1. (18 points) Compute the integral \(\int_C \overline{z} \, dz \), where \(C \) is the triangle with vertices at the points 0, 1, and \(i \), (traversed counterclockwise). Caution: The integrand is the complex conjugate \(\overline{z} \) of \(z \).

2. (18 points) Let \(C \) be the ellipse cut out by the equation \(\left(\frac{x}{3} \right)^2 + \left(\frac{y}{5} \right)^2 = 1 \), oriented counterclockwise. Compute \(\int_C \frac{z^3 \, dz}{(z - i)(z^2 + 1)} \).

3. (16 points) Suppose that \(f(z) \) is entire and \(|f(z)| \geq 1/2 \), for all \(z \) in the complex plane. Prove that \(f \) is a constant function. Hint: The strategy is similar to the proof of the Fundamental Theorem of Algebra, but the actual proof is much simpler.

4. (16 points) Let \(C \) be the unit circle parametrized by \(z(\theta) = e^{i\theta}, 0 \leq \theta \leq 2\pi \).

(a) Show that for all integers \(n \), \(\int_C \frac{e^{(zn)/z} \, dz}{z} = 2\pi i \).

(b) Derive the integration formula \(\int_0^{2\pi} e^{\cos(n\theta) \cos(n\theta)} d\theta = 2\pi \), for every integer \(n \).

5. (16 points) Let the domain \(D \) be the complex plane minus the non-negative part of the \(x \)-axis. Let \(\log(z) \) be the branch of the logarithm function with argument in the interval \((0, 2\pi) \), so that \(\log(z) \) is analytic in \(D \). Set \(f(z) := e^{(1/2)\log(z)} \). Note that \(f(z) \) is a branch of the multi-valued function \(\sqrt{z} \).

(a) Find a single valued anti-derivative \(F(z) \) of \(f(z) \) in \(D \). Express your answer in terms of the above branch of \(\log(z) \) and avoid using multi-valued rational powers of \(z \). Check that your answer is indeed an anti-derivative, by explicitly differentiating it.

(b) Let \(C \) be the contour \(z(\theta) = e^{i\theta}, \pi/2 \leq \theta \leq 3\pi/2 \). Prove the equality
\[
\int_C f(z) \, dz = \frac{2\sqrt{2}}{3}.
\]

6. (16 points) Let \(C \) be a circle of radius \(7/2 \) centered at the origin oriented counterclockwise. Set \(g(n) := \int_C \frac{z^5 + 3z + 7}{(z - n)^3} \, dz \). Compute \(g(n) \) for all integers \(n \). Justify your answer!!!