Double Induction:

Let \(f(k, m) \) be a function of two positive integers, defined recursively by:

(a) \(f(1, 1) = 2 \)

(b) \(f(k+1, m) = f(k, m) + 2(k+m) \)

(c) \(f(k, m+1) = f(k, m) + 2(k+m-1) \)

for all \(k, m \geq 1 \). Prove that

\[
f(k, m) = k^2 + 2km + m^2 - k - 3m + 2
\]

Proof:

Step 1: We will prove, by induction on \(m \), that

\[
f(1, m) = 1^2 + 2m + m^2 - 1 - 3m + 2 = m^2 - m + 2
\]

(a) \(f(1, 1) = 2 \), \(1^2 - 1 + 2 = 2 \).

(c) Assume that \(f(1, m) = m^2 - m + 2 \). We need to show

\[
f(1, m+1) = f(1, m) + 2m = m^2 - m + 2 + 2m = m^2 + m + 2
\]

Ind. Hyp. \((m+1)^2 - (m+1) + 2 \).

Hence \(f(1, m) = m^2 - m + 2 \), for all \(m \in \mathbb{N} \).

Step 2: Consider the statement \(P(k) := \]

\[
f(k, m) = k^2 + 2km + m^2 - k - 3m + 2, \text{ for all } m
\]

We will prove it, for all \(k \), by induction on \(k \).

(1) The case \(k = 1 \) is step 1.
(2i) Assume \(P(k) \).

We need to prove \(P(k+1) \), which states

\[
\beta(k+1) = (k+1)^2 + 2(k+1)m + m^2 - (k+1)^2 - 3m + 2
\]

\[
= k^2 + 2k + 1 + 2km + 2m + m^2 - k - 1 - 3m + 2
\]

\[
\beta(k+1) = \beta(k,m) + 2k + 2m \uparrow
\]

\(\text{Ind. Hyp.} \)

\[
= (k^2 + 2km + m^2 - k - 3m + 2) + 2k + 2m
\]

Hence \(P(k+1) \) holds as well.

We conclude that statement \(P(k) \) holds for all positive integers \(k \), by the principle of induction.

Hence, equality (\(\Box \)) holds for all positive integers \(k \) and \(m \).

Q.E.D