Solve 5 of the following 6 problems. Please do not grade problem __

1. (20 points) Compute the integral $\int_C f(z)dz$, where $f(x + iy) = x^2 + iy$ and C is the straight line segment from 0 to $1 + i$.

2. (20 points) Let C be the square with vertices at the points $\pm 5 \pm 5i$ (oriented counterclockwise). Compute $\int_C \frac{z^4dz}{(z - 1)^2(z - i)}$.

3. (20 points) Let C be the circle of radius 2 centered at the origin (traversed counterclockwise). Compute the integral $\int_C \frac{e^{3z}}{(z - 1)^k}dz$, for all integers k (positive, zero, or negative). Justify your answer!

4. (20 points) Determine whether the following statements are true or false. Justify your answers!
 a) Let C be a closed contour, which does not pass through the origin. Then $\int_C \frac{dz}{z^2} = 0$.
 b) If $f(z)$ is an entire function, C is the unit circle traversed counterclockwise, and $|z_0| < 1$, then $\int_C \frac{f'(z)}{z - z_0}dz = \int_C \frac{f(z)}{(z - z_0)^2}dz$.
 c) Let α and β be arbitrary complex numbers. For any path C from α to β we have $\int_C \bar{z}dz = (\bar{\beta}^2 - \bar{\alpha}^2)/2$.

5. (20 points) Let C_1 be the contour given by the parametrization $z(t) = (1 + t)e^{2\pi it}$, $0 \leq t \leq 3$. Let C_2 be the line segment from 1 to 4 parametrized by $z(t) = 1 + t$, $0 \leq t \leq 3$. Compute the difference $\int_{C_1} \frac{dz}{z + 2} - \int_{C_2} \frac{dz}{z + 2}$. Justify your answer!

6. (20 points) Let u be a harmonic function defined (and having partials of all order) on the whole of \mathbb{R}^2. Assume that the first partials of u satisfy the inequality

$$(u_x)^2 + (u_y)^2 \leq 7.$$

Prove that u must be a linear function, i.e., $u(x, y) = ax + by + c$, for some constant real numbers a, b, and c.

Hint: Consider the function $f(x + iy) = u_x(x, y) - iu_y(x, y)$.