions.

b: The points are not collinear. Then there are no linear forms vanishing on Ω and the codimension is 3. Thus Ω does impose linearly independent conditions in this case.

If $n = 4$, then Ω fails to impose independent conditions because the space of forms of degree 1 is dimension 3, so the codimension of the space of forms vanishing on Ω has codimension $\leq 3 < 4$.

Criterion: Assume we are given a set of m points and let a subset of $m - 1$ points imposes independent conditions on S_d. If there is a form of degree d that vanishes on the subset of $m - 1$ points and does not vanish on the last point, then the set of m points imposes linearly independent conditions.

Exercise: Explain why.

Lemma 2: Let $\Omega = \{P_1, \ldots, P_n\}$ be a collection of n points in \mathbb{P}^2 with $n \leq 6$. The set Ω fails to impose independent conditions on S_2, the space of forms of degree 2, if and only if either 4 points are collinear or $n = 6$ and Ω is contained in a conic.

We first prove the backward implication \Leftarrow: Assume that 4 points among the n points in Ω lie on the line defined by the vanishing of the linear form H. The set of conics vanishing on these 4 points is the set of conics of the form $H \cdot G$ with G linear. This is a space of dimension 3 (Exercise: Why?) and hence these 4 points impose $6 - 3 = 3$ conditions on conics. The remaining $n - 4$ points impose at most $n - 4$ conditions. Thus Ω imposes $\leq 3 + n - 4 = n - 1$ conditions on conics.

Assume that $n = 6$ and Ω lies on a conic $F = 0$. Thus there is at least 1 dimensional space of conics vanishing on Ω. Hence the codimension of such forms is ≤ 5. Thus Ω fails to impose independent conditions.

We prove the forward implication \Rightarrow:
If $n = 1$, then $\Omega = \{P\}$. The point P does impose 1 condition on S_2.

Assume $n = 2$: Given two points $\{P_1, P_2\} = \Omega$ there is a pair of lines (and hence an element of S_2) that passes through P_1 and not P_2. Now apply our criterion to conclude that Ω imposes independent conditions.
Exercise: Assume that $P_1 = (1, -2, 3)$ and $P_2 = (2, 0, 1)$. Give the equation of a line that passes through P_1, but not through P_2.

$n = 3$: There are two cases. If $\{P_1, P_2, P_3\}$ are collinear we can find a conic through two of the points and not the third. If they are not collinear, then we can find a pair of lines through two but not the third:

$n = 4$: We need to show that if 4 points $\{P_1, P_2, P_3, P_4\} = \Omega$, then they impose independent conditions if they are not collinear. To do this we use our criterion. In particular, we show that there is a conic through three of the points and not the fourth. See the pictures below.

Now the criterion applies.

$n = 5$: Assume no 4 points of $\Omega = \{P_1, P_2, \ldots, P_5\}$ are collinear. We show we can find a conic through 4 and not the 5th. If no 3 of the points are collinear:

If 3 points are collinear:

$n = 6$: Need to show that if $\{P_1, \ldots, P_6\}$ does not lie on a conic and no 4 of these points lie on a line, then $\{P_1 \ldots P_6\}$ imposes independent conditions. Since the family of homogeneous polynomials of degree 2 in variables $X, Y,$ and Z is 6 dimensional, this means we have to show that no non-trivial such polynomial vanishes at all 6 points.
If no 3 of the points \(\{P_1 \ldots P_5\} \) are collinear, then there is a unique polynomial of degree two vanishing on \(P_1 \ldots P_5 \). By hypothesis \(P_6 \) is not on this conic, hence there are no non-trivial degree 2 forms vanishing on \(P_1, P_2, \ldots P_6 \).

Assume \(P_1, P_2, P_3 \) are collinear; say on the line \(L \). By hypothesis none of \(P_4, P_5, P_6 \) are on \(L \). The points \(P_4, P_5, P_6 \) cannot lie on a line \(M \), for if they did, \(P_1, \ldots P_6 \) would lie on the conic formed as the union of \(L \) and \(M \) thus \(\{P_1, \ldots P_6\} \) would fail to satisfy our hypothesis. Any conic passing through \(P_1, \ldots P_6 \) contains the line \(L \) (why?) and hence is the union of two lines. But this is impossible. Hence no conic passes through \(\{P_1, \ldots P_6\} \).

Lemma 3: Let \(\{P_1, \ldots P_n\} = \Omega \) be a collection of \(n \) points in \(\mathbb{P}^2 \) with \(n \leq 8 \). The points \(\Omega \) fail to impose independent conditions on curves of degree 3 if and only if 5 points in \(\Omega \) lie on a line or \(n = 8 \) and \(\{P_1, \ldots P_6\} \) lies on a conic.

