Show all your work and justify all your answers!

1. (18 points) Let \(C \) be the circle of radius 2 centered at the origin and oriented counterclockwise. Evaluate the following integrals.

 (a) \(\int_C \frac{dz}{z^2 + 2z - 3} \)

 (b) \(\int_C \log(z + 5)dz \), where \(\log(z) \) is the principal branch of the logarithm function with argument in \((-\pi, \pi)\).

2. (18 points) Let \(C \) be the unit circle oriented counterclockwise and let \(z_0 \) be a complex number satisfying \(|z_0| \neq 1 \). Prove the equality

 \[\int_C \frac{\sin(z^2)}{(z-z_0)^2}dz = \int_C \frac{2z \cos(z^2)}{z-z_0}dz. \]

3. (10 points) Let \(f(z) = e^{iz^2} \sin(z^4 + z - 2) \). Does \(f \) have an anti-derivative? In other words, does there exist an entire function \(F(z) \), such that \(F'(z) = f(z) \). Carefully justify your answer.

4. (18 points) Let \(C_1 \) be the circle of radius 2 centered at 2i oriented counterclockwise. Let \(C_2 \) be the circle of radius 5 centered at the origin oriented counterclockwise. Set \(f(z) := \frac{1}{(z^2 + 1)^2} \). Evaluate the difference \(\int_{C_2} f(z)dz - \int_{C_1} f(z)dz \).

 Hint: Cauchy-Goursat’s Theorem for multiply connected regions helps. Clearly state it and explain why its all hypothesis are satisfied in the set-up in which you apply it..

5. (18 points)

 (a) Let \(U \) be the upper half-plane \(\{x+iy : y > 0\} \) of the complex plane. Set \(g(z) := e^{iz} \). Describe geometrically the image \(g(U) \) of \(U \) under the function \(g \).

 (b) Suppose that \(f(z) \) is an entire function. Write \(f(x+iy) = u(x,y) + iv(x,y) \). Assume that \(v(x,y) \geq u(x,y) \), for all points \((x,y) \) in the plane. Note that the assumption means that the values of \(f \) are all in the half-plane above the line \(v = u \) in the \((u,v) \) plane. Show that \(f(z) \) is a constant function.

 Hint: Consider the function \(g(z) = e^{\lambda f(z)} \), for a suitable constant \(\lambda \).

6. (18 points) Let \(C_R \) denote the circle of radius \(R, R > 2 \), centered at the origin and oriented counterclockwise. Set \(I_R := \int_{C_R} \frac{z^2 + 9}{z^4 + 3z^2 + 2}dz \).

 (a) Prove the inequality

 \[|I_R| \leq \frac{2\pi R(R^2 + 9)}{(R^2 - 1)(R^2 - 2)}. \] \(\text{(1)} \)

 (b) Prove that \(\lim_{R \to \infty} I_R = 0 \). Note that you are taking the limit of the \textbf{left} hand side of equation \((1) \).

 (c) Use part 6b to prove that \(I_R = 0 \), for all \(R \geq 2 \).