Basis of the Kernel

Definition 1. As subset S of \mathbb{R}^n that is closed under addition and scalar multiplication is said to be a subspace of \mathbb{R}^n. More concretely S is a subspace provided the two conditions below are satisfied.

- If $s_1, s_2 \in S$, then $s_1 + s_2 \in S$.
- If $s \in S, \lambda \in \mathbb{R}$, then $\lambda s \in S$.

Example 1. Let $F : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be a linear transformation. Then $\text{ker}(F)$ and the image of F (which we denote by $\text{im}(F)$) are both subspaces. The kernel of F is a subspace of \mathbb{R}^m, the domain, and $\text{im}(F)$ is a subspace of \mathbb{R}^n, the target or range of F.

Example 2. Let T the subset of \mathbb{R}^3 consisting of all the points of \mathbb{R}^3 whose coordinates are all integers. Then T is closed under addition, but T is not closed under scalar multiplication. Hence T is not a subspace.

Definition 2. Let S be a subset of \mathbb{R}^n. The span of S is the set of all linear combinations of elements of S.

Given a linear map we show how to find a small set S of vectors with the property that they span the kernel of our linear map. We do this in an example. Let A be the matrix

$$
\begin{pmatrix}
1 & -1 & 0 & -1 & 1 \\
2 & 0 & 2 & 2 & 4 \\
0 & 1 & 1 & 2 & 1
\end{pmatrix},
$$

so A gives a map from \mathbb{R}^5 to \mathbb{R}^3. Upon row reduction we get

$$
\begin{pmatrix}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}.
$$

Thus the kernel of A is the set of all solutions to the equations

$$
x_1 + x_3 + x_4 + x_5 = 0 \\
x_2 + x_3 + 2x_4 + x_5 = 0.
$$

We can choose the variables x_3, x_4, x_5 freely and x_1, x_2 are determined by our equations. We have

$$
x_1 = -x_3 + -x_4 + -x_5 \\
x_2 = -x_3 + -2x_4 + -x_5 \\
x_3 = x_3 \\
x_4 = x_4 \\
x_5 = x_5.
$$
We can write this as

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5
\end{pmatrix}
= \begin{pmatrix}
 -1 \\
 -1 \\
 1 \\
 0 \\
 0
\end{pmatrix} + \begin{pmatrix}
 -1 \\
 -2 \\
 0 \\
 1 \\
 0
\end{pmatrix} + \begin{pmatrix}
 -1 \\
 -1 \\
 0 \\
 0 \\
 1
\end{pmatrix}.
\]

First observe that the three elements

\[
v_1 = \begin{pmatrix}
 -1 \\
 -1 \\
 1 \\
 0 \\
 0
\end{pmatrix}, \quad v_2 = \begin{pmatrix}
 -1 \\
 -2 \\
 0 \\
 1 \\
 0
\end{pmatrix}, \quad v_3 = \begin{pmatrix}
 -1 \\
 -1 \\
 0 \\
 0 \\
 1
\end{pmatrix}
\]

are in the domain of \(A \). Second observe that these three elements are in the kernel of \(F \). We verify this for \(v_1 \) by multiplying

\[
\begin{pmatrix}
 1 & -1 & 0 & -1 & 1 \\
 2 & 0 & 2 & 2 & 4 \\
 0 & 1 & 1 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
 -1 \\
 -1 \\
 1 \\
 0 \\
 0
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0 \\
 0
\end{pmatrix}.
\]

We should multiply \(Av_2, Av_3 \) but omit this. We can also verify that we get \(v_1 \) as an element of the kernel by setting \(x_3 = 1, x_4 = 0, x_5 = 0 \) and using the equations above to determine \(x_1, x_2 \).

Observation 1. An element of the kernel of \(A \) is determined by the values of \(x_3, x_4, x_5 \).

This says that every element of the kernel of \(A \) is a linear combination of the elements of the set \(B = \{ v_1, v_2, v_3 \} \). This says that \(B \) spans the kernel of \(A \).

Observation 2. We can not remove any one of the elements from \(B \) and still span the kernel of \(A \).

Thus we have reached our goal. We have found a **small** set that spans the kernel of \(A \). We now make some definitions about general situation.