Proof: \(\Leftarrow: \) The dimension of the space of forms of degree 2 is 6 and the dimension of the space of forms of degree 3 is 10.

If a form \(F \) of degree 3 vanishes at more than 3 points on a line \(L \), then \(F = G \cdot H \) where \(L \) is the zero locus of the linear form \(G \) and \(H \) is a form of degree 2. This follows from Bezout’s theorem.

If 5 points of \(\Omega \) lie on a line defined by a linear form \(G \), then any cubic form vanishing on \(\Omega \) can be written \(F = GH \) with \(H \) of degree 2. The space of such \(F \) is thus 6 (Exercise: Why?). There are \(\leq n - 5 \) points not on \(G = 0 \). Thus the points on \(L \) have imposed 4 conditions (quadrics are codim 4 in cubics) and the points outside \(L \) impose \(\leq n - 5 \) conditions; hence the total number of conditions imposed by \(\Omega \) is

\[
\leq 4 + n - 5 = n - 1.
\]

Hence if 5 points of \(\Omega \) lie on a line, \(\Omega \) fails to impose independent conditions.

If \(n = 8 \) and \(\Omega \) lies on a conic \(G = 0 \), then the number of conditions imposed by \(\Omega \) on cubic forms is

\[
\text{(dimension of cubics)} - \text{(dimension of cubics } G \cdot H) = 10 - 3 = 7 < 8.
\]

We now prove the \(\Rightarrow \) direction. Assume that \(n \leq 4 \). We can find a cubic form through 3 and not the 4th point for any set of 4 points.
We suppose $n \geq 5$.

Case 1: Suppose Ω has 4 points on a line L given by $H = 0$. Assume for the moment there are no other points in Ω on L. Let Ω' be the compliment to the set of 4 points on L in Ω. The set Ω' has $n - 4 \leq 4$ points since $n \leq 8$.

Claim: Ω' fails to impose independent conditions on forms of degree 2.
Proof of claim: If Ω' imposed independent conditions, we could find a form G of degree 2 vanishing at all but one point of Ω'. Then GH would vanish at all but one point of Ω and hence Ω would impose independent conditions. This contradicts our hypothesis that Ω fails to impose independent conditions.

By lemma 2, we conclude that $\#\Omega' = 4$ and the points of Ω' lie on a line given by $H = 0$. Hence Ω lies on the conic $GH = 0$. We conclude that in Case 1, either Ω lies on a conic and $n = 8$ or 5 points of Ω lie on a line by Lemma 2.

Case 2: Suppose there is a line L containing $l \geq 3$ points of Ω. By the same argument as in Case 1, the remaining $n - l$ points fail to impose independent conditions on curves of degree 2. Therefore these remaining points have 4 among them on a line. This puts us in Case 1.

Case 3: Assume Ω contains no sets of 3 collinear points. Let $\{P_1, P_2, P_3\}$ be any 3 points in Ω and let Ω' be the compliment in Ω to these 3 points.

- If for any $i, i = 1, 2, 3$, the points $\Omega' \cup \{P_i\}$ impose independent conditions on forms of degree 2, we are done: Let C be a curve of degree 2 containing Ω' but not P_i and let L be the line through P_j and P_k. Then $C \cup L$ is a curve of degree 3 containing all but one point of Ω and hence Ω imposes independent conditions. This contradicts our hypothesis.
- Thus we may assume that the points $\Omega' \cup \{P_i\}$ fail to impose independent conditions on forms of degree 2. There are ≤ 6 points in $\Omega' \cup \{P_i\}$. This set does not contain 4 collinear points (Case 1), and thus, by lemma 2, it contains 6 points that lie on a conic C_i. Let C_j and C_k be the conics constructed in the same way for the sets $\Omega' \cup \{P_j\}$ and $\Omega' \cup \{P_k\}$. Now Ω' consists of 5 points no 3 of which are collinear. There is a unique conic C through the points of Ω'. Thus $C = C_j = C_k = C_k$. Hence C contains all of Ω. □
Proof of Chasles’ theorem: Let Γ' be a set of 8 of the points in $C_1 \cap C_2$. We need to show that Γ' imposes independent conditions on cubic forms. If $\Gamma' \subseteq D, D$ a conic given by the vanishing of a homogeneous degree 2 form F, then $C_i \cap D, i = 1, 2$ has more than the expected number of points, 6. Thus each $C_i = D \cup L_i$ for a line L_i. Thus $C_1 \cap C_2$ has more than 9 points (the intersection contains all of D). This contradicts our hypothesis, so it is impossible for Γ' to be contained in a conic.

If four or more points of Γ' were on a line L, then using the same argument we see that L would be contained in C_1 and C_2. As before this leads to a contraction. We conclude that no subset of 4 points of Γ' is collinear. By lemma 3 we conclude that Γ' imposes independent conditions. \qed