1. (15 points) The matrices A and B below are row equivalent (you do not need to check this fact).

$$A = \begin{pmatrix}
1 & -3 & 4 & -1 & 9 \\
-2 & 6 & -6 & -1 & -10 \\
-3 & 9 & -6 & -6 & -3 \\
3 & -9 & 4 & 9 & 0
\end{pmatrix}, \quad B = \begin{pmatrix}
1 & -3 & 0 & 5 & -7 \\
0 & 0 & 2 & -3 & 8 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

a) What is the rank of A?

b) Find a basis for the null space $Null(A)$ of A.

c) Find a basis for the column space of A.

d) Find a basis for the row space of A.

2. (4 points) The null space of the 5×6 matrix A is 2 dimensional. What is the dimension of (a) the Row space of A? (b) the Column space of A? Justify your answer!

3. (15 points)

(a) Show that the characteristic polynomial of the matrix $A = \begin{pmatrix}
1 & 1 & 0 \\
0 & 2 & 0 \\
4 & -4 & -1
\end{pmatrix}$

is $-(\lambda - 1)(\lambda + 1)(\lambda - 2)$.

(b) Find a basis of \mathbb{R}^3 consisting of eigenvectors of A.

c) Find an invertible matrix P and a diagonal matrix D such that the matrix A above satisfies

$$P^{-1}AP = D$$

4. (12 points) Determine for which of the following matrices A below there exists an invertible matrix P (with real entries) such that $P^{-1}AP$ is a diagonal matrix. You do not need to find P. Justify your answer!

(a) \(\begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \)

(b) \(\begin{pmatrix} 2 & -1 \\ 0 & 2 \end{pmatrix} \)

(c) \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \)

5. (22 points) Let W be the plane in \mathbb{R}^3 spanned by $v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

Note: Parts 5a, 5b, 5c are mutually independent and are not needed for doing parts 5d, 5e, 5f.
(a) Find the length of v_1.

(b) Find the distance between the two points v_1 and v_2 in \mathbb{R}^3.

(c) Find a vector of length 1 which is orthogonal to W.

(d) Find the projection of v_2 to the line spanned by v_1.

(e) Write v_2 as the sum of a vector parallel to v_1 and a vector orthogonal to v_1.

(f) Find an orthogonal basis for W.

6. (16 points) Let W be the plane in \mathbb{R}^3 spanned by $u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $u_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

(a) Find the projection of $b = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ to W.

(b) Find the distance from b to W.

(c) Find a least square solution to the equation $Ax = b$ where A is the 3×2 matrix with columns u_1 and u_2. I.e., find a vector x in \mathbb{R}^2 which minimizes the length $\|Ax - b\|$.

(d) Find the coefficients c_0, c_1 of the line $y(x) = c_0 + c_1x$ which best fits the three points $(x_1, y_1) = (-1, 0), (x_2, y_2) = (0, 2), (x_3, y_3) = (1, 1)$ in the x, y plane.

The line should minimize the sum $\sum_{i=1}^{3} [y(x_i) - y_i]^2$. **Justify your answer!**

7. (16 points) The vectors $v_1 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ and $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ are eigenvectors of the matrix $A = \begin{pmatrix} .8 & .5 \\ .2 & .5 \end{pmatrix}$.

(a) The eigenvalue of v_1 is ______

The eigenvalue of v_2 is ______

(b) Find the coordinates of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in the basis $\{v_1, v_2\}$.

(c) Compute $A^{100} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

(d) As n gets larger, the vector $A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ approaches _____. Justify your answer.