Definition 3. Let \(B \) be a subset of \(\mathbb{R}^n \). Let \(w \in B \). Let \(B' \) be the set gotten from \(B \) by removing the element \(w \) from \(B \). We say that an element \(w \) of \(B \) is **redundant** provided the span of \(B \) is the same as the span of \(B' \).

If \(w \) is redundant, then it is a linear combination of the elements of \(B \) and hence a linear combination of the elements of \(B' \). One the other hand, if \(w \in B \) is a linear combination of the elements of \(B' \), then the span of \(B \) is the same as the span of \(B' \) and \(w \) is redundant. We have the equivalent definition.
Definition 4. Let B be a subset of \mathbb{R}^n. Let $w \in B$ and let B' be the same as B except that w has been removed from B. We say w is redundant if w is a linear combination of elements of B'.

We return to our specific matrix A and the set $B = \{v_1, v_2, v_3\}$. We rephrase our conclusions as the

Observation 3. The set B spans the kernel of A and has no redundant elements.

Definition 5. Let V be a subspace of \mathbb{R}^n. A set B which

- spans the subspace V of \mathbb{R}^n and,
- has no redundant elements

is a **basis** of the subspace V.

Observation 4. The set B we have calculated is a basis of the kernel of A.

Basis of the Image

We work an example of how to find the basis of the image of a linear map defined by a matrix. Let A be an $n \times m$ matrix. Then A defines a linear map

$$A : \mathbb{R}^m \rightarrow \mathbb{R}^n.$$

Lemma 3. The image of A is spanned by the column vectors of A.

Proof. Let e_i denote the column vector of length m with all zero entries except in the i-th position which has a 1. If we multiply Ae_i we obtain the i-th column vector of A which we denote by A_i.

We can write an arbitrary vector

$$v = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{pmatrix} \in \mathbb{R}^m$$

as

$$x_1e_1 + x_2e_2 + \cdots.$$

We have

$$Av = A(x_1e_1 + x_2e_2 + \cdots) = x_1A(e_1) + x_2A(e_2) + \cdots.$$

This exhibits an arbitrary element in the image of A as a linear combination of the column vectors of A, that is, as an element in the span of $\{A_1, A_2, \cdots\}$.

Question 1. How do we identify redundant elements in the set $C = \{A_1, A_2, A_3, A_4, A_5\}$ of column vectors?
We answer this in an example, namely we identify the redundant vectors among the column vectors of the matrix we used above. Recall that

$$A = \begin{pmatrix}
1 & -1 & 0 & -1 & 1 \\
2 & 0 & 2 & 2 & 4 \\
0 & 1 & 1 & 2 & 1
\end{pmatrix}.$$

Recall that a basis of the kernel was the set

$$B = \{v_1 = \begin{pmatrix}
-1 \\
-1 \\
1 \\
0 \\
0
\end{pmatrix},
\quad v_2 = \begin{pmatrix}
-1 \\
-2 \\
0 \\
1 \\
0
\end{pmatrix},
\quad v_3 = \begin{pmatrix}
-1 \\
-1 \\
0 \\
0 \\
1
\end{pmatrix}\}.$$

We put together two facts.

1. The elements v_1, v_2, v_3 are in the kernel of A, so that $Av_i = 0$, $i = 1, 2, 3$.

2. From the lemma above we have

$$Av_1 = -1A_1 - 1A_2 + 1A_3, \quad Av_2 = -1A_1 - 2A_2 + A_4, \quad Av_3 = -A_1 - A_2 + A_5.$$

The first equation says $A_3 = A_1 + A_2$ so that A_3 is a redundant element in C. Remove A_3 from out set, so we are left with $\{A_1, A_2, A_4, A_5\}$. The element A_4 is redundant from this smaller set. So we remove that element and we are left with $\{A_1, A_2, A_5\}$. In the same way remove A_5. We are left with $\{A_1, A_2\}$. We have used up all the elements in the basis of the kernel, so we stop here. I have not explained why neither of the two remaining elements is redundant. We will do that in the next set of notes.

We conclude that $\{A_1, A_2\}$ is a basis of the image of A